Grundlagen der Rechnerarchitektur

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Rechnerarchitektur"

Transkript

1 Grundlagen der Rechnerarchitektur Prozessor

2 Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2

3 Datenpfad einer einfachen MIPS CPU Grundlagen der Rechnerarchitektur Prozessor 3

4 Ziel Konstruktion des Datenpfads einer einfachen MIPS CPU als Blockschaltbild. Die CPU hat 32 Register und soll folgende MIPS Instruktionen realisieren: Instruktionen für Speicherzugriff: lw,, sw lw $s1, 4($s2) # $s1 = Memory[$s2+4] sw $s1, 4($s2) # Memory[$s2+4] = $s1 Arithmetisch logische Instruktionen: add, sub, and, or, slt add $s0, $s1, $s2 # $s0 = $s1 + $s2 slt $s0, $s1, $s2 # $s0 = ($s1<$s2)? 1 : 0 Branch Instruktion: beq beq $s1, $s2, 4096 # $pc = $pc <<2, wenn $s1=$s2 Grundlagen der Rechnerarchitektur Prozessor 4

5 Datenpfad einer einfachen MIPS CPU Erster Abschnitt des Datenpfades fd Grundlagen der Rechnerarchitektur Prozessor 5

6 Benötigte Bausteine Speicherbaustein in dem die abzuarbeitenden Instruktionen stehen. Instruction Address ist 32 Bit groß. Wenn an den Leitungen Instruction Address eine Adresse anliegt, liegt im nächsten Taktzyklus eine 32 Bit lange Instruktion auf den Instruction Leitungen. Register in dem der Programm Counter steht. Hier steht die Adresse der nächsten abzuarbeitenden Instruktion. Eine ALU, die fest auf die Funktion Addieren verdrahtet ist. Mit dieser ALU wird der Program Counter in 4er Schritten erhöht, um auf die nächste folgende Instruktion zu zeigen. Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Logik und Arithmetik 6

7 Erster Schritt der Instruktionsausführung Mit dem neuen Clock Signal passiert folgendes: Instruction Fetch: Lag der Program Counter Wert seit dem letzten Clock Signal am Instruction Memory an, erscheint mit dem nächsten Clock Signal die nächste auszuführende Instruktion an der Instruction Leitung. Program Counter erhöhen: Damit der Speicher schon mit dem Bereitstellen der nächsten Instruktion beginnen kann, wird der Program Counter direkt zu Beginn der Instruktionsabarbeitung auf die nächste abzuarbeitende Instruktion gesetzt. Grundlagen der Rechnerarchitektur Prozessor 7

8 Das Blockschaltbild dazu Grundlagen der Rechnerarchitektur Prozessor 8

9 Datenpfad einer einfachen MIPS CPU Arithmetische Logische h h Operationen Grundlagen der Rechnerarchitektur Prozessor 9

10 Betrachten zunächst R Typ Instruktionen Erinnerung, Instruktionen vom R Typ Format: opcode src1 src2 dest shamt funct 6 Bit 5 Bit 5 Bit 5 Bit 5 Bit 6 Bit R Typ (Register Typ) Solche Instruktionen machen immer folgendes: Lese zwei Register (src1 und src2) Führe eine ALU Operation darauf aus Schreibe Ergebnis zurück in ein Register (dest) Alle hier zu realisierenden arithmetisch logischen Instruktionen (d.h. add,, sub,, and,, or,, slt) ) sind R Typ Instruktionen. Zum Speichern der Registerinhalte und zur Durchführung der Rechenoperationen benötigen wir zwei weitere Bausteine. Grundlagen der Rechnerarchitektur Prozessor 10

11 Register File und ALU Auf den Read Data Leitungen liegen die 32 Bit Inhalte der Die ALU rechnet auf 32 Register, die den 5 Bit Read Register Inputs entsprechen. Bit Werten. Die ALU Ein Register File Fileistwesentlichist schneller als der Speicher. Operation wirdüber die Daten liegen in einem Instruktionszyklus unmittelbar auf 4 Bit ALU Operationden Read Data Leitungen vor. In einem Taktzyklus Leitungen gewählt; überschriebener Registerinhalt ist erst im darauf hierzu später mehr. Die folgenden auf den Read Data Leitungen sichtbar. Zero Leitung ist 0, wenn Zum Schreiben in ein Register müssen die Daten auf den das ALU Ergebnis 0 Write Data Leitungen vorliegen und die RegWrite Leitung ergab. muss aktiv sein. Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 11

12 Erweiterung des Blockschaltbilds Grundlagen der Rechnerarchitektur Prozessor 12

13 Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13

14 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format: opcode reg1 reg2 Offset 6 Bit 5 Bit 5 Bit 16 Bit I Typ (Immediate Typ) beq Instruktion macht immer folgendes: Ziehe zwei Register voneinander ab (reg1 und reg2) Wenn das Ergebnis ungleich 0: nächste Instruktion ist bei PC+4 Wenn das Ergebnis gleich 0 : Sign Extension von 16 Bit Offset auf 32 Bit Zahl x x = 4*x (lässt sich durch ein Links Shift von 2 erreichen) nächste Instruktion ist bei PC+4+x Berechnung reg1 reg2 ist durch den Datenpfad schon realisiert. Für den Rest brauchen wir noch zwei neue Bausteine: Grundlagen der Rechnerarchitektur Prozessor 14

15 Sign Extend und Shift Left 2 k Sign Extend n Shift Left 2 Vorzeichenbehaftetes Ausweiten von k auf n Leitungen (z.b. 16 auf 32). Links oder Rechts Shift von Leitungen (z.b. Shift Left 2) Grundlagen der Rechnerarchitektur Logik und Arithmetik 15

16 Wir müssen außerdem eine Auswahl treffen Wenn die aktuelle Instruktion ein beq ist, dann berechne den PC nach vorhin beschriebener Vorschrift. Wenn die Instruktion kein beq ist, dann bestimme den PC wie bisher gehabt; also PC=PC+4. Zum Treffen von Auswahlen brauchen wir eine weiteren Bausteintyp: t Grundlagen der Rechnerarchitektur Prozessor 16

17 Multiplexer A B A B A 1 A 2 A 3 A 4 Select 0 Mux 1 Select 0 Mux 1 Select Mux 32 C Für ein Bit C Für n Bit (z.b. 32 Bit) C Für n Bit Select (z.b. 2 Bit) C = A, wenn Sl Select = 0 C = A 0, wenn Select = 00 C = B, wenn Select = 1 C = A 1, wenn Select = 01 C = A 2 2, wenn Select = 10 C = A 3, wenn Select = 11 Grundlagen der Rechnerarchitektur Logik und Arithmetik 17

18 Erweiterung des Blockschaltbilds Grundlagen der Rechnerarchitektur Prozessor 18

19 Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19

20 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format: opcode reg1 reg2 Offset 6 Bit 5 Bit 5 Bit 16 Bit I Typ (Immediate Typ) Die Adresse des Speicherzugriffs berechnet sich wie folgt: Sign Extension von 16 Bit Offset auf 32 Bit Zahl x Adressse ist Inhalt von reg1 + x Hierzu werden wir vorhandene ALU und Sign Extend mitbenutzen Der Speicherinhalt wird dann bei lw in Register reg2 geschrieben bei sw mit Registerinhalt von reg2 überschrieben Zur Vereinfachung trennen wir im Folgenden den Speicher der Instruktionen vom Speicher der Daten. Letzterer ist wie folgt: Grundlagen der Rechnerarchitektur Prozessor 20

21 Datenspeicher Speicherbaustein in dem die Daten liegen. Address, Write Data und Read Data sind 32 Bit groß. In keinem Taktzyklus wird gleichzeitig gelesen und geschrieben. Schreiben oder lesen wird über Signale an MemWrite und MemRead durchgeführt. Der Grund für ein MemRead ist, dass sicher gestellt sein muss, dass die anliegende Adresse gültig ist (mehr dazu im Kapitel Speicher). Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 21

22 Erweiterung des Blockschaltbilds Grundlagen der Rechnerarchitektur Prozessor 22

23 Eine Übung zum Abschluss Wie lässt sich das Blockschaltbild des Datenpfads erweitern, sodass auch die MIPS Instruktion j unterstützt wird? Zur rerinnerung: ng j 4096 # $pc = 4096<<2 + oberste vier # Bit von $pc Grundlagen der Rechnerarchitektur Prozessor 23

24 Control einer einfachen MIPS CPU Grundlagen der Rechnerarchitektur Prozessor 24

25 Ziel Bisher hb haben wir ldilihd lediglich den Dt Datenpfad fdeiner einfachen MIPS CPU entworfen. Die Steuerleitungen der einzelnen Bausteine zeigen noch ins Leere. Jetzt wollen wir festlegen, wann zur Abarbeitung unsere Instruktionen (d.h. lw, sw,add, sub, and, or, slt,beq ) welche Steuerleitung an oder aus sein sollen. Den Baustein der das macht, nennt man Control Control. Wir trennen die Control in zwei Teile: ALU Control: Legt für jeden Befehl die die ALU Operation fest. Main Unit Contol: Legt für jeden Befehl die übrigen Stuerleitung fest Wir verwenden auf den nächsten Folien die folgende Terminologie: Steuerleitung an: asserted Steuerleitung aus: deasserted Grundlagen der Rechnerarchitektur Prozessor 25

26 Control einer einfachen MIPS CPU ALU Control Grundlagen der Rechnerarchitektur Prozessor 26

27 Vorüberlegung: Die passenden ALU Funktionen Control Eingänge der betrachteten ALU Für Load und Store Instruktionen lw, sw brauchen wir die ALU Funktion add. Für die arithmetisch logischen Instruktionen add, sub, and, or, slt brauchen wir die entsprechende passende ALU Funktion. Für die Branch Instruktion beq brauchen wir die ALU Funktion sub. Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 27

28 Vorüberlegung: die Instruktionsformate (I-type) (I-type) Wenn der Wert von Bit31bis 26in der gefetchten Instruktion gleich 0: arithmetisch logische Instruktion (d.h. add,sub,and,or,slt). Die Funktion ist mit dem Wert von Bit 5 bis 0 festgelegt. 35 oder 43: Load bzw. Store Instruktion (d.h. lw, sw). 4: Branch Instruktion (d.h. beq). ) Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 28

29 Eingabe ALUOp in Abhängigkeit des Instruktionstyps 5 Bit Funct Field der Instruktion ALU Control ALU Control Ausgabe Belegung der ALU Steuerleitungen, so dass die ALU die richtigen ALU Operation ausführt. Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 29

30 In einer Wahrheitstabelle zusammengefasst 0 0 Eingabe Ausgabe Daraus lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem ALU Control Symbol abstrakt darstellen. ALUOp Instruction[5:0] (also das Funct Field Field der Instruktion) ALU Control ALU Operation Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 30

31 Erweiterung des Blockschaltbilds Grundlagen der Rechnerarchitektur Prozessor 31

32 Control einer einfachen MIPS CPU Main Unit Control Grundlagen der Rechnerarchitektur Prozessor 32

33 Opcode bestimmt Steuerleitungsbelegungen Eingabe: Instruction [31 26] Ausgabe Instruction RegDst ALUSrc R format (0) lw (35) sw (43) beq (4) Memto Reg Reg Write Mem Read Mem Write Branch ALU Op1 ALU Op0 Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 33

34 Auch hier wieder Aus voriger Wahrheitstabelle lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem Control Symbol abstrakt darstellen. Instruction[31 26] (also: das Opcode Field der Instruktion) Control RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite Grundlagen der Rechnerarchitektur Prozessor 34

35 Erweiterung des Blockschaltbilds Grundlagen der Rechnerarchitektur Prozessor 35

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion)

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion) Auch hier wieder Aus voriger Wahrheitstabelle lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem Control Symbol abstrakt darstellen. Instruction[31 26] (also:

Mehr

Grundlagen der Rechnerarchitektur. Prozessor

Grundlagen der Rechnerarchitektur. Prozessor Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Grundlagen der Rechnerarchitektur. Prozessor

Grundlagen der Rechnerarchitektur. Prozessor Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik, Register und Speicherzugriff Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik und Zuweisungen Einfache Arithmetik mit Zuweisung C Programm: a = b + c; d = a e; MIPS Instruktionen: Komplexere

Mehr

Was ist die Performance Ratio?

Was ist die Performance Ratio? Was ist die Performance Ratio? Wie eben gezeigt wäre für k Pipeline Stufen und eine große Zahl an ausgeführten Instruktionen die Performance Ratio gleich k, wenn jede Pipeline Stufe dieselbe Zeit beanspruchen

Mehr

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45 Pipelining Die Pipelining Idee Grundlagen der Rechnerarchitektur Prozessor 45 Single Cycle Performance Annahme die einzelnen Abschnitte des MIPS Instruktionszyklus benötigen folgende Ausführungszeiten:

Mehr

Assembler am Beispiel der MIPS Architektur

Assembler am Beispiel der MIPS Architektur Assembler am Beispiel der MIPS Architektur Frühere Einsatzgebiete MIPS Silicon Graphics Unix Workstations (z. B. SGI Indigo2) Silicon Graphics Unix Server (z. B. SGI Origin2000) DEC Workstations (z.b.

Mehr

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Dominik Schoenwetter Erlangen, 30. Juni 2014 Lehrstuhl für Informatik 3 (Rechnerarchitektur)

Mehr

Grundlagen der Rechnerarchitektur. MIPS Assembler

Grundlagen der Rechnerarchitektur. MIPS Assembler Grundlagen der Rechnerarchitektur MIPS Assembler Übersicht Arithmetik, Register und Speicherzugriff Darstellung von Instruktionen Logische Operationen Weitere Arithmetik Branches und Jumps Prozeduren 32

Mehr

Carry Lookahead Adder

Carry Lookahead Adder Carry Lookahead Adder Mittels der Generate und Propagate Ausdrücke lässt ich dann für jede Stelle i der Carry (Übertrag) für die Stelle i+1 definieren: Für einen 4 Stelligen Addierer ergibt sich damit:

Mehr

Speichern von Zuständen

Speichern von Zuständen Speichern von Zuständen Erweiterung eines R S Latch zu einem D Latch (D=Data, C=Clock) R S altes Q neues Q 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 R S C D altes Q neues Q 0 0 0 0 0 1 0 1 0 0 1

Mehr

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht Kap.3 Mikroarchitektur Prozessoren, interne Sicht 3.1 Elementare Datentypen, Operationen und ihre Realisierung (siehe 2.1) 3.2 Mikroprogrammierung 3.3 Einfache Implementierung von MIPS 3.4 Pipelining Implementierung

Mehr

Datenpfaderweiterung Der Single Cycle Datenpfad des MIPS Prozessors soll um die Instruktion min $t0, $t1, $t2 erweitert werden, welche den kleineren

Datenpfaderweiterung Der Single Cycle Datenpfad des MIPS Prozessors soll um die Instruktion min $t0, $t1, $t2 erweitert werden, welche den kleineren Datenpfaderweiterung Der Single Cycle Datenpfad des MIPS Prozessors soll um die Instruktion min $t0, $t1, $t2 erweitert werden, welche den kleineren der beiden Registerwerte $t1 und $t2 in einem Zielregister

Mehr

Technische Informatik I - HS 18

Technische Informatik I - HS 18 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik I - HS 8 Musterlösung zu Übung 5 Datum : 8.-9. November 8 Aufgabe : MIPS Architektur Das auf der nächsten

Mehr

32 Bit Konstanten und Adressierung. Grundlagen der Rechnerarchitektur Assembler 78

32 Bit Konstanten und Adressierung. Grundlagen der Rechnerarchitektur Assembler 78 32 Bit Konstanten und Adressierung Grundlagen der Rechnerarchitektur Assembler 78 Immediate kann nur 16 Bit lang sein Erinnerung: Laden einer Konstante in ein Register addi $t0, $zero, 200 Als Maschinen

Mehr

Minimierung nach Quine Mc Cluskey

Minimierung nach Quine Mc Cluskey Minimierung nach Quine Mc Cluskey F(A,B,C,D) =!A!B!C!D +!A!B!C D +!A B!C!D +!A B!C D +!A B C!D +!A B C D + A!B!C!D + A!B!C D + A!B C D + A B C D Notiere die Funktion als # A B C D Gruppe Binärelemente

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 4 Prozessor Einzeltaktimplementierung Lothar Thiele Computer Engineering and Networks Laboratory Vorgehensweise 4 2 Prinzipieller Aufbau Datenpfad: Verarbeitung und Transport von

Mehr

Minimierung nach Quine Mc Cluskey Ermitteln der Primtermtabelle

Minimierung nach Quine Mc Cluskey Ermitteln der Primtermtabelle Minimierung nach Quine Mc Cluskey Ermitteln der Primtermtabelle # A B C D OK m9 + m11 1 0 1 P1 m7 + m15 1 1 1 P2 m11 + m15 1 1 1 P3 m0 + m1 + m4 + m5 0 0 P4 m0 + m1 + m8 + m9 0 0 P5 m4 + m5 + m6 + m7 0

Mehr

Darstellung von Instruktionen. Grundlagen der Rechnerarchitektur Assembler 21

Darstellung von Instruktionen. Grundlagen der Rechnerarchitektur Assembler 21 Darstellung von Instruktionen Grundlagen der Rechnerarchitektur Assembler 21 Übersetzung aus Assembler in Maschinensprache Assembler Instruktion add $t0, $s1, $s2 0 17 18 8 0 32 6 Bit Opcode Maschinen

Mehr

Beispiele von Branch Delay Slot Schedules

Beispiele von Branch Delay Slot Schedules Beispiele von Branch Delay Slot Schedules Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 97 Weniger

Mehr

Allgemeine Lösung mittels Hazard Detection Unit

Allgemeine Lösung mittels Hazard Detection Unit Allgemeine Lösung mittels Hazard Detection Unit Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 83

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 4 Prozessor Einzeltaktimplementierung Lothar Thiele Computer Engineering and Networks Laboratory Vorgehensweise 4 2 Prinzipieller Aufbau Datenpfad: Verarbeitung und Transport von

Mehr

Darstellung von negativen binären Zahlen

Darstellung von negativen binären Zahlen Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------

Mehr

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control Control Beispiel Store R1 4 Bit Register R1 SUB 4 Bit Register R2 Store R2 R2 Bit 0 Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Eingabe R2 Bit 0 Zero 0 0 Ausgabe

Mehr

Datapath. Data Register# Register# PC Address instruction. Register#

Datapath. Data Register# Register# PC Address instruction. Register# Überblick über die Implementation Datapath Um verschiedene Instruktionen, wie MIPS instructions, interger arithmatic-logical instruction und memory-reference instructions zu implementieren muss man für

Mehr

Data Hazards. Grundlagen der Rechnerarchitektur Prozessor 74

Data Hazards. Grundlagen der Rechnerarchitektur Prozessor 74 Data Hazards Grundlagen der Rechnerarchitektur Prozessor 74 Motivation Ist die Pipelined Ausführung immer ohne Probleme möglich? Beispiel: sub $2, $1, $3 and $12, $2, $5 or $13, $6, $2 add $14, $2, $2

Mehr

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Steuerwerk einer CPU Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Implementierung des Datenpfads Direkte Implementierung Mikroprogrammierung

Mehr

Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Befehl holen. Vorlesung Rechnerarchitektur und Rechnertechnik SS Memory Adress Register

Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Befehl holen. Vorlesung Rechnerarchitektur und Rechnertechnik SS Memory Adress Register Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Prog. Counter Memory Adress Register Befehl holen Incrementer Main store Instruction register Op-code Address Memory Buffer Register CU Clock Control

Mehr

Prinzipieller Aufbau und Funktionsweise eines Prozessors

Prinzipieller Aufbau und Funktionsweise eines Prozessors Prinzipieller Aufbau und Funktionsweise eines Prozessors [Technische Informatik Eine Einführung] Univ.- Lehrstuhl für Technische Informatik Institut für Informatik Martin-Luther-Universität Halle-Wittenberg

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Logische Bausteine. Addierwerke. Grundlagen der Rechnerarchitektur Logik und Arithmetik 48

Logische Bausteine. Addierwerke. Grundlagen der Rechnerarchitektur Logik und Arithmetik 48 Logische Bausteine Addierwerke Grundlagen der Rechnerarchitektur Logik und Arithmetik 48 Addition eines einzigen Bits Eingang Ausgang a b CarryIn CarryOut Sum 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1

Mehr

Beispiel: A[300] = h + A[300]

Beispiel: A[300] = h + A[300] Beispiel: A[300] = h + A[300] $t1 sei Basisadresse von A und h in $s2 gespeichert. Assembler Code? Maschinen Code (der Einfachheit halber mit Dezimalzahlen)? op rs rt rd adr/shamt funct Instruktion Format

Mehr

Lösungsvorschlag 10. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 10. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag. Übung Technische Grundlagen der Informatik II Sommersemester 29 Aufgabe.: MIPS-Kontrollsignale Für die 5 Befehlstypen a) R-Format

Mehr

Rechnerstrukturen, Teil 2

Rechnerstrukturen, Teil 2 2 Rechnerstrukturen, Teil 2 Vorlesung 4 SWS WS 7/8 2.3 Register-Transfer-Strukturen Prof. Dr. Jian-Jia Chen Fakultät für Informatik Technische Universität Dortmund jian-jia.chen@cs.uni-.de http://ls2-www.cs.tu-.de

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

N Bit Binärzahlen. Stelle: Binär-Digit:

N Bit Binärzahlen. Stelle: Binär-Digit: N Bit Binärzahlen N Bit Binärzahlen, Beispiel 16 Bit: Stelle: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Binär-Digit: 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 Least Significant Bit (LSB) und Most Significant Bit (MSB)

Mehr

2.3 Register-Transfer-Strukturen

2.3 Register-Transfer-Strukturen 2 2.3 Register-Transfer-Strukturen Kontext Die Wissenschaft Informatik befasst sich mit der Darstellung, Speicherung, Übertragung und Verarbeitung von Information [Gesellschaft für Informatik] 2, 24-2

Mehr

28. März Name:. Vorname. Matr.-Nr:. Studiengang

28. März Name:. Vorname. Matr.-Nr:. Studiengang Klausur 28. März 2011 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Zur Klausur zugelassen sind ausschließlich Schreibutensilien,

Mehr

Minimierung nach Quine Mc Cluskey

Minimierung nach Quine Mc Cluskey Minimierung nach Quine Mc Cluskey F(A,B,C,D) =!A!B!C!D +!A!B!C D +!A B!C!D +!A B!C D +!A B C!D +!A B C D + A!B!C!D + A!B!C D + A!B C D + A B C D Notiere die Funktion als # A B C D Gruppe Binärelemente

Mehr

Digitaltechnik und Rechnerstrukturen. 2. Entwurf eines einfachen Prozessors

Digitaltechnik und Rechnerstrukturen. 2. Entwurf eines einfachen Prozessors Digitaltechnik und Rechnerstrukturen 2. Entwurf eines einfachen Prozessors 1 Rechnerorganisation Prozessor Speicher Eingabe Steuereinheit Instruktionen Cachespeicher Datenpfad Daten Hauptspeicher Ausgabe

Mehr

Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31

Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31 Logische Bausteine Sequentielle Schaltungen Shlt Grundlagen der Rechnerarchitektur Logik und Arithmetik 31 Sequentielle Schaltungen n Eingänge m Ausgänge n Eingänge m Ausgänge Zustand Ausgänge hängen nur

Mehr

Rechnerarchitekturen I Datenpfad Dr. Michael Wahl

Rechnerarchitekturen I Datenpfad Dr. Michael Wahl Rechnerarchitekturen I Datenpfad Dr. Michael Wahl 3.3.2 Rechnerarchitekturen I Die fünf Komponenten eines Rechensystems und Steuerung:! Datenpfad! Der Ort,! an dem! ein Rechner! rechnet.! 3.3.2 Rechnerarchitekturen

Mehr

Computersysteme. Fragestunde

Computersysteme. Fragestunde Computersysteme Fragestunde 1 Dr.-Ing. Christoph Starke Institut für Informatik Christian Albrechts Universität zu Kiel Tel.: 8805337 E-Mail: chst@informatik.uni-kiel.de 2 Kurze Besprechung von Serie 12,

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

24. Februar Name:. Vorname. Matr.-Nr:. Studiengang

24. Februar Name:. Vorname. Matr.-Nr:. Studiengang Klausur 24. Februar 2012 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Die Klausur besteht aus 6 doppelseitig bedruckten

Mehr

Notwendigkeit für andere Instruktionsformate

Notwendigkeit für andere Instruktionsformate Notwendigkeit für andere Instruktionsformate add $t0, $s1, $s2 op rs rt rd shamt funct 6 Bit 5 Bit 5 Bit 5 Bit 5 Bit 6 Bit R Typ? lw $t0, 32($s3) I Typ Opcode 6 Bit Source 5 Bit Dest 5 Bit Konstante oder

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Lehrveranstaltung: PR Rechnerorganisation Blatt 8. Thomas Aichholzer

Lehrveranstaltung: PR Rechnerorganisation Blatt 8. Thomas Aichholzer Aufgabe 8.1 Ausnahmen (Exceptions) a. Erklären Sie den Begriff Exception. b. Welche Arten von Exceptions kennen Sie? Wie werden sie ausgelöst und welche Auswirkungen auf den ablaufenden Code ergeben sich

Mehr

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset.

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset. Quiz Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset 32 Bit Adresse 31 3 29... 2 1 SS 212 Grundlagen der Rechnerarchitektur

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation Mikroprogrammierung

Mehr

Weitere Arithmetik. Grundlagen der Rechnerarchitektur Assembler 33

Weitere Arithmetik. Grundlagen der Rechnerarchitektur Assembler 33 Weitere Arithmetik Grundlagen der Rechnerarchitektur Assembler 33 Die speziellen Register lo und hi Erinnerung: ganzzahliges Produkt von zwei n Bit Zahlen benötigt bis zu 2n Bits Eine MIPS Instruktion

Mehr

Wie groß ist die Page Table?

Wie groß ist die Page Table? Wie groß ist die Page Table? Im vorigen (typischen) Beispiel verwenden wir 20 Bits zum indizieren der Page Table. Typischerweise spendiert man 32 Bits pro Tabellen Zeile (im Vorigen Beispiel brauchten

Mehr

Grundlagen der Rechnerarchitektur. Einführung

Grundlagen der Rechnerarchitektur. Einführung Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Das Verfahren in Hardware

Das Verfahren in Hardware Das Verfahren in Hardware Links Shift 8 Bit Multiplikand Demonstration mit 1001 * 0110 = 110110 2.Links Shift 8 Bit ALU Rechts Shift 4 Bit Multiplikator 3.Rechts Shift 8 Bit Produkt 1. Produkt = Produkt

Mehr

Beispielhafte Prüfungsaufgaben zur Vorlesung TI I, gestellt im Frühjahr 2009

Beispielhafte Prüfungsaufgaben zur Vorlesung TI I, gestellt im Frühjahr 2009 Beispielhafte Prüfungsaufgaben zur Vorlesung TI I, gestellt im Frühjahr 2009 Die beigefügte Lösung ist ein Vorschlag. Für Korrektheit, Vollständigkeit und Verständlichkeit wird keine Verantwortung übernommen.

Mehr

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht Kap.3 Mikroarchitektur Prozessoren, interne Sicht 1 3.1 Elementare Datentypen, Operationen und ihre Realisierung (siehe 2.1) 3.2 Mikroprogrammierung 3.3 Einfache Implementierung von MIPS 3.4 Pipelining

Mehr

Pipelining for DLX 560 Prozessor. Pipelining : implementation-technique. Pipelining makes CPUs fast. pipe stages

Pipelining for DLX 560 Prozessor. Pipelining : implementation-technique. Pipelining makes CPUs fast. pipe stages Pipelining for DLX 560 Prozessor Pipelining : implementation-technique Pipelining makes CPUs fast. pipe stages As many instructions as possible in one unit of time 1 Pipelining can - Reduce CPI - Reduce

Mehr

Schreiben von Pages. Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen).

Schreiben von Pages. Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen). Schreiben von Pages Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen). Write Through Strategie (siehe Abschnitt über Caching) ist hier somit nicht sinnvoll. Eine sinnvolle

Mehr

Grundzüge der Informatik II

Grundzüge der Informatik II Grundzüge der Informatik II Kapitel 4: Realisierung von Rechen- und Steuerwerk (2. Teil) Prof. Dr. Oskar von Stryk Fachgebiet Simulation und Systemoptimierung TU Darmstadt Skript: Patterson/Hennessy, Chapter

Mehr

Cache Blöcke und Offsets

Cache Blöcke und Offsets Cache Blöcke und Offsets Ein Cache Eintrag speichert in der Regel gleich mehrere im Speicher aufeinander folgende Bytes. Grund: räumliche Lokalität wird wie folgt besser ausgenutzt: Bei Cache Miss gleich

Mehr

Übungsblatt 7 Implementierung von Programmsteuerbefehlen in einer Befehlspipeline Abgabefrist: Mittwoch , 14:00 Uhr

Übungsblatt 7 Implementierung von Programmsteuerbefehlen in einer Befehlspipeline Abgabefrist: Mittwoch , 14:00 Uhr Praktikum zur Vorlesung Prozessorarchitektur SS 2017 Übungsblatt 7 Implementierung von Programmsteuerbefehlen in einer Befehlspipeline Abgabefrist: Mittwoch 21.06.2017, 14:00 Uhr 1.1. Einführung Programmsteuerbefehle

Mehr

Rechnerarchitektur (RA)

Rechnerarchitektur (RA) 2 Rechnerarchitektur (RA) Sommersemester 27 Pipelines Jian-Jia Chen Informatik 2 http://ls2-www.cs.tu.de/daes/ 27/5/3 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken

Mehr

Rechnerarchitektur (RA)

Rechnerarchitektur (RA) 2 Rechnerarchitektur (RA) Sommersemester 26 Pipelines Jian-Jia Chen Informatik 2 http://ls2-www.cs.tu.de/daes/ 26/5/25 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken

Mehr

13.2 Übergang zur realen Maschine

13.2 Übergang zur realen Maschine 13.2 Übergang zur realen Maschine Bernd Becker Technische Informatik II Unterschiede zwischen abstrakter und realer Maschine 1. Bei realer Maschine nur ein Speicher M für Daten und Befehle. M ist endlich.

Mehr

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel Prozessorarchitektur Kapitel - Wiederholung M. Schölzel Wiederholung Kombinatorische Logik: Ausgaben hängen funktional von den Eingaben ab. x x 2 x 3 z z = f (x,,x n ) z 2 z m = f m (x,,x n ) Sequentielle

Mehr

Musterlösungen Technische Informatik 2 (T2) Prof. Dr.-Ing. D. P. F. Möller

Musterlösungen Technische Informatik 2 (T2) Prof. Dr.-Ing. D. P. F. Möller SS 2004 VAK 18.004 Musterlösungen Technische Informatik 2 (T2) Prof. Dr.-Ing. D. P. F. Möller Aufgabenblatt 2.5 Lösung 2.5.1 Befehlszähler (Program Counter, PC) enthält Adresse des nächsten auszuführenden

Mehr

Mikroprozessortechnik. 03. April 2012

Mikroprozessortechnik. 03. April 2012 Klausur 03. April 2012 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Die Klausur besteht aus 6 doppelseitig bedruckten Blättern.

Mehr

Vorlesung Rechnerarchitektur. Einführung

Vorlesung Rechnerarchitektur. Einführung Vorlesung Rechnerarchitektur Einführung Themen der Vorlesung Die Vorlesung entwickelt an Hand von zwei Beispielen wichtige Prinzipien der Prozessorarchitektur und der Speicherarchitektur: MU0 Arm Speicher

Mehr

Technische Informatik I - HS 18

Technische Informatik I - HS 18 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik I - HS 18 Übung 7 Datum : 22.-23. November 2018 Pipelining Aufgabe 1: Taktrate / Latenz In dieser Aufgabe

Mehr

Grundlagen der Rechnerarchitektur. Speicher

Grundlagen der Rechnerarchitektur. Speicher Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Cache Grundlagen. Schreibender Cache Zugriff. SS 2012 Grundlagen der Rechnerarchitektur Speicher 22

Cache Grundlagen. Schreibender Cache Zugriff. SS 2012 Grundlagen der Rechnerarchitektur Speicher 22 Cache Grundlagen Schreibender Cache Zugriff SS 212 Grundlagen der Rechnerarchitektur Speicher 22 Eine einfache Strategie Schreibt man nur in den Cache, werden Cache und darunter liegender Speicher inkonsistent.

Mehr

Rechnerstrukturen 1: Der Sehr Einfache Computer

Rechnerstrukturen 1: Der Sehr Einfache Computer Inhaltsverzeichnis 1: Der Sehr Einfache Computer 1 Komponenten.................................... 1 Arbeitsweise..................................... 1 Instruktionen....................................

Mehr

Von-Neumann-Architektur

Von-Neumann-Architektur Von-Neumann-Architektur Bisher wichtig: Konstruktionsprinzip des Rechenwerkes und Leitwerkes. Neu: Größerer Arbeitsspeicher Ein- und Ausgabewerk (Peripherie) Rechenwerk (ALU) Steuerwerk (CU) Speicher...ppppp...dddddd..

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur ARM, x86 und ISA Prinzipien Übersicht Rudimente des ARM Assemblers Rudimente des Intel Assemblers ISA Prinzipien Grundlagen der Rechnerarchitektur Assembler 2 Rudimente

Mehr

Grundlagen der Informationsverarbeitung:

Grundlagen der Informationsverarbeitung: Grundlagen der Informationsverarbeitung: Befehlsverarbeitung in einem Prozessor Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Instruktionsformate in 07 Maximaler

Mehr

1 Rechnerstrukturen 1: Der Sehr Einfache Computer

1 Rechnerstrukturen 1: Der Sehr Einfache Computer David Neugebauer, Informationsverarbeitung - Universität zu Köln, Seminar BIT I Inhaltsverzeichnis 1 Rechnerstrukturen 1: Der Sehr Einfache Computer 1 1.1 Komponenten................................. 1

Mehr

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht Kap.3 Mikroarchitektur Prozessoren, interne Sicht Kapitel 3 Mikroarchitektur 3.1 elementare Datentypen, Operationen und ihre Realisierung (siehe 2.1) 3.2 Mikroprogrammierung (zur Realisierung der Befehlsabarbeitung

Mehr

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 9.1: Dinatos-Algorithmus-Analyse Die folgenden Verilog-Zeilen

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 2 Instruktionssatz Lothar Thiele Computer Engineering and Networks Laboratory Instruktionsverarbeitung 2 2 Übersetzung Das Kapitel 2 der Vorlesung setzt sich mit der Maschinensprache

Mehr

H E F B G D. C. DLX Rechnerkern

H E F B G D. C. DLX Rechnerkern C. DLX Rechnerkern C.1. Einordnung DLX Architektur und Konzepte: Einfache "Gesamtzyklus"-DLX Maschine (non-pipelined), Verarbeitungsschritte einer Instruktion, Taktverhalten im Rechner, RISC & CISC...

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Rechnerarchitektur Aufgabe

Mehr

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU 1/62 2012-02-29 CPU Übersicht: Pipeline-Aufbau Pipeline- Hazards CPU

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember Bitte immer eine Reihe freilassen

Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember Bitte immer eine Reihe freilassen Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember 2016 Bitte immer eine Reihe freilassen Ziele der Übung Verschiedene Arten von Instruktionsparallelität

Mehr

Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016

Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016 Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016 Aufgabe 1: Taktrate / Latenz TI1 - Übung 6: Pipelining Einzeltakt-Architektur TI1 - Übung 6: Pipelining Pipelining-Architektur

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 8. Vorlesung Inhalt Gleitkomma-Darstellung Normalisierte Darstellung Denormalisierte Darstellung Rechnerarchitekturen Von Neumann-Architektur Harvard-Architektur Rechenwerk (ALU)

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation Mikroprogrammierung

Mehr

Integrierte Schaltungen

Integrierte Schaltungen Integrierte Schaltungen Klassen von Chips: SSI (Small Scale Integrated) circuit: 1 bis 10 Gatter MSI (Medium Scale Integrated) circuit: 10 bis 100 Gatter LSI (Large Scale Integrated) circuit: 100 bis 100

Mehr