Lehrveranstaltung: PR Rechnerorganisation Blatt 8. Thomas Aichholzer

Größe: px
Ab Seite anzeigen:

Download "Lehrveranstaltung: PR Rechnerorganisation Blatt 8. Thomas Aichholzer"

Transkript

1 Aufgabe 8.1 Ausnahmen (Exceptions) a. Erklären Sie den Begriff Exception. b. Welche Arten von Exceptions kennen Sie? Wie werden sie ausgelöst und welche Auswirkungen auf den ablaufenden Code ergeben sich hierdurch? c. Erweitern Sie den Multi-Cycle Datapath von Folie 3-78 der Vorlesung um den Befehl rfe (return from exception). Der rfe-befehl kopiert den Inhalt vom EPC in den PC. Zeichnen Sie alle notwendigen Datenpfade und Kontrollsignale ein. (Das Bild von Folie 3-78 finden Sie auch unter ftp://ftp.mkp.com/cod2e/figures/pdf/chapter5/f0548.pdf) Exceptions sind Ausnahmen bzw. Fehler die auftreten können innerhalb der Ausführung eines Programmes. Das System muss dementsprechend auf diese Exceptions reagieren. Das System muss die Adresse speichern bei der die Exception auftrat und den Userstatus speichern. Dann wird die Exception behandelt und danach der Userstatus wieder hergestellt und die Kontrolle wieder dem User übergeben. Es gibt grob 2 Arten von Exceptions: Interrupts und Traps (siehe Vorlesungsunterlagen). Traps sind Fehler die innerhalb einer Instruktion durch interne Ereignisse auftreten können oder während der Programmausführung passieren können. Zusammenfassend Traps: Interne Ereignisse (innerhalb der Instruktionen), zum Beispiel: OS Service Aufruf vom Programm (system call, trap into OS) Integer Arithmetic overflow & underflow Page faults Falsche Speicheradresszugriffe Memory protection violation Synchron zur Programmausführung Fehlerbehandlung durch eine Interrupt Service Routine (Handler) Die ausgeführte Instruktion kann wiederholt werden oder simuliert und das Programm wird weiterausgeführt, oder das Programm wird abgebrochen. Interrupts werden im allgemeinen durch externe Ereignisse ausgelöst (I/O Devices, Hardware, etc) oder passieren asynchron zur Programmausführung. Diese können unterdrückt dann im allgemeinen auch unterdrückt werden (jedoch nicht alle) und werden zwischen dem Programm ausgeführt (kurze Programmunterbrechung). Zusammenfassend Interrupts: externe Ereignisse: Ein-/Ausgabegerät stellt Anfrage an das System (beispielsweise Tastatur, Mouse, Netzwerk, Timer, etc.) Hardware Fehler (beispielsweise defekte Hardware, Überhitzung, etc.) Stromausfall Asynchron zur Programmausführung Die meisten Interrupts können kurz unterdrückt werden ( masked ), einige hingegen nicht (z.b. Stromausfall) Können während den Instruktionen behandelt werden Das Programm wird kurz unterbrochen und anschließend fortgesetzt ad c) Seite 1

2 Aufgabe 8.2 Befehlsverknüpfung oder Parallelverarbeitung (Pipelining) a. Was ist die Grundidee von Pipelining und wie wird es realisiert (anhand von MIPS Instruktionen)? b. Warum wird es gemacht? c. Welche Nachteile oder Probleme ergeben sich durch den Einsatz von Pipelining und wie können diese gelöst werden? (siehe VO Unterlagen) Die Grundidee von Pipelining ist es mit einzelnen Arbeitsschritten so früh wie möglich zu beginnen. Da bei der Bearbeitung einer Instruktion nicht alle Ressourcen zur gleichen Zeit benützt werden ist die Auslastung einer einzelnen Ressource eher gering. Die ALU wird zum Beispiel im Normalfall nur ein einziges Mal benötigt (Execute Phase). Da im Multi Cycle Datenpfad die einzelnen Operationen in einzelne Phasen unterteilt sind, und diese Phase im allgemeinen auf unterschiedliche Ressourcen zugreifen, versucht man nun diese Phasen miteinander zu überlappen und somit eine Beschleunigung zu erzielen. (siehe VO Unterlagen) Pipelining wird verwendet um den Durchsatz an Befehlen zu erhöhen. Die Latenz (Zugriffszeit) bleibt dieselbe für jeden Befehl. Ressourcen werden dadurch besser genutzt. ad c) (siehe VO Unterlagen) Nachteile: Alle Befehle in einer Pipeline sind gleich lang abzuarbeiten, der längste Befehl bestimmt also die Anzahl der Stufen der Pipeline (kleiner Nachteil zu Multi Cycle Datenpfad). Die Dauer einer Pipelinestufe wird durch die langsamste Stufe der Pipeline festgelegt. Probleme: Durch Abhängigkeiten (Daten- oder Kontrollabhängigkeiten) innerhalb der Pipeline müssen sogenannte s (Leerzustände) in der Pipeline eingefügt werden. Dies kann den Durchsatz möglicherweise extrem verringern. Es können jedoch auch Ressourcenkonflikte in einer Pipeline auftreten. Um die meisten dieser Nachteile sowie Probleme zu lösen müssen Techniken eingesetzt werden um diese auftretenden Probleme zu umgehen. Die Kontrolleinheit der Pipeline muss diese Probleme vorzeitig erkennen und Maßnahmen setzen, kann auch ein Verzögern der Pipeline () sein, um den Datenfluss der Pipeline zu gewährleisten. Beispiele: Branch Prediction,, Branch Delay Slots, Forwardings (Bypassings), etc. Seite 2

3 Aufgabe 8.3 Befehlsverknüpfung oder Parallelverarbeitung (Pipelining) a. Der folgende Code soll auf einer Pipeline lt. Vorlesungsfolie 4-20 ausgeführt werden, d.h., auch entsprechend eingezeichnet werden: add $r3, $r4, $r5 sub $r5, $r6, $r3 add $r6, $r4, $r5 sub $r1, $r3, $r6 Welche Register werden im 5. Takt gelesen bzw. geschrieben (unter der Annahme, dass es eine Forwarding-Einheit gibt)? Erklären Sie die Aufgabe der Forwarding-Einheit für diesen Code. Welche Aufgabe hat die Hazard-Erkennung? b. Modifizieren Sie den folgenden Code so, dass ein Branch Delay Slot genutzt werden kann: loop: lw $r2, 100($r3) In diesem Fall gibt es Datenabhängigkeiten (Data Hazards). Das bedeutet, Daten die noch berechnet werden, werden bereits in einer späteren Pipelinestufe verwendet, was zu inkonsistenten Zuständen und somit zu falschen Ergebnissen führt. Die Hazard Erkennung muss diese Abhängigkeiten erkennen und gegebenenfalls die Ergebnisse aus einer Vorgängerpipeline bevor diese geschrieben werden, bereits an die nächste Pipelinestufe weiterleiten. Dieser Vorgang wird Bypassing oder Forwarding genannt. Abhängigkeiten innerhalb dieses Codefragments: add $r3, $r4, $r5 Forwarding sub $r5, $r6, $r3 add $r6, $r4, $r5 sub $r1, $r3, $r6 gelesen wird im 5. Takt: $r3 und $6, geschrieben wird: $r3 loop: lw $r2, 100($r3) wird zu loop: lw $r2, 96($r3) Da $r3 vorher um 4 kleiner war muss der Offset von 100 um 4 veringert werden (daher 96). Seite 3

4 Aufgabe x86-Prozessoren kennen einen Befehl addm (z.b. lw $t4, 100($t3) und add $t2, $t2, $t4 werden durch addm $t2, 100($t3) ersetzt), der arithmetischen Operationen erlaubt, direkt auf den Speicher zuzugreifen. a. Wie wäre die MIPS-Pipeline zu ändern, damit die addm-instruktion unterstützt werden könnte? b. Welche Folgen und Probleme ergäben sich durch diese Änderung? Durch eine direkte Operation am Speicher müsste der Wert am Hauptspeicher direkt in die ALU weitergeleitet werden, um keinen allzu großen Geschwindigkeitsverlust in der Pipeline zu haben. Da durch ein Load zuerst die ALU die effektive Adresse berechnet aus der die Daten zu holen sind, müsste nach der Write Back Phase die das Ergebnis von Load in ein Register schreibt wieder eine Execute Phase folgen an der die ALU beteiligt ist. IF Instruction Fetch ID Instruction Decode Load: EX Execute (Add) MEM Zugriff auf den Speicher IF ID EX MEM WB WB Write Back Nun müsste als Erweiterung das Load (das alle 5 Phasen durchläuft) mit weiteren Phasen ergänzt werden. IF Instruction Fetch ID Instruction Decode Addm: EX Execute IF ID EX MEM EX2 WB MEM Zugriff auf den Speicher EX2 Execute 2 (Add Operation) WB Write Back In diesem Fall wird eine neue Execute Phase dazugenommen die nun die Addition macht. Durch das hinzufügen einer neuer Phase wird die ganze Pipeline auf 6 einzelne Phasen erweitert. Das bedeutet ein Durchlauf in der Pipeline hat nicht mehr 5, sondern 6 Zyklen. Seite 4

5 Aufgabe 8.5 Gegeben ist folgendes Programmstück: # subi macht keinen Sinn daher addi a. Ordnen Sie diesen Code so um, dass er (bei Ausführung) die geringste Anzahl an Takten pro Schleifendurchlauf (Ergebniselement) benötigt. Wie viele sind es? b. Wie a), jedoch mit der höchsten Anzahl an Takten pro Schleifendurchlauf (Ergebniselement). es können 3 s vermieden werden. Anzahl der Takte: 8 Anzahl der Takte: 11 wird zu sw 8($r5),$r10 Seite 5

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU 1/62 2012-02-29 CPU Übersicht: Pipeline-Aufbau Pipeline- Hazards CPU

Mehr

Technische Informatik I - HS 18

Technische Informatik I - HS 18 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik I - HS 18 Übung 7 Datum : 22.-23. November 2018 Pipelining Aufgabe 1: Taktrate / Latenz In dieser Aufgabe

Mehr

Technische Informatik 1 - HS 2016

Technische Informatik 1 - HS 2016 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2016 Lösungsvorschläge für Übung 6 Datum: 24. 25. 11. 2016 Pipelining 1 Taktrate / Latenz In dieser

Mehr

Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember Bitte immer eine Reihe freilassen

Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember Bitte immer eine Reihe freilassen Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember 2016 Bitte immer eine Reihe freilassen Ziele der Übung Verschiedene Arten von Instruktionsparallelität

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 8 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45 Pipelining Die Pipelining Idee Grundlagen der Rechnerarchitektur Prozessor 45 Single Cycle Performance Annahme die einzelnen Abschnitte des MIPS Instruktionszyklus benötigen folgende Ausführungszeiten:

Mehr

Data Hazards. Grundlagen der Rechnerarchitektur Prozessor 74

Data Hazards. Grundlagen der Rechnerarchitektur Prozessor 74 Data Hazards Grundlagen der Rechnerarchitektur Prozessor 74 Motivation Ist die Pipelined Ausführung immer ohne Probleme möglich? Beispiel: sub $2, $1, $3 and $12, $2, $5 or $13, $6, $2 add $14, $2, $2

Mehr

Was ist die Performance Ratio?

Was ist die Performance Ratio? Was ist die Performance Ratio? Wie eben gezeigt wäre für k Pipeline Stufen und eine große Zahl an ausgeführten Instruktionen die Performance Ratio gleich k, wenn jede Pipeline Stufe dieselbe Zeit beanspruchen

Mehr

Technische Informatik 1 - HS 2017

Technische Informatik 1 - HS 2017 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2017 Übung 8 Datum: 30. 11. 1. 12. 2017 In dieser Übung soll mit Hilfe des Simulators WinMIPS64 die

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016

Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016 Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016 Aufgabe 1: Taktrate / Latenz TI1 - Übung 6: Pipelining Einzeltakt-Architektur TI1 - Übung 6: Pipelining Pipelining-Architektur

Mehr

Rechnerarchitektur (RA)

Rechnerarchitektur (RA) 2 Rechnerarchitektur (RA) Sommersemester 27 Pipelines Jian-Jia Chen Informatik 2 http://ls2-www.cs.tu.de/daes/ 27/5/3 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken

Mehr

Rechnerarchitektur (RA)

Rechnerarchitektur (RA) 2 Rechnerarchitektur (RA) Sommersemester 26 Pipelines Jian-Jia Chen Informatik 2 http://ls2-www.cs.tu.de/daes/ 26/5/25 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken

Mehr

Technische Informatik 1 Übung 7 Pipelining (Rechenübung) Balz Maag 22./23. November 2018

Technische Informatik 1 Übung 7 Pipelining (Rechenübung) Balz Maag 22./23. November 2018 Technische Informatik 1 Übung 7 Pipelining (Rechenübung) Balz Maag 22./23. November 2018 Aufgabe 1: Taktrate / Latenz Einzeltakt-Architektur Pipelining-Architektur Pipelining-Architektur 15 15 120 ps 15

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Das Prinzip an einem alltäglichen Beispiel

Das Prinzip an einem alltäglichen Beispiel 3.2 Pipelining Ziel: Performanzsteigerung é Prinzip der Fließbandverarbeitung é Probleme bei Fließbandverarbeitung BB TI I 3.2/1 Das Prinzip an einem alltäglichen Beispiel é Sie kommen aus dem Urlaub und

Mehr

Beispiele von Branch Delay Slot Schedules

Beispiele von Branch Delay Slot Schedules Beispiele von Branch Delay Slot Schedules Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 97 Weniger

Mehr

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Dominik Schoenwetter Erlangen, 30. Juni 2014 Lehrstuhl für Informatik 3 (Rechnerarchitektur)

Mehr

Technische Informatik 1 - HS 2016

Technische Informatik 1 - HS 2016 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2016 Lösungsvorschläge für Übung 8 Datum: 8. 9. 12. 2016 1 Instruktionsparallelität VLIW Gegeben

Mehr

Allgemeine Lösung mittels Hazard Detection Unit

Allgemeine Lösung mittels Hazard Detection Unit Allgemeine Lösung mittels Hazard Detection Unit Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 83

Mehr

Pipelining for DLX 560 Prozessor. Pipelining : implementation-technique. Pipelining makes CPUs fast. pipe stages

Pipelining for DLX 560 Prozessor. Pipelining : implementation-technique. Pipelining makes CPUs fast. pipe stages Pipelining for DLX 560 Prozessor Pipelining : implementation-technique Pipelining makes CPUs fast. pipe stages As many instructions as possible in one unit of time 1 Pipelining can - Reduce CPI - Reduce

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Datenpfaderweiterung Der Single Cycle Datenpfad des MIPS Prozessors soll um die Instruktion min $t0, $t1, $t2 erweitert werden, welche den kleineren

Datenpfaderweiterung Der Single Cycle Datenpfad des MIPS Prozessors soll um die Instruktion min $t0, $t1, $t2 erweitert werden, welche den kleineren Datenpfaderweiterung Der Single Cycle Datenpfad des MIPS Prozessors soll um die Instruktion min $t0, $t1, $t2 erweitert werden, welche den kleineren der beiden Registerwerte $t1 und $t2 in einem Zielregister

Mehr

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden.

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden. Name: Vorname: Matr.-Nr.: 4 Aufgabe 1 (8 Punkte) Entscheiden Sie, welche der folgenden Aussagen zum Thema CISC/RISC-Prinzipien korrekt sind. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen

Mehr

Übungsblatt 6. Implementierung einer Befehlspipeline

Übungsblatt 6. Implementierung einer Befehlspipeline Praktikum zur Vorlesung Prozessorarchitektur SS 2016 Übungsblatt 6. Implementierung einer Befehlspipeline 1.1. Einführung Durch die Einteilung der Befehlsverarbeitung in mehrere Zyklen in dem vorangegangenen

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

32 Bit Konstanten und Adressierung. Grundlagen der Rechnerarchitektur Assembler 78

32 Bit Konstanten und Adressierung. Grundlagen der Rechnerarchitektur Assembler 78 32 Bit Konstanten und Adressierung Grundlagen der Rechnerarchitektur Assembler 78 Immediate kann nur 16 Bit lang sein Erinnerung: Laden einer Konstante in ein Register addi $t0, $zero, 200 Als Maschinen

Mehr

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion)

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion) Auch hier wieder Aus voriger Wahrheitstabelle lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem Control Symbol abstrakt darstellen. Instruction[31 26] (also:

Mehr

SUB $2,$5,10 Zeile 1 LDO $5,$0,2*8 Zeile 2 OR $1,$2,$3 Zeile 3 SRU $1,$5,$1 Zeile 4.

SUB $2,$5,10 Zeile 1 LDO $5,$0,2*8 Zeile 2 OR $1,$2,$3 Zeile 3 SRU $1,$5,$1 Zeile 4. 33 7 Pipelining Gegeben ist der folgende Ausschnitt aus einer MMIX Codesequenz: SUB $2,$5, Zeile LDO $5,$,2* Zeile 2 OR $,$2,$3 Zeile 3 SRU $,$5,$ Zeile 4 Zeile und 3 wg b) Geben Sie alle auftretenden

Mehr

Übungsblatt 7 Implementierung von Programmsteuerbefehlen in einer Befehlspipeline Abgabefrist: Mittwoch , 14:00 Uhr

Übungsblatt 7 Implementierung von Programmsteuerbefehlen in einer Befehlspipeline Abgabefrist: Mittwoch , 14:00 Uhr Praktikum zur Vorlesung Prozessorarchitektur SS 2017 Übungsblatt 7 Implementierung von Programmsteuerbefehlen in einer Befehlspipeline Abgabefrist: Mittwoch 21.06.2017, 14:00 Uhr 1.1. Einführung Programmsteuerbefehle

Mehr

Rechnerarchitektur SS TU Dortmund

Rechnerarchitektur SS TU Dortmund Rechnerarchitektur SS 2016 Exercises: Scoreboarding and Tomasulo s Algorithm Jian-Jia Chen TU Dortmund to be discussed on June, 14, 2016 Jian-Jia Chen (TU Dortmund) 1 / 8 Scoreboardings Im nächste Folien

Mehr

Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Befehl holen. Vorlesung Rechnerarchitektur und Rechnertechnik SS Memory Adress Register

Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Befehl holen. Vorlesung Rechnerarchitektur und Rechnertechnik SS Memory Adress Register Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Prog. Counter Memory Adress Register Befehl holen Incrementer Main store Instruction register Op-code Address Memory Buffer Register CU Clock Control

Mehr

4. Übung - Rechnerarchitektur/Betriebssysteme

4. Übung - Rechnerarchitektur/Betriebssysteme 4. Übung - Rechnerarchitektur/Betriebssysteme 1. Aufgabe: Caching Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen a) Was ist ein Cache? Wann kommt Caching zum Einsatz? b) Welchen Vorteil

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Rechnerarchitektur Aufgabe

Mehr

4. Übung - Rechnerarchitektur/Betriebssysteme

4. Übung - Rechnerarchitektur/Betriebssysteme 4. Übung - Rechnerarchitektur/Betriebssysteme 1. Aufgabe: Caching Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen a) Was ist ein Cache? Wann kommt Caching zum Einsatz? b) Welchen Vorteil

Mehr

Grundlagen der Informationsverarbeitung:

Grundlagen der Informationsverarbeitung: Grundlagen der Informationsverarbeitung: Parallelität auf Instruktionsebene Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Maximaler Raum für Titelbild (wenn

Mehr

Lehrveranstaltung: PR Rechnerorganisation Blatt 10. Thomas Aichholzer

Lehrveranstaltung: PR Rechnerorganisation Blatt 10. Thomas Aichholzer Aufgabe 10.1 Gegeben sei folgendes Code-Fragment, das zwei geschachtelte Schleifen implementiert: addi $t0, $a0, 100 outer: addi $t1, $a1, 200 inner: lw $t4, 0($t0) lw $t5, 0($t1) add $t2, $t0, $t1 add

Mehr

Rechnerarchitektur. Marián Vajteršic und Helmut A. Mayer

Rechnerarchitektur. Marián Vajteršic und Helmut A. Mayer Rechnerarchitektur Marián Vajteršic und Helmut A. Mayer Fachbereich Computerwissenschaften Universität Salzburg marian@cosy.sbg.ac.at und helmut@cosy.sbg.ac.at Tel.: 8044-6344 und 8044-6315 30. Mai 2017

Mehr

Arbeitsfolien - Teil 4 CISC und RISC

Arbeitsfolien - Teil 4 CISC und RISC Vorlesung Informationstechnische Systeme zur Signal- und Wissensverarbeitung PD Dr.-Ing. Gerhard Staude Arbeitsfolien - Teil 4 CISC und RISC Institut für Informationstechnik Fakultät für Elektrotechnik

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 7 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Beispielhafte Prüfungsaufgaben zur Vorlesung TI I, gestellt im Frühjahr 2009

Beispielhafte Prüfungsaufgaben zur Vorlesung TI I, gestellt im Frühjahr 2009 Beispielhafte Prüfungsaufgaben zur Vorlesung TI I, gestellt im Frühjahr 2009 Die beigefügte Lösung ist ein Vorschlag. Für Korrektheit, Vollständigkeit und Verständlichkeit wird keine Verantwortung übernommen.

Mehr

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04.

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04. Kontrollstrukturen Informatik II SS 2004 Teil 4: Assembler Programmierung Sprünge (bedingte und unbedingte) If-then-else, Case Loop (n Durchläufe) While (Abbruchbedingung) Institut für Informatik Prof.

Mehr

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht Kap.3 Mikroarchitektur Prozessoren, interne Sicht 3.1 Elementare Datentypen, Operationen und ihre Realisierung (siehe 2.1) 3.2 Mikroprogrammierung 3.3 Einfache Implementierung von MIPS 3.4 Pipelining Implementierung

Mehr

Computersysteme. Fragestunde

Computersysteme. Fragestunde Computersysteme Fragestunde 1 Dr.-Ing. Christoph Starke Institut für Informatik Christian Albrechts Universität zu Kiel Tel.: 8805337 E-Mail: chst@informatik.uni-kiel.de 2 Kurze Besprechung von Serie 12,

Mehr

2.2 Rechnerorganisation: Aufbau und Funktionsweise

2.2 Rechnerorganisation: Aufbau und Funktionsweise 2.2 Rechnerorganisation: Aufbau und Funktionsweise é Hardware, Software und Firmware é grober Aufbau eines von-neumann-rechners é Arbeitsspeicher, Speicherzelle, Bit, Byte é Prozessor é grobe Arbeitsweise

Mehr

, WS2013 Übungsgruppen: Di., Fr.,

, WS2013 Übungsgruppen: Di., Fr., VU Technische Grundlagen der Informatik Übung : Stack, Pipelining., WS20 Übungsgruppen: Di., 0.01. Fr.,.01.201 Aufgabe 1: Stack - Funktionsweise Erläutern Sie die Funktionsweise eines Stacks bzw. Kellerspeichers

Mehr

, 2015W Übungsgruppen: Mo., Mi.,

, 2015W Übungsgruppen: Mo., Mi., VU Technische Grundlagen der Informatik Übung 6: Befehlssatz, Pipelining 183.59, 2015W Übungsgruppen: Mo., 1.12. Mi., 16.12.2015 Aufgabe 1: Stack Funktionsweise Erläutern Sie die Funktionsweise eines Stacks

Mehr

Umstellung auf neue Pipeline

Umstellung auf neue Pipeline new_pipe Umstellung auf neue Pipeline»» Umstellung auf neue Pipeline Core mit 2 Port Registerfile In dieser Konfiguration wird am Registerfile ein Phasensplitting durchgeführt, um in jedem Takt 2 Register

Mehr

Prinzipieller Aufbau und Funktionsweise eines Prozessors

Prinzipieller Aufbau und Funktionsweise eines Prozessors Prinzipieller Aufbau und Funktionsweise eines Prozessors [Technische Informatik Eine Einführung] Univ.- Lehrstuhl für Technische Informatik Institut für Informatik Martin-Luther-Universität Halle-Wittenberg

Mehr

Name : Klasse : Punkte : Note :

Name : Klasse : Punkte : Note : ESI Semesterendprüfung 15.6.2009 Name : Klasse : Punkte : Note : Zeit: 12.50 bis 13.35 Die Aufgaben sind möglichst direkt auf den Blättern zu lösen (Antworten bitte in ganzen Sätzen!), bei Bedarf die Rückseite

Mehr

Betriebssysteme Übung 2. Tutorium System Calls & Multiprogramming

Betriebssysteme Übung 2. Tutorium System Calls & Multiprogramming Betriebssysteme Übung 2. Tutorium System Calls & Multiprogramming Task Wiederholung 1 System SysCalls (1) Wozu? Sicherheit Stabilität Erfordert verschiedene modes of execution: user mode privileged mode

Mehr

ARM: Befehlssatz (Forts.)

ARM: Befehlssatz (Forts.) ARM: Befehlssatz (Forts.) Befehl SWI zum Auslösen eines Software-Interrupts: Instruktionsformat: Ausführung von SWI überführt CPU in den supervisor mode (nach Retten des PC in r14_svc und des CPSR in SPSR_svc)

Mehr

ARM: Befehlssatz (Forts.)

ARM: Befehlssatz (Forts.) ARM: Befehlssatz (Forts.) Befehl SWI zum Auslösen eines Software-Interrupts: Instruktionsformat: Ausführung von SWI überführt CPU in den supervisor mode (nach Retten des PC in r14_svc und des CPSR in SPSR_svc)

Mehr

JR - RA - SS02 Kap

JR - RA - SS02 Kap 3.1 Elementare Datentypen, Operationen und ihre Realisierung (siehe 2.1) 3.2 Mikroprogrammierung 3.3 Einfache Implementierung von MIPS 3.4 Pipelining 3.5 Superskalare Befehlsausführung JR - RA - SS02 Kap.

Mehr

JR - RA - SS02 Kap

JR - RA - SS02 Kap 3.1 Elementare Datentypen, Operationen und ihre Realisierung (siehe 2.1) 3.2 Mikroprogrammierung 3.3 Einfache Implementierung von MIPS 3.4 Pipelining 3.5 Superskalare Befehlsausführung JR - RA - SS02 Kap.

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

Kontrollpfad der hypothetischen CPU

Kontrollpfad der hypothetischen CPU Kontrollpfad der hypothetischen CPU fast alle Algorithmen benötigen FOR- oder WHILE-Schleifen und IF.. ELSE Verzweigungen Kontrollfluß ist datenabhängig CCR speichert Statussignale N,Z, V,C der letzten

Mehr

Interruptverarbeitung

Interruptverarbeitung Interruptverarbeitung Ein Interruptaufruf unterbricht die gerade ablaufende Befehlsfolge in der Weise, daß nach Beendigung des laufenden Befehls nicht der nächste Befehl des Hauptprogramms ausgeführt,

Mehr

Kontrollpfad der hypothetischen CPU

Kontrollpfad der hypothetischen CPU Kontrollpfad der hypothetischen CPU fast alle Algorithmen benötigen FOR- oder WHILE-Schleifen und IF.. ELSE Verzweigungen Kontrollfluß ist datenabhängig CCR speichert Statussignale N,Z, V,C der letzten

Mehr

Hochschule Düsseldorf University of Applied Sciences HSD RISC &CISC

Hochschule Düsseldorf University of Applied Sciences HSD RISC &CISC HSD RISC &CISC CISC - Complex Instruction Set Computer - Annahme: größerer Befehlssatz und komplexere Befehlen höhere Leistungsfähigkeit - Möglichst wenige Zeilen verwendet, um Aufgaben auszuführen - Großer

Mehr

Hier: Soviele Instruktionen wie möglich sollen in einer Zeiteinheit ausgeführt werden. Durchsatz.

Hier: Soviele Instruktionen wie möglich sollen in einer Zeiteinheit ausgeführt werden. Durchsatz. Pipelining beim DLX 560 Prozessor Pipelining : Implementierungstechnik Vielfältig angewendet in der Rechnerarchitektur. Pipelining macht CPUs schnell. Pipelining ist wie Fließbandverarbeitung. Hintereinanderausführung

Mehr

Konzepte und Methoden der Systemsoftware. Aufgabe 1: Polling vs Interrupts. SoSe bis P

Konzepte und Methoden der Systemsoftware. Aufgabe 1: Polling vs Interrupts. SoSe bis P SoSe 2014 Konzepte und Methoden der Systemsoftware Universität Paderborn Fachgebiet Rechnernetze Präsenzübung 3(Musterlösung) 2014-05-05 bis 2014-05-09 Aufgabe 1: Polling vs Interrupts (a) Erläutern Sie

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation Mikroprogrammierung

Mehr

Schriftliche Prüfung

Schriftliche Prüfung OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG FAKULTÄT FÜR INFORMATIK Schriftliche Prüfung im Fach: Rechnersysteme Studiengang: Bachelor (PF CSE / IF; WPF CV / WIF) am: 30. Juli 2008 Bearbeitungszeit: 120 Minuten

Mehr

LW R1, B IF ID EX MEM WB LW R2, C IF ID EX MEM WB ADD R3, R1, R2 IF ID stall EX MEM WB SW A, R3 IF stall ID EX MEM WB

LW R1, B IF ID EX MEM WB LW R2, C IF ID EX MEM WB ADD R3, R1, R2 IF ID stall EX MEM WB SW A, R3 IF stall ID EX MEM WB Compiler Techniken für Hazards Viele Stau-Typen sind recht häufig Beispiel: A = B + C LW R1, B IF ID EX MEM WB LW R2, C IF ID EX MEM WB ADD R3, R1, R2 IF ID stall EX MEM WB SW A, R3 IF stall ID EX MEM

Mehr

Task& Data-Flow Graphs

Task& Data-Flow Graphs Task& Data-Flow Graphs M. Thaler, TG208, tham@zhaw.ch www.zhaw.ch/~tham Februar 16 1 1 Um was geht es? Parallele Algorithmen was sind Möglichkeiten zur Darstellung? was sind Möglichkeiten zur Analyse?

Mehr

, SS2012 Übungsgruppen: Do., Mi.,

, SS2012 Übungsgruppen: Do., Mi., VU Technische Grundlagen der Informatik Übung : Mikroprozessoren, Pipelining, Cache 183.579, SS01 Übungsgruppen: Do., 10.05. Mi., 1.05.01 Aufgabe 1: Stack Funktionsweise eines Stacks Erläutern Sie die

Mehr

Konzepte von Betriebssystem-Komponenten. Ausnahme- / Unterbrechungsbehandlung

Konzepte von Betriebssystem-Komponenten. Ausnahme- / Unterbrechungsbehandlung Konzepte von Betriebssystem-Komponenten Sommersemester 2005 Uni Erlangen Lehrstuhl für Informatik 4 Verteilte Systeme und Betriebsysteme Tarek Gasmi Tarek.Gasmi@informatik.stud.uni-erlangen.de Tarek Gasmi

Mehr

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht Kap.3 Mikroarchitektur Prozessoren, interne Sicht Kapitel 3 Mikroarchitektur 3.1 elementare Datentypen, Operationen und ihre Realisierung (siehe 2.1) 3.2 Mikroprogrammierung (zur Realisierung der Befehlsabarbeitung

Mehr

Konzepte von Betriebssystem- Komponenten Ausnahme- / Unterbrechungsbehandlung

Konzepte von Betriebssystem- Komponenten Ausnahme- / Unterbrechungsbehandlung Konzepte von Betriebssystem- Komponenten Ausnahme- / Unterbrechungsbehandlung Sommersemester 2005 Uni Erlangen Lehrstuhl für Informatik 4 Verteilte Systeme und Betriebsysteme Tarek Gasmi Tarek.Gasmi@informatik.stud.uni-erlangen.de

Mehr

Prozessorarchitektur. Sprungvorhersage. M. Schölzel

Prozessorarchitektur. Sprungvorhersage. M. Schölzel Prozessorarchitektur Sprungvorhersage M. Schölzel Inhalt Sprungvorhersage statische Methoden dynamische Methoden Problem Fetch-Phase Befehlswarteschlange Speicher b? Neue Adresse für noch nicht bekannt

Mehr

Informatik 12 Kapitel 3 - Funktionsweise eines Rechners

Informatik 12 Kapitel 3 - Funktionsweise eines Rechners Fachschaft Informatik Informatik 12 Kapitel 3 - Funktionsweise eines Rechners Michael Steinhuber König-Karlmann-Gymnasium Altötting 9. Februar 2017 Folie 1/36 Inhaltsverzeichnis I 1 Komponenten eines PCs

Mehr

RISC-Prozessoren (1)

RISC-Prozessoren (1) RISC-Prozessoren (1) 1) 8 Befehlsklassen und ihre mittlere Ausführungshäufigkeit (Fairclough): Zuweisung bzw. Datenbewegung 45,28% Programmablauf 28,73% Arithmetik 10,75% Vergleich 5,92% Logik 3,91% Shift

Mehr

Compiler für f r Eingebettete Systeme (CfES)

Compiler für f r Eingebettete Systeme (CfES) Compiler für f r Eingebettete Systeme (CfES) Sommersemester 2009 Dr. Heiko Falk Technische Universität Dortmund Lehrstuhl Informatik 12 Entwurfsautomatisierung für Eingebettete Systeme Kapitel 9 Ausblick

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 5 Prozessor Pipelineimplementierung Lothar Thiele Computer Engineering and Networks Laboratory Pipelining Definition 5 2 Definition Pipelining (Fliessbandverarbeitung) ist eine

Mehr

Betriebssysteme 1. Thomas Kolarz. Folie 1

Betriebssysteme 1. Thomas Kolarz. Folie 1 Folie 1 Betriebssysteme I - Inhalt 0. Einführung, Geschichte und Überblick 1. Prozesse und Threads (die AbstrakFon der CPU) 2. Speicherverwaltung (die AbstrakFon des Arbeitsspeichers) 3. Dateisysteme (die

Mehr

Name: ES2 Klausur Thema: ARM Name: Punkte: Note:

Name: ES2 Klausur Thema: ARM Name: Punkte: Note: Name: Punkte: Note: Hinweise für das Lösen der Aufgaben: Zeit: 75 min. Name nicht vergessen! Geben Sie alle Blätter ab. Die Reihenfolge der Aufgaben ist unabhängig vom Schwierigkeitsgrad. Erlaubte Hilfsmittel

Mehr

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7)

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) J. Zhang zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme

Mehr

Technische Informatik I - HS 18

Technische Informatik I - HS 18 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik I - HS 8 Musterlösung zu Übung 5 Datum : 8.-9. November 8 Aufgabe : MIPS Architektur Das auf der nächsten

Mehr

Prozessorarchitektur. Dynamische Ablaufplanung. M. Schölzel

Prozessorarchitektur. Dynamische Ablaufplanung. M. Schölzel Prozessorarchitektur Dynamische Ablaufplanung M. Schölzel Inhalt HW-Architekturen zur Implementierung dynamischer Ablaufplanung: Scoreboard Tomasulo-Algorithmus Inhalt HW-Architekturen zur Implementierung

Mehr

Verteidigung der Studienarbeit ANALYSE DER BEOBACHTBARKEIT DER FEHLERFORTPFLANZUNG IN EINEM MIKROPROZESSOR ANHAND VERSCHIEDENER TRACE-KONFIGURATIONEN

Verteidigung der Studienarbeit ANALYSE DER BEOBACHTBARKEIT DER FEHLERFORTPFLANZUNG IN EINEM MIKROPROZESSOR ANHAND VERSCHIEDENER TRACE-KONFIGURATIONEN Verteidigung der Studienarbeit ANALYSE DER BEOBACHTBARKEIT DER FEHLERFORTPFLANZUNG IN EINEM MIKROPROZESSOR ANHAND VERSCHIEDENER TRACE-KONFIGURATIONEN Dresden, 11.05.2017 Matthias Brinker Gliederung 1.

Mehr

Besprechung des 5. Übungsblattes Parallelität innerhalb der CPU Pipelining

Besprechung des 5. Übungsblattes Parallelität innerhalb der CPU Pipelining Themen heute Besprechung des 5. Übungsblattes Parallelität innerhalb der CPU Pipelining Organisatorisches Wie schon in den vorhergehenden Tutorien erwähnt, ist Mehrfachabgabe, außer bei Programmieraufgaben,

Mehr

Vorlesung 5: Interrupts

Vorlesung 5: Interrupts Universität Bielefeld Technische Fakultät AG Rechnernetze und verteilte Systeme Vorlesung 5: Interrupts Peter B. Ladkin Kommunikation über den Bus CPU läuft zu einer Taktfrequenz I/O Geräte laufen zu anderen

Mehr

Rechnerarchitekturen und Mikrosystemtechnik lectures/2008ws/vorlesung/ram

Rechnerarchitekturen und Mikrosystemtechnik   lectures/2008ws/vorlesung/ram 64-613 RAM 64-613 Rechnerarchitekturen und Mikrosystemtechnik http://tams-www.informatik.uni-hamburg.de/ lectures/2008ws/vorlesung/ram Andreas Mäder Fakultät für Mathematik, Informatik und Naturwissenschaften

Mehr

Computersysteme. Stacks Anwendung in der Assembler-Programmierung

Computersysteme. Stacks Anwendung in der Assembler-Programmierung Computersysteme Stacks Anwendung in der Assembler-Programmierung 1 Unterprogramme Betrachten wir zunächst folgendes Programm m_mod_n : /Berechne m modulo n für positive Integerwerte m und n. /Beim Programmstart

Mehr

Wie groß ist die Page Table?

Wie groß ist die Page Table? Wie groß ist die Page Table? Im vorigen (typischen) Beispiel verwenden wir 20 Bits zum indizieren der Page Table. Typischerweise spendiert man 32 Bits pro Tabellen Zeile (im Vorigen Beispiel brauchten

Mehr

Aufgabe 1 : Assembler

Aufgabe 1 : Assembler Winter 2015/16 Technische Informatik I Lösungsvorschlag Seite 2 Aufgabe 1 : Assembler (maximal 21 Punkte) 1.1: Verständnisfragen (maximal 4 Punkte) (a) (1 Punkt) Kreuzen Sie an, welche der folgenden Statements

Mehr

Name : Klasse : Punkte : Note :

Name : Klasse : Punkte : Note : Name : Klasse : Punkte : Note : Zeit: 08.00 bis 09.30 Es dürfen alle Unterlagen verwendet werden. Die Aufgaben sind möglichst direkt auf den Blättern zu lösen (Antworten bitte in ganzen Sätzen!), bei Bedarf

Mehr

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik, Register und Speicherzugriff Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik und Zuweisungen Einfache Arithmetik mit Zuweisung C Programm: a = b + c; d = a e; MIPS Instruktionen: Komplexere

Mehr

Übungsblatt 5 Entwurf eines Mehrzyklen-Datenpfads Abgabefrist: Mittwoch , 10:00 Uhr

Übungsblatt 5 Entwurf eines Mehrzyklen-Datenpfads Abgabefrist: Mittwoch , 10:00 Uhr Praktikum zur Vorlesung Prozessorarchitektur SS 2018 Übungsblatt 5 Entwurf eines Mehrzyklen-Datenpfads Abgabefrist: Mittwoch 16.05.2018, 10:00 Uhr 1.1. Einführung In Übung 4 haben Sie einen Einzyklen-Datenpfad

Mehr

Zusammenhang Interrupt, Befehlszyklus, indirekte Adressierung und Mikroprogramm [Stallings, Kap. 15, S ]

Zusammenhang Interrupt, Befehlszyklus, indirekte Adressierung und Mikroprogramm [Stallings, Kap. 15, S ] 2.1.2 Behandlung von Unterbrechungen (Interrupts) Zusammenhang Interrupt, Befehlszyklus, indirekte Adressierung und Mikroprogramm [Stallings, Kap. 15, S. 582-585] t 1 : MAR (PC) t 2 : MBR Memory[MAR] PC

Mehr