Das Verfahren in Hardware

Größe: px
Ab Seite anzeigen:

Download "Das Verfahren in Hardware"

Transkript

1 Das Verfahren in Hardware Links Shift 8 Bit Multiplikand Demonstration mit 1001 * 0110 = Links Shift 8 Bit ALU Rechts Shift 4 Bit Multiplikator 3.Rechts Shift 8 Bit Produkt 1. Produkt = Produkt + Multiplikand, wenn Bit 0 des Multiplikators = 1 Control Test 4. Anzahl Durchläufe = 5 Ende Beispiel für 4 Bit Zahlen Grundlagen der Rechnerarchitektur Logik und Arithmetik 83

2 Vorzeichenbehaftete Multiplikation Betrachte Multiplikand x und Multiplikator y. Sei x = x wenn x nicht negativ bzw. x = x sonst. Sei y = y wenn y nicht negativ bzw. y = y sonst. Berechne z = x * y. Ergebnis z = z wenn x und y nicht negativ oder x und y negativ, ansonsten ist z = z. Möglichkeit 2: Tausche im Verfahren der vorigen Folie das Produktregister mit einem vorzeichenbehafteten Rechts Shift Register aus. Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Logik und Arithmetik 84

3 Weitere Beschleunigungen Eine ALU für jede Summation x 3 *y x 2 *y 4 Bit ALU c s 3 s 2 s 1 s 0 x 1 *y 4 Bit ALU c s 3 s 2 s 1 s 0 x 0 *y 3 y 2 y 1 4 Bit ALU c s 3 s 2 s 1 s 0 x 0 *y 0 Beobachtung: (Y) * (X) = = = (Z) z 7 z 6 z 5 z 4 z 3 z 2 z 1 z 0 Beispiel für 4 Bit Zahlen Grundlagen der Rechnerarchitektur Logik und Arithmetik 85

4 Weitere Beschleunigungen Parallele Organisation der ALUs in einen Binärbaum (keine weiteren Details hier) Jede ALU Operation verbrauche einen Taktzyklus. Wie viele Taktzyklen dauert die Multiplikation von 32 Bit Zahlen? Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Logik und Arithmetik 86

5 Division Grundlagen der Rechnerarchitektur Logik und Arithmetik 87

6 Division nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a : b? Beispiel: Dividend Divisor Quotient : = Rest: Grundlagen der Rechnerarchitektur Logik und Arithmetik 88

7 Shifte Quotient nach Links und setze dessen LSB=1. Beispiel für 4 Bit Zahlen Das Verfahren als Algorithmus 0 Start Subtrahiere Divisor vom Rest Teste Rest Shifte Divisor ein Bit nach Rechts 6ter Durchlauf? ja Ende <0 Restauriere den alten Rest. Shifte Quotient nach Links und setze dessen LSB=0. nein Beispiel 1001 : 10: Dvdt :Dvsr= Qtnt : 10 = Rest Grundlagen der Rechnerarchitektur Logik und Arithmetik 89

8 Das Verfahren in Hardware Rechts Shift 8 Bit Divisor Demonstration mit 1001 : 0010 = 100 Rest 1 3. Rechts Shift Links Shift 4 Bit Quotient 8 Bit ALU 2. Links Shift; LSB=Rest wurde verändert 1. Rest=Rest Divisor, wenn Divisor < Rest 4. Anzahl Durchläufe = 6 Ende 8 Bit Rest Control Test Beispiel für 4 Bit Zahlen Grundlagen der Rechnerarchitektur Logik und Arithmetik 90

9 Vorzeichenbehaftete Division Umgang mit dem Quotienten (analog wie für Multiplikation): Betrachte Divisor x und Dividend y (also: Quotient z von y:x). Sei x = x wenn x nicht negativ bzw. x = x sonst. Sei y = y wenn y nicht negativ bzw. y = y sonst. Berechne Quotient z von y : x. Ergebnis z = z wenn x und y nicht negativ oder x und y negativ, ansonsten ist z = z. Und was ist das Vorzeichen des Rests? Beispiel: Dividend : Divisor Quotient Rest Quotient * Divisor + Rest = Dividend 7 : * = 7-7 : * 2 1 = -7 7 : * = 7-7 : * -2 1 = -7 Also: Vorzeichen des Rests ist Vorzeichen des Dividend. Grundlagen der Rechnerarchitektur Logik und Arithmetik 91

10 Gleitkommazahlen Grundlagen der Rechnerarchitektur Logik und Arithmetik 92

11 Reelle Gleitkommazahlen Beispiel Kleine Zahl Große Zahl Wissenschaftliche Darstellung (eine Ziffer links des Kommas) Normalisierte Darstellung (keine führende Null) Grundlagen der Rechnerarchitektur Logik und Arithmetik 93

12 Binäre Gleitkommazahlen Was ist der Dezimalwert der binären Gleitkommazahl 101,1001? Was bedeutet 11,011 * 2 2? Also: mit 2 i multiplizieren verschiebt das Komma um i Stellen nach rechts. Analog: mit 2 i multiplizieren verschiebt das Komma um i Stellen nach links. Grundlagen der Rechnerarchitektur Logik und Arithmetik 94

13 Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 95

14 Nebenbemerkung Betrachte die recht harmlose Dezimalzahl 0,8. Für die folgende unendliche Reihe rechnet man leicht nach: ( ) + ( ) + ( ) + ( ) +... = 4/5 = 0.8 Folglich ist die Binärdarstellung von 0.8 unendlich lang, nämlich: 0, Annahme wir speichern nur die ersten 32 Bits. Rechnet man in den Dezimalwert x zurück, dann ergibt sich: x = ( ) + ( ) + ( ) ( ) = / = 0, ,8 Oha, 0,8 ist scheinbar doch nicht so harmlos. Es gibt folglich Zahlen mit endlicher dezimaler Gleitkommadarstellung, die binär nicht mit endlicher Anzahl Bits darstellbar sind. Grundlagen der Rechnerarchitektur Logik und Arithmetik 96

15 N Bit Darstellung von Gleitkommazahlen Normalisierte, wissenschaftliche Darstellung zur Basis 2. Beispiel: Allgemein: Sign and Magnitude Darstellung für beispielsweise 32 Bits: (s=0 für + und s=1 für ) s exponent fraction 1 Bit 8 Bits 23 Bits Tradeoff: Viele Fraction Bits: hohe Genauigkeit der Fraction Viele Exponent Bits: großer darstellbarer Zahlenbereich Grundlagen der Rechnerarchitektur Logik und Arithmetik 97

16 Beispiel s exponent fraction 1 Bit 8 Bits 23 Bits Was ist der Dezimalwert x des folgenden Bit Strings? Grundlagen der Rechnerarchitektur Logik und Arithmetik 98

17 Wertebereiche, Overflow und Underflow s exponent fraction 1 Bit 8 Bits 23 Bits Kleinste darstellbare nicht negative Zahl annähernd 2,0 * Größte darstellbare Zahl annähernd 2,0 * Was, wenn die darzustellende Zahl außerhalb dieses Bereichs ist? Overflow: Zahl zu groß (Exponent ist zu groß um im Exponent Feld darstellbar zu sein) Underflow: Zahl zu klein (Negativer Exponent ist zu groß um im Exponent Feld darstellbar zu sein) Grundlagen der Rechnerarchitektur Logik und Arithmetik 99

18 Beispiel: Single Precision Double Precision Double und Single Precision Insgesamt 32 Bits s exponent fraction 1 Bit 8 Bits 23 Bits Insgesamt 64 Bits s exponent fraction 1 Bit 11 Bits 52 Bits Double Precision hat höhere Genauigkeit der Fraction und mit größerem Exponent auch einen größeren darstellbaren Zahlenbereich. Double Precision in diesem Beispiel: Kleinste darstellbare nicht negative Zahl annähernd 2,0 * Größte darstellbare Zahl annähernd 2,0 * Grundlagen der Rechnerarchitektur Logik und Arithmetik 100

19 Der Zahlenformatstandard IEEE 754 Single Precision Double Precision Insgesamt 32 Bits s exponent fraction 1 Bit 8 Bits 23 Bits Insgesamt 64 Bits s exponent fraction 1 Bit 11 Bits 52 Bits Bit Aufteilungen in dieser Form sind in IEEE 754 spezifiziert. Betrachte die wissenschaftliche, normalisierte Darstellung: [+ oder ] 1,xxxxxxxx * 2 yyyy Beobachtung: die 1 vor dem Komma ist redundant. Somit: Bei IEEE 754 wird die 1 implizit angenommen und in fraction nicht codiert. fraction speichert nur Nachkommastellen. Grundlagen der Rechnerarchitektur Logik und Arithmetik 101

20 Beispiel s exponent fraction 1 Bit 8 Bits 23 Bits Es sei die 1 vor dem Komma implizit angenommen. Fraction speichere damit nur die Nachkommastellen. Was ist der Dezimalwert x des folgenden Bit Strings? Grundlagen der Rechnerarchitektur Logik und Arithmetik 102

21 Weitere Eigenschaften von IEEE 754 Unterscheidung von Fraction und 1+Fraction in der Darstellung ( 1) S * (1 + Fraction) * 2 Exponent 1+Fraction wird als Significant (deutsch: Mantisse) bezeichnet. Grundlagen der Rechnerarchitektur Logik und Arithmetik 103

22 Motivation für eine geeignete Exponent Darstellung Annahme: Exponent wäre mit Zweierkomplement dargestellt. Wie macht man einen Größer Kleiner Vergleich der folgenden beiden Zahlen? Zahl 1: Zahl 2: Vergleiche erst mal die Vorzeichenbits. Bei unterschiedlichen Vorzeichenbits ist der Vergleich beendet. 2. Vergleiche die Exponenten. Ist einer größer als der andere, ist der Vergleich beendet. (Signed Vergleich) 3. Vergleiche die Fractions. (Unsigned Vergleich) Kann man Schritt 2 und 3 in einem durchführen? Kleinster Exponent müsste und größter Exponent müsste sein, dann könnte man Exponent und Fraction für einen Vergleich einfach konkatenieren. Grundlagen der Rechnerarchitektur Logik und Arithmetik 104

23 Darstellung des Exponenten in Biased Notation Erinnerung: Biased Notation (hier mit 8 Bit und Bias 127): = -127 (0-Bias = -127) = -126 (1-Bias = -126) = -1 (126-Bias = -1) = 0 (127-Bias = 0) = 1 (128-Bias = 1) = 127 (254-Bias = 127) = 128 (255-Bias = 128) Zusammengefasst: Der Wert x einer Zahl in IEEE 754 Darstellung ist (Single Precision (8 Bit Exponent) Bias=127, Double Precision (11 Bit Exponent) Bias=1023) Grundlagen der Rechnerarchitektur Logik und Arithmetik 105

24 IEEE 754 Encoding Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? ( 1) S * (1 + Fraction) * 2 (Exponent Bias) Single Precision (Bias=127) Double Precision (Bias=1023) Dargestelltes Objekt Exponent Fraction Exponent Fraction Nicht Null 0 Nicht Null (+/ Denormalised Number) 1bis 254 Beliebig 1 bis 2046 Beliebig +/ Gleitkommazahl / Unendlich 255 Nicht Null 2047 Nicht Null NaN (Not a Number) Grundlagen der Rechnerarchitektur Logik und Arithmetik 106

25 Quiz Betrachte IEEE 754 Single Precision, also Bias = 127. Was ist der Dezimalwert der folgenden Binärzahl? ( 1) S * (1 + Fraction) * 2 (Exponent Bias) Grundlagen der Rechnerarchitektur Logik und Arithmetik 107

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control Control Beispiel Store R1 4 Bit Register R1 SUB 4 Bit Register R2 Store R2 R2 Bit 0 Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Eingabe R2 Bit 0 Zero 0 0 Ausgabe

Mehr

N Bit Darstellung von Gleitkommazahlen

N Bit Darstellung von Gleitkommazahlen N Bit Darstellung von Gleitkommazahlen Normalisierte, wissenschaftliche Darstellung zur Basis 2. Beispiel: Allgemein: Sign and Magnitude Darstellung für beispielsweise 32 Bits: (s=0 für + und s=1 für )

Mehr

Wertebereiche, Overflow und Underflow

Wertebereiche, Overflow und Underflow Wertebereiche, Overflow und Underflow s exponent fraction 1 Bit 8 Bits 23 Bits Kleinste darstellbare nicht negative Zahl annähernd 2,0 * 10 38 Größte darstellbare Zahl annähernd 2,0 * 10 38 Was, wenn die

Mehr

Der Zahlenformatstandard IEEE 754

Der Zahlenformatstandard IEEE 754 Der Zahlenformatstandard IEEE 754 Single Precision Double Precision Insgesamt 32 Bits s exponent fraction 1 Bit 8 Bits 23 Bits Insgesamt 64 Bits s exponent fraction 1 Bit 11 Bits 52 Bits Bit Aufteilungen

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

IEEE 754 Encoding. Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? Double Precision (Bias=1023)

IEEE 754 Encoding. Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? Double Precision (Bias=1023) IEEE 754 Encoding Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? ( 1) S * (1 + Fraction) * 2 (Exponent Bias) Single Precision (Bias=127) Double Precision (Bias=1023) Dargestelltes Objekt Exponent

Mehr

Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31

Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31 Logische Bausteine Sequentielle Schaltungen Shlt Grundlagen der Rechnerarchitektur Logik und Arithmetik 31 Sequentielle Schaltungen n Eingänge m Ausgänge n Eingänge m Ausgänge Zustand Ausgänge hängen nur

Mehr

Gleitkommaarithmetik. Erhöhen der Genauigkeit. Grundlagen der Rechnerarchitektur Logik und Arithmetik 124

Gleitkommaarithmetik. Erhöhen der Genauigkeit. Grundlagen der Rechnerarchitektur Logik und Arithmetik 124 Gleitkommaarithmetik Erhöhen der Genauigkeit Grundlagen der Rechnerarchitektur Logik und Arithmetik 124 Guard Bit, Round Bit und Sticky Bit Bei der Darstellung der Addition und Multiplikation haben wir

Mehr

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division

Mehr

Darstellung von negativen binären Zahlen

Darstellung von negativen binären Zahlen Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division

Mehr

2.1.2 Gleitkommazahlen

2.1.2 Gleitkommazahlen .1. Gleitkommazahlen Überblick: Gleitkommazahlen Gleitkommadarstellung Arithmetische Operationen auf Gleitkommazahlen mit fester Anzahl von Mantissen- und Exponentenbits Insbesondere Rundungsproblematik:

Mehr

bei Unterlauf wird stattdessen Hälfte des Divisors addiert Ersparnisse einer Addition bzw. Subtraktion

bei Unterlauf wird stattdessen Hälfte des Divisors addiert Ersparnisse einer Addition bzw. Subtraktion 6.2 Non-Restoring Division Restoring Division Divisor wird subtrahiert falls Unterlauf (Ergebnis negativ) Divisor wird wieder addiert im nächsten Durchlauf wird die Hälfte des Divisor subtrahiert (Linksshift

Mehr

Lösungsvorschlag 6. Übung Technische Grundlagen der Informatik II Sommersemester Aufgabe 6.1: Multiplikation von positiven Dualzahlen

Lösungsvorschlag 6. Übung Technische Grundlagen der Informatik II Sommersemester Aufgabe 6.1: Multiplikation von positiven Dualzahlen Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 6. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 6.1: Multiplikation von positiven Dualzahlen Berechnen

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Zum Nachdenken. Wenn die Zahl (123) hat, was könnte dann (123,45) 10

Zum Nachdenken. Wenn die Zahl (123) hat, was könnte dann (123,45) 10 TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Zum Nachdenken Wenn die Zahl (123) 10 den Wert 1. 10 2 +2. 10 1 +3. 10 0 hat, was könnte dann (123,45) 10 bedeuten? Wenn Sie beliebige reelle Zahlenwerte

Mehr

5 Zahlenformate und deren Grenzen

5 Zahlenformate und deren Grenzen 1 5 Zahlenformate und deren Grenzen 5.1 Erinnerung B-adische Zahlendarstellung Stellenwertsystem: Jede Ziffer hat ihren Wert, und die Stelle der Ziffer in der Zahl modifiziert den Wert. 745 = 7 100 + 4

Mehr

Motivation 31. Mai 2005

Motivation 31. Mai 2005 Motivation 31. Mai 25 Zuletzt behandelt: Zahlendarstellung und Rechnerarithmetik Festkommazahlen: Vorzeichen/Betrag-Darstellung Einerkomplement, Zweierkomplement Rückführung der Subtraktion auf die Addition

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: +/-/*

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: +/-/*

Mehr

RO-Tutorien 3 / 6 / 12

RO-Tutorien 3 / 6 / 12 RO-Tutorien 3 / 6 / 12 Tutorien zur Vorlesung Rechnerorganisation Christian A. Mandery WOCHE 3 AM 13./14.05.2013 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Rechnernetze und Organisation

Rechnernetze und Organisation Arithmetic Logic Unit ALU Professor Dr. Johannes Horst Wolkerstorfer Cerjak, 9.2.25 RNO VO4_alu Übersicht Motivation ALU Addition Subtraktion De Morgan Shift Multiplikation Gleitkommazahlen Professor Dr.

Mehr

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert

Mehr

1. Grundlegende Konzepte der Informatik

1. Grundlegende Konzepte der Informatik 1. Grundlegende Konzepte der Informatik Inhalt Algorithmen Darstellung von Algorithmen mit Programmablaufplänen Beispiele für Algorithmen Aussagenlogik Zahlensysteme Kodierung Peter Sobe 1 Zahlensysteme

Mehr

Binäre Division. Binäre Division (Forts.)

Binäre Division. Binäre Division (Forts.) Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:

Mehr

6.2 Kodierung von Zahlen

6.2 Kodierung von Zahlen 6.2 Kodierung von Zahlen Neue Begriffe é Festkommadarstellungen é Zahlendarstellung durch Betrag und Vorzeichen é Einer-/Zweierkomplement-Darstellung é Gleitkommadarstellung é IEEE-754 Format BB TI I 6.2/1

Mehr

Speichern von Zuständen

Speichern von Zuständen Speichern von Zuständen Erweiterung eines R S Latch zu einem D Latch (D=Data, C=Clock) R S altes Q neues Q 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 R S C D altes Q neues Q 0 0 0 0 0 1 0 1 0 0 1

Mehr

DuE-Tutorien 16 und 17

DuE-Tutorien 16 und 17 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Tutorienwoche 2 am 12.11.2010 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der

Mehr

Die Zahl ist: (z 2, z 1, z 0 ) (z ) : 7 = 0 Rest z 2

Die Zahl ist: (z 2, z 1, z 0 ) (z ) : 7 = 0 Rest z 2 Übungen zur Vorlesung Technische Informatik I, SS Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 4 Rechnerarithmetik Aufgabe : a) Bestimmen Sie die Darstellung der Zahl 3 zur Basis 7. 3 = 7 (Sehen Sie

Mehr

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS Gleit komma zahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen wird eine große Dynamik benötigt: sowohl sehr kleine als auch sehr große Zahlen sollen einheitlich dargestellt

Mehr

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik)

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Die Bildauswahl erfolgte in Anlehnung an das Alter der Kinder Prof. J. Walter Bitte römische Zahlen im Geschichtsunterricht! Messsystem mit Mikrocontroller

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Zwischenklausur Informatik, WS 2014/15

Zwischenklausur Informatik, WS 2014/15 Zwischenklausur Informatik, WS /5.. Zugelassene Hilfsmittel: außer Stift und Papier keine Hinweis: Geben Sie bei allen Berechnungen den vollständigen Rechenweg mit an! Alle Aufgaben/Fragen sind unmittelbar

Mehr

HaDePrak WS 05/ Versuch

HaDePrak WS 05/ Versuch HaDePrak WS 05/06 10. Versuch 1 Das IEEE-Format Das Ziel dieser letzten Übung ist es, ein Fließkommapaket für die DLXzu implementieren. Der Einfachheit halber vernachlässigen wir hier im Praktikum jeglichen

Mehr

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben Zwischenklausur Informatik, WS 206/7 4.2.206 Lösungen zu den Aufgaben. Gegeben sind folgende Dualzahlen in Zweierkomplementdarstellung. Geben Sie den jeweils zugehörigen Dezimalwert an! a) entspricht der

Mehr

6. Zahlendarstellungen und Rechnerarithmetik

6. Zahlendarstellungen und Rechnerarithmetik 6. Zahlendarstellungen und Rechnerarithmetik... x n y n x n-1 y n-1 x 1 y 1 x 0 y 0 CO Σ Σ... Σ Σ CI z n z n-1 z 1 z 0 Negative Zahlen, Zweierkomplement Rationale Zahlen, Gleitkommazahlen Halbaddierer,

Mehr

Computerarithmetik (6a)

Computerarithmetik (6a) Computerarithmetik (6a) Weitere Nachteile: erfordert separates Subtrahierwerk erfordert zusätzliche Logik, um zu entscheiden, welches Vorzeichen das Ergebnis der Operation hat 2. Die Komplement - Darstellung

Mehr

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen Inhalt Motivation 2 Integer- und Festkomma-Arithmetik Zahlendarstellungen Algorithmen für Integer-Operationen Integer-Rechenwerke Rechnen bei eingeschränkter Präzision 3 Gleitkomma-Arithmetik Zahlendarstellungen

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel. Sommer TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel. Sommer TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik Sommer 2014 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 10. April 2014 1/37 1 Repräsentation

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung

Mehr

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen 3 Zahlendarstellung - Zahlensysteme - b-adische Darstellung natürlicher Zahlen - Komplementbildung - Darstellung ganzer und reeller Zahlen Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen......

Mehr

Rechnen in B. Ralf Dorn. 3. September Heinrich-Hertz-Gymnasium. R. Dorn (H 2 O) Informatik LK 3. September / 6

Rechnen in B. Ralf Dorn. 3. September Heinrich-Hertz-Gymnasium. R. Dorn (H 2 O) Informatik LK 3. September / 6 Rechnen in B Ralf Dorn 3. September 2018 R. Dorn (H 2 O) Informatik LK 3. September 2018 1 / 6 Festkommazahlen Wie werden Kommazahlen dargestellt? R. Dorn (H 2 O) Informatik LK 3. September 2018 2 / 6

Mehr

Kapitel 5: Darstellung von Daten im Rechner

Kapitel 5: Darstellung von Daten im Rechner Kapitel 5: Darstellung von Daten im Rechner Kapitel 5 Darstellung von Daten im Rechner und Rechnerarithmetik Literatur: Oberschelp/Vossen, Kapitel 5 Kapitel 5: Darstellung von Daten im Rechner Seite Kapitel

Mehr

Informationsdarstellung 2.2

Informationsdarstellung 2.2 Beispiele für die Gleitkommadarstellung (mit Basis b = 2): 0,5 = 0,5 2 0-17,0 = - 0,53125 2 5 1,024 = 0,512 2 1-0,001 = - 0,512 2-9 3,141592... = 0,785398... 2 2 n = +/- m 2 e Codierung in m Codierung

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 06.03.09 2-1 Heutige große Übung Allgemeines

Mehr

Zahlen in Binärdarstellung

Zahlen in Binärdarstellung Zahlen in Binärdarstellung 1 Zahlensysteme Das Dezimalsystem Das Dezimalsystem ist ein Stellenwertsystem (Posititionssystem) zur Basis 10. Das bedeutet, dass eine Ziffer neben ihrem eigenen Wert noch einen

Mehr

Lösung 2. Übungsblatt

Lösung 2. Übungsblatt Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 2. Übungsblatt Bildung von Gleitkommazahlen nach IEEE 754 und arithmetische Operationen mit Binärzahlen ANSI/IEEE 754-1985

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 21 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, dh Y = f (X

Mehr

Binäre Darstellung ganzer Zahlen

Binäre Darstellung ganzer Zahlen Vorlesung Objektorientierte Softwareentwicklung Exkurse use Binäre Darstellung ganzer Zahlen Binärdarstellung natürlicher Zahlen Ganze Zahlen im Einerkomplement Ganze Zahlen im Zweierkomplement Elementare

Mehr

, 2014W Übungstermin: Fr.,

, 2014W Übungstermin: Fr., VU Technische Grundlagen der Informatik Übung 1: Zahlendarstellungen, Numerik 183.579, 2014W Übungstermin: Fr., 17.10.2014 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

Computergestützte Mathematik zur Linearen Algebra

Computergestützte Mathematik zur Linearen Algebra Computergestützte Mathematik zur Linearen Algebra Pivotwahl und Gleitkommaarithmetik Achim Schädle 3. und 20. Dezember 208 Achim Schaedle (HHU) CompLinA 3. und 20. Dezember 208 Instabilitäten bei Gauß-Elimination

Mehr

Warum Computer doch nicht so präzise rechen. Thomas Staub. Gleitkommazahlen: Gleitkommazahlen Thomas Staub lerntool.ch 2016

Warum Computer doch nicht so präzise rechen. Thomas Staub. Gleitkommazahlen: Gleitkommazahlen Thomas Staub lerntool.ch 2016 Warum Computer doch nicht so präzise rechen 1 Thomas Staub Gleitkommazahlen: 2 Dieses Dokument ist ein Zusammenschnitt mehrerer Beiträge und Berichte aus dem Internet zum Thema Gleitkommazahlen. Die Quellen

Mehr

4. Zahlendarstellungen

4. Zahlendarstellungen 121 4. Zahlendarstellungen Wertebereich der Typen int, float und double Gemischte Ausdrücke und Konversionen; Löcher im Wertebereich; Fliesskommazahlensysteme; IEEE Standard; Grenzen der Fliesskommaarithmetik;

Mehr

Arithmetik: Vorzeichenregeln und Überlauf, Exponenten & Normalisierung, Umrechnungen. Architektur: - Rechnerarchitektur, Instruktionssatz, Assembler

Arithmetik: Vorzeichenregeln und Überlauf, Exponenten & Normalisierung, Umrechnungen. Architektur: - Rechnerarchitektur, Instruktionssatz, Assembler F. Zahlendarstellung und Rechnerarithmetik F.1. Einordnung & Inhalte Zahlendarstellungen: binär, BCD oder als ASCII-Text, Einer- und Zweierkomplement, Gleit- & Festkommazahlen. Arithmetik: Vorzeichenregeln

Mehr

Computer Arithmetik. Computer Arithmetik Allgemein

Computer Arithmetik. Computer Arithmetik Allgemein Vortrag von René Grohmann und Mirwais Turjalei, 22.11.2000 Computer Arithmetik Computer Arithmetik Allgemein Die ALU: Die Alu ist die Einheit im Computer, die dazu bestimmt ist arithmetische und logische

Mehr

1.5 Einführung und Zahlensysteme/Darstellung gebrochener Zahlen

1.5 Einführung und Zahlensysteme/Darstellung gebrochener Zahlen 1.5 Einführung und Zahlensysteme/Darstellung gebrochener Zahlen 1.5.1 Situation Manchmal möchte man in Programmen mit Kommazahlen rechnen. In der Mathematik Im der Wirtschaft, im kaufmännischen Bereich

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 8. Vorlesung Inhalt Gleitkomma-Darstellung Normalisierte Darstellung Denormalisierte Darstellung Rechnerarchitekturen Von Neumann-Architektur Harvard-Architektur Rechenwerk (ALU)

Mehr

Kapitel 5: Daten und Operationen

Kapitel 5: Daten und Operationen Kapitel 5: Daten und Operationen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2007 Folien nach einer Vorlage von H.-Peter

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik Mikroprogrammierung schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik Mikroprogrammierung schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation

Mehr

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik, Register und Speicherzugriff Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik und Zuweisungen Einfache Arithmetik mit Zuweisung C Programm: a = b + c; d = a e; MIPS Instruktionen: Komplexere

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 017 Institut für Informatik Prof Dr Thomas Huckle Michael Obersteiner, Michael Rippl Numerisches Programmieren, Übungen Musterlösung 1 Übungsblatt: Zahlendarstellung,

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 15/16

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 15/16 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 15/16 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-.de http://ls1-www.cs.tu-.de Übersicht

Mehr

mit 0 z 0 b 1 und 0 ẑ b n 1 1. Nach Induktionsannahme besitzt ẑ eine Darstellung der Länge n 1 zur Basis b. Damit ist

mit 0 z 0 b 1 und 0 ẑ b n 1 1. Nach Induktionsannahme besitzt ẑ eine Darstellung der Länge n 1 zur Basis b. Damit ist mit 0 z 0 b 1 und 0 ẑ b n 1 1. Nach Induktionsannahme besitzt ẑ eine Darstellung ẑ = ẑ n 2 b n 2 + + ẑ 1 b 1 + ẑ 0 b 0 der Länge n 1 zur Basis b. Damit ist z = (ẑ n 2 b n 2 + + ẑ 1 b 1 + ẑ 0 b 0 ) b +

Mehr

, 2017S Übungstermin: Di.,

, 2017S Übungstermin: Di., VU Technische Grundlagen der Informatik Übung 1: Zahlendarstellungen, Numerik 183.579, 2017S Übungstermin: Di., 14.03.2017 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kapitel 1 Zahlendarstellung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Zahlensystemkonvertierung Motivation Jede nichtnegative Zahl z lässt

Mehr

B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Z = a 0 B 0 + a 1 B 1 + a 2 B a n-1 B n-1

B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Z = a 0 B 0 + a 1 B 1 + a 2 B a n-1 B n-1 Polyadisches Zahlensystem B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Ganze Zahlen: n-1 Z= a i B i i=0 Z = a 0 B 0 + a 1 B 1 + a 2 B 2 +... + a n-1 B n-1 Rationale Zahlen: n-1 Z= a i B i

Mehr

Das Rechnermodell - Funktion

Das Rechnermodell - Funktion Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze

Mehr

4. Zahlendarstellungen

4. Zahlendarstellungen Bin are Zahlendarstellungen Binäre Darstellung ("Bits" aus {0, 1) 4. Zahlendarstellungen bn bn 1... b1 b0 entspricht der Zahl bn 2n + + b1 2 + b0 Wertebereich der Typen int, float und double Gemischte

Mehr

Das Maschinenmodell Datenrepräsentation

Das Maschinenmodell Datenrepräsentation Das Maschinenmodell Datenrepräsentation Darstellung von Zahlen/Zeichen in der Maschine Bit (0/1) ist die kleinste Informationseinheit Größere Einheiten durch Zusammenfassen mehrerer Bits, z.b. 8 Bit =

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel SS TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel SS TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik SS 2013 Hinweis: Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 25. April 2013 1 Boolesche

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 30. Oktober 2013 1/35 1 Boolesche

Mehr

Computerarithmetik (1)

Computerarithmetik (1) Computerarithmetik () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Rechnerstrukturen WS 2012/13 Boolesche Funktionen und Schaltnetze Rechner-Arithmetik Addition (Wiederholung) Multiplikation Wallace-Tree Subtraktion Addition negativer Zahlen Gleitkommazahlen-Arithmetik

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK

GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK 1 GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK Aufgabe 1 Bin- und Hex Arithmetik 2 Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln:

Mehr

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen allgemeine Gleitkommazahl zur Basis r

Mehr

1. Tutorium Digitaltechnik und Entwurfsverfahren

1. Tutorium Digitaltechnik und Entwurfsverfahren 1. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 25 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

BB/CS- SS00 Rechner im Überblick 1/1. Ein Stellenwertsystem (Zahlensystem) ist ein Tripel S = (b, Z, δ) mit den folgenden Eigenschaften:

BB/CS- SS00 Rechner im Überblick 1/1. Ein Stellenwertsystem (Zahlensystem) ist ein Tripel S = (b, Z, δ) mit den folgenden Eigenschaften: Neue Begriffe Festkommadarstellungen Zahlendarstellung durch Betrag und Vorzeichen Einer-/Zweierkomplement-Darstellung Gleitkommadarstellung IEEE-754 Format BB/CS- SS00 Rechner im Überblick 1/1! Definition

Mehr

Vorzeichenbehaftete Festkommazahlen

Vorzeichenbehaftete Festkommazahlen 106 2 Darstellung von Zahlen und Zeichen Vorzeichenbehaftete Festkommazahlen Es gibt verschiedene Möglichkeiten, binäre vorzeichenbehaftete Festkommazahlen darzustellen: Vorzeichen und Betrag EinerKomplement

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 4.1: Zahlensysteme a) Bitte füllen Sie die leeren Zellen

Mehr

Grundlagen der Rechnerarchitektur. Einführung

Grundlagen der Rechnerarchitektur. Einführung Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2012/13 24. Oktober 2012 Grundlagen III Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // jan.wieners@uni-koeln.de

Mehr

Dipl.-Ing. Halit Ünver Datenbanken/Künstliche Intelligenz FAW/n. Zahlensysteme

Dipl.-Ing. Halit Ünver Datenbanken/Künstliche Intelligenz FAW/n. Zahlensysteme Dipl.-Ing. Halit Ünver 7.. Datenbanken/Künstliche Intelligenz FAW/n Zahlensysteme Seite Zahlensysteme Dipl.-Ing. Halit Ünver 7.. Inhalt I. Informatik und Zahlen für Wirtschaftswissenschaftler? II. III.

Mehr

Inhalt: Binärsystem 7.Klasse - 1 -

Inhalt: Binärsystem 7.Klasse - 1 - Binärsystem 7.Klasse - 1 - Inhalt: Binärarithmetik... 2 Negative Zahlen... 2 Exzess-Darstellung 2 2er-Komplement-Darstellung ( two s complement number ) 2 Der Wertebereich vorzeichenbehafteter Zahlen:

Mehr