Teil 2: Rechnerorganisation
|
|
|
- Martina Gerhardt
- vor 8 Jahren
- Abrufe
Transkript
1 Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik Mikroprogrammierung schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation 1 Zahlendarstellungen Zahlendarstellungen in positionaler Notation : n-stellige ganze Dezimalzahl x: x = (x n-1 x n-2... x 2 x 1 x 0 ) 10 = 10 n-1 x n n-2 x n x x 0 mit x i {0,1,2,3,4,5,6,7,8,9} n-stellige ganze Binär- oder Dualzahl y: y = (y n-1 y n-2... y 2 y 1 y 0 ) 2 = 2 n-1 y n n-2 y n y y y 0 mit y i {0,1} 2 1
2 Zahlendarstellungen (Forts.) Allgemein: b-adisches Zahlensystem Jede natürliche Zahl z mit 0 z 2 n 1 ist eindeutig als n-stellige Zahl zur Basis b darstellbar: z = (z n-1 z n-2... z 2 z 1 z 0 ) b = b n-1 z n-1 + b n-2 z n b 2 z 2 + b 1 z 1 + b 0 z 0 mit Ziffer z i {0,1,2,...,b 1} Typische Werte für Basis b: b=2: Dualzahl b=8: Oktalzahl b=10: Dezimalzahl b=16: Hexadezimalzahl mit z i {0,1,2,...,9,A,B,C,D,E,F} 3 Zahlendarstellungen (Forts.) Verallgemeinerung für Festkommazahlen : Zahl zur Basis b mit k Vor- und m Nachkommastellen : z = (z k-1 z k-2... z 1 z 0, z -1 z z -m ) b = b k-1 z k-1 + b k-2 z k b 2 z 2 + b 1 z 1 + b 0 z 0 + b -1 z -1 + b -2 z b -m z -m Ziffern z k-1 z k-2... z 1 z 0 stellen ganzzahligen Teil, Ziffern z -1 z z -m stellen gebrochenen Teil von z dar gesamte Stellenzahl: n = k + m Ziffern 4 2
3 Zahlendarstellungen (Forts.) Darstellung positiver und negativer Zahlen in n Stellen: höchstwertige Ziffer z n-1 stellt das Vorzeichen dar (Zahl ist positiv bei z n-1 = 0, negativ bei z n-1 = b 1) für positive Zahl gilt stets: z = (0 z n-2 z n-3... z 1 z 0 ) b drei Möglichkeiten für negative Zahlen (mit z i = b 1 z i ): A) Vorzeichen und Betrag : z = (b 1 z n-2 z n-3... z 1 z 0 ) b B) (b 1)-Komplement : z = (b 1 z n-2 z n-3... z 1 z 0 ) b = b n 1 z C) b-komplement : z = (b 1 z n-2 z n-3... z 1 z 0 ) b +1 = b n z bei A und B hat die Zahl 0 zwei Darstellungen für Binärzahlen (d.h. für b=2) heißt B das Einerkomplement und C das Zweierkomplement 5 Zahlendarstellungen im Digitalrechner ausschließliche Verwendung von Binärzahlen Darstellung negativer Zahlen i.a. im Zweierkomplement Abbildung aller Zahlen auf Worte der Länge w, ggf. durch Ergänzung führender Vorzeichenbits typische Wortlängen: w = 8 (byte, in Mikroprozessoren der ersten Generation, wie z.b. Intel 8080 oder Z80) w = 16 (word / half word, in Minicomputern und Mikroprozessoren der zweiten Generation, wie z.b. PDP-11, Intel 8086, Motorola 68000) w = 32 (double word / word, in Mikroprozessoren der dritten Generation, wie z.b. Intel Pentium, Motorola 68040) w = 64 (quad word / double word, in aktuellen Hochleistungsprozessoren, wie z.b. PowerPC, Alpha 21264, UltraSPARC) 6 3
4 Binäre Addition Addition zweier positiver n-stelliger Binärzahlen a und b kann einfach spaltenweise durchgeführt werden: für Addition in letzter Spalte wird ein Halbaddierer benötigt, der aus a 0 und b 0 Summe s 0 und Übertrag (Carry) c 0 ermittelt: 7 Binäre Addition (Forts.) für Addition in Spalten 1 bis n wird ein Volladdierer benötigt, der Summe s i und Übertrag (Carry) c i aus den Eingangssignalen a i, b i und c i 1 ermittelt: 8 4
5 Binäre Addition (Forts.) paralleles binäres Addierwerk für zwei n-bit Worte: serielles binäres Addierwerk für zwei n-bit Worte: 9 Binäre Subtraktion Statt der Entwicklung eines eigenen Subtrahierwerkes ist es sinnvoller, für die binäre Subtraktion die gleiche Hardware wie für die Addition einzusetzen Idee: a b = a+( b) einfach bei Verwendung des Zweierkomplements für b: korrektes Ergebnis bei Unterdrückung des Überlaufs 10 5
6 Binäre Subtraktion (Forts.) Realisierung eines parallelen binären Addier-/Subtrahierwerkes (C=0 : Addition a+b, C=1: Subtraktion a b) (wirklicher) Überlauf nur bei c out c in im FA der Stelle n 1 11 Weitere Addierwerke Problem des parallelen binären n-bit Addierwerkes, das auch als Ripple Carry Adder (RCA) bezeichnet wird: Propagation des Carry Signals bis zur Stelle n 1 ist sehr langsam; max. Verzögerung: 2n t (mit t Gatterlaufzeit) alternative Addierwerke: Carry Look Ahead Addierer (CLA) Carry Select Addierer Carry Save Addierer (CSA) für m Summanden gemeinsam ist die Vermeidung der Propagation des Carry-Signals 12 6
7 Carry Look Ahead Addierer (CLA) Idee: a priori Berechnung der Carry-Signale c i für alle n Stellen für i-ten Volladdierer gilt: c i+1 = a i b i + (a i +b i )c i := G i + P i c i G i = a i b i gibt an, ob in Stelle i Carry-Signal erzeugt wird ( Generate ) P i = a i +b i gibt an, ob Stelle i das Carry-Signal propagiert (=1) oder nicht (=0) für die c i der ersten Stellen ergibt sich: c 1 = a 0 b 0 + (a 0 + b 0 )c 0 := G 0 + P 0 c 0 c 2 = G 1 + P 1 G 0 + P 1 P 0 c 0 c 3 = G 2 + P 2 G 1 + P 2 P 1 G 0 + P 2 P 1 P 0 c 0 c 4 = G 3 + P 3 G 2 + P 3 P 2 G 1 + P 3 P 2 P 1 G 0 + P 3 P 2 P 1 P 0 c 0 alle Signale c i lassen sich prinzipiell mit Gatterlaufzeit 2 t bestimmen, jedoch sind UND-Gatter mit max. i+1 Eingängen und ODER-Gatter mit max. i Eingängen nötig 13 Carry Look Ahead Addierer (Forts.) Beispiel: 4-Bit CLA Addierer Kaskadierung möglich durch Ausgangssignale G ( Block Generate ) und P ( Block Propagate ): G = G 3 + P 3 G 2 + P 3 P 2 G 1 + P 3 P 2 P 1 G 0, P = P 3 P 2 P 1 P
8 Carry Select Addierer In einem n-bit Carry Select Addierblock werden die Summenbits s n-1, s n-2,...,s 0 sowohl für c 0 = 0 als auch für c 0 =1 bestimmt und das Ergebnis über Multiplexer ausgewählt Beispiel: 4-Bit Carry Select Addierer 15 Carry Save Addierer (CSA) Baustein zur Realisierung eines mehrstufigen Addiernetzes für die Addition von m Binärzahlen Idee: Carry-Signale werden nicht propagiert, sondern erst bei Addition des nächsten Summanden berücksichtigt zur Addition von m Zahlen werden m 2 CSA-Bausteine benötigt ein RCA oder CLA-Addierer dient der Addition der noch verbleibenden Überträge 16 8
9 Binäre Multiplikation Multiplikation zweier 1-Bit Werte entspricht einer logischen UND-Verknüpfung 0 0=0, 0 1=0, 1 0=0, 1 1=1 Multiplikation zweier mehrstelliger Zahlen ist zurückführbar auf wiederholte bedingte Additionen und Schiebeoperationen (in einfachen Prozessoren wird daher oft auf Multiplizierwerke verzichtet) Multiplikation zweier positiver n-stelliger Zahlen a und b ergibt 2n-stelliges Produkt p 17 Multiplizierwerke Implementierungsvariante A serielle Multiplikation durch Addition und Rechtsschieben Register p = (ph, pl) doppelter Wortbreite zur Addition partieller Produkte durch Schieben von b wird nur Multiplikatorbit b 0 benötigt mit zwei n-bit Registern, einem 2n-Bit Register, einem n-bit Addierer und Steuerwerk direkt in Hardware implementierbar Multiplikation zweier n-bit Zahlen benötigt n Takte 18 9
10 Multiplizierwerke (Forts.) Implementierungsvariante B Idee: Implementierung des Multiplikationsschemas in Hardware ( multiplier array zur parallelen Multiplikation) max. Zeitverzögerung bei der Multiplikation zweier 4-Bit Zahlen: 15 t (mit Gatterlaufzeit t) max. Zeitverzögerung bei der Multiplikation zweier n-bit Zahlen: 2(2n 1)+1 t 19 Multiplizierwerke (Forts.) Implementierungsvariante C Idee: Addition der n Zeilen z i aus n n Bit Multiplikationsschema mit CSA-Bausteinen entweder als CSA-Kette oder CSA-Baum realisierbar max. Zeitverzögerung bei der Multiplikation zweier n-bit Zahlen (mit RCA am Ende): (2(n-2) + 4n) t [Kette] ~ (2 log 2 n + 4n) t [Baum] 20 10
11 Multiplizierwerke (Forts.) Implementierungsvariante D Idee: Herleitung eines Schaltnetzes aus Wahrheitstabelle eines n n Bit Multiplizieres Realisierung als ROM max. Zeitverzögerung bei der Multiplikation zweier n-bit Zahlen: 2 t Aufwand jedoch extrem hoch: ROM mit 2 2n 2n Bit nötig Alternative: Verwendung von k k Bit Multiplizierern im ROM und Addition der geschobenen partiellen Produkte 21 Binäre Multiplikation negativer Zahlen bislang Betrachtung ausschließlich positiver Multiplikatoren und Multiplikanden Was passiert bei negativen im Zweierkomplement kodierten n-bit Multiplikatoren und n-bit Multiplikanden? a b = a (2 n b) = a 2 n a b (statt 2 n a b) a b = (2 n a) b = b 2 n a b (statt 2 n a b) a b = (2 n a) (2 n b) = 2 2n a 2 n b 2 n + a b (statt [2 2n ]+ a b) ohne besondere Maßnahme (Addition von Korrekturtermen) liefert binärer Multiplizierer falsche Ergebnisse! Alternative: Trennung von Vorzeichen und Betrag und separate Generierung des korrekten Vorzeichens ( hoher Aufwand) 22 11
12 Multiplizierer nach Booth Idee: Vereinfachung der Multiplikation mit einer 1-Folge im Multiplikator, z.b.: a = a a Analyse zweier benachbarter Bits b i und b i-1 im Multiplikator: Addition von a 2 i bei (b i b i-1 ) = 01 Addition von a 2 i bei (b i b i-1 ) = 10 (im Zweierkomplement, ergänzt) keine Addition bei (b i b i-1 ) = 00 oder (b i b i-1 ) = 11 Ergänzung von b -1 = 0 erforderlich Beispiele: 23 Multiplizierer nach Booth (Forts.) Multiplikation nach Booth funktioniert für beliebige positive und negative Multiplikanden und Multiplikatoren Algorithmus für serielle Multiplikation nach Booth mit doppelt breitem Schieberegister p: parallele Multiplikation nach Booth und schnelle Addition der resultierenden Zeilen des Multiplikationsschemas mittels Wallace-Baum ist in den meisten modernen Prozessoren implementiert (jedoch häufig ergänzt mit Registern zwischen manchen Stufen zur des Durchsatzes, auch als pipelined multiplier bezeichnet) 24 12
13 Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert: q i = 1, falls a b > 0 q i = 0 und Korrektur durch a = a + b, falls a b < 0 Beispiel: / 9 10 = mit Rest Binäre Division (Forts.) serieller Algorithmus zur Division zweier n-bit Zahlen a und b: mit einem n-bit Register b, einem 2n-Bit Register q, einem n-bit Addierer/Subtrahierer direkt in Hardware implementierbar nach n Schritten befindet sich der Quotient q in ql, der Rest in qh in aktuellen Prozessorarchitekturen eingesetzte Divisionsverfahren: iterative Approximation (durch Multiplikation und Addition) SRT Algorithmus (simultane tabellenbasierte Generierung mehrerer Quotientenbits) 26 13
14 Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision und Genauigkeit große Dynamik möglich durch Verwendung von Gleitkommazahlen allgemeine Gleitkommazahl zur Basis r ( radix ) definiert durch x = a r e mit Argument oder Mantisse a Exponent oder Charakteristik e eine Gleitkommazahl x 0 zur Basis r heißt normalisiert, wenn für die Mantisse a gilt: 1/r a < 1 27 Binäre Gleitkommazahlen Verwendung der Basis 2, d.h. eine binäre Gleitkommazahl x ist definiert durch x = a 2 e mit m-stelliger Mantisse a und p-stelligem Exponent e eine binäre Gleitkommazahl x 0 heißt normalisiert, wenn das höchstwertige Mantissenbit den Wert 1 hat zwei Interpretationen: 1.XXXXXXX und [0].1XXXXXX häufig Darstellung des Exponenten mit Bias b: x = a 2 e b Wahl von b = 2 p 1 1 bewirkt Transformation des Bereiches für den Exponenten e von p 1 in (2 p 1 1)... 2 p 1 einfache Kodierung positiver und negativer Exponenten 28 14
15 Binäre Gleitkommazahlen (Forts.) Mantisse und Exponent können positiv und negativ sein viele Variationsmöglichkeiten bei der Definition eines Formates zur Kodierung binärer Gleitkommazahlen: 1) Wahl der Gesamtwortbreite n 2) Wahl vom m und p = n m 3) Wahl einer Reihenfolge von a und e 4) Darstellung der Mantisse im Einerkomplement, im Zweierkomplement oder mittels Vorzeichen und Betrag 5) Darstellung des Exponenten im Einer- oder Zweierkomplement, mittels Vorzeichen und Betrag oder durch Subtraktion eines Bias früher unterschiedliches Gleitkommaformat in jedem Prozessor, heute überwiegend Verwendung des IEEE 754 Standard 29 IEEE 754 Standard allgemeine Definition: x = ( 1) s 1.f 2 e b Mantisse aus Vorzeichen s und normalisiertem Betrag a = 1.f im Bereich bis (1 vor dem Komma wird nicht kodiert erhöhte Präzision) Aufbau einer n-bit IEEE Gleitkommazahl: p-stelliger Exponent mit Bias b = 2 p 1 1, gültiger Exponent e nur im Bereich e min = 0 < e < e max = 2 p 1 = 2b+1 darstellbarer Zahlenbereich: ± 2 1 b... (2 2 m ) 2 b 30 15
16 IEEE 754 Standard (Forts.) 3 verschiedene Formate spezifiziert: single precision double precision quad precision n m s p e min e max b x min x max ( ) ( ) ( ) IEEE 754 Standard (Forts.) e = e min = (00..00) 2 und e = e max = (11..11) 2 werden zur Kodierung besonderer Zahlen verwendet: x = +0 ( positive Zero ): e = 0, f = 0, s = 0 x = 0 ( negative Zero ): e = 0, f = 0, s = 1 x = + ( positive Infinity ): e = e max, f = 0, s = 0 x = ( negative Infinity ): e = e max, f = 0, s = 1 x = NaN ( Not a Number ): e = e max, f 0, s beliebig x = ( 1) s 0.f 2 1 b ( Denormalized Number ): e = 0, f 0 Denormalisierte Gleitkommazahlen ermöglichen die Darstellung sehr kleiner Werte im Bereich 2 1 b m b 32 16
17 Multiplikation von Gleitkommazahlen Algorithmus zur Multiplikation zweier IEEE-Gleitkommazahlen x = ( 1) s a 2 α bias und y = ( 1) t b 2 β bias : 1) Multipliziere Mantissen: c = a b a=1.f a und b=1.f b haben m+1 Stellen c hat 2m+2 Stellen! 2) Addiere Exponenten: γ = α + β bias 3) Berechne Vorzeichen des Produktes: u = s t 4) Normalisiere Ergebnis z = ( 1) u c 2 γ-bias a) Falls c 2, schiebe c um 1 nach rechts und inkrementiere γ b) Schiebe c um 1 nach links c) Setze c = 1.f c = (c 2m+1 c 2m c 2m 1... c m+1 ), ggf. mit Rundung 5) Behandlung von Sonderfällen: a) Überlauf, falls γ 2 p 1 z := + oder z := (bei u = 0 bzw. 1) b) Unterlauf, falls γ < 1 Denormalisierung durchführen c) Zero, falls c = 0 z := 0 33 Addition/Subtraktion von Gleitkommazahlen Algorithmus zur Addition/Subtraktion zweier Gleitkommazahlen x = ( 1) s a 2 α bias und y = ( 1) t b 2 β bias im IEEE Format: 1) Sortiere x und y derart, daß x die Zahl mit kleinerem Exponenten ist 2) Anpassung der Exponenten: Transformiere x in die Gleitkommazahl x = ( 1) s a 2 β bias durch Rechtsschieben von a um β α Bitstellen 3) Addiere/Subtrahiere Mantissen: a) Falls nötig, bilde Zweierkomplement von a oder b b) Berechne c = a + b bzw. c = a + ( b) c) Falls c < 0, setze Vorzeichenbit u = 1 und bilde Zweierkomplement 4) Normalisiere Ergebnis z = ( 1) u c 2 β bias a) Falls c 2, schiebe c nach rechts (ggf. Rundung) und inkrementiere β b) Falls c < 1, schiebe c nach links und dekrementiere β c) Wiederhole a) bzw. b), bis 1 c < 2 oder c = 0 5) Behandlung von Sonderfällen (Überlauf?, Unterlauf?, c = 0? ) 34 17
Binäre Division. Binäre Division (Forts.)
Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:
Arithmetik. Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen
Computer and Communication Systems (Lehrstuhl für Technische Informatik) Arithmetik Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen [TI] Winter 2013/2014
in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen
Inhalt Motivation 2 Integer- und Festkomma-Arithmetik Zahlendarstellungen Algorithmen für Integer-Operationen Integer-Rechenwerke Rechnen bei eingeschränkter Präzision 3 Gleitkomma-Arithmetik Zahlendarstellungen
in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen
Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen allgemeine Gleitkommazahl zur Basis r
Arithmetik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck
Arithmetik Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Zahlendarstellung Addition und Subtraktion Multiplikation Division Fest- und Gleitkommazahlen
Algorithmen zur Division
Algorithmen zur Division Umkehrung der Multiplikation: Berechnung von q = a / b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom aktuellen Rest
Algorithmen zur Integer-Multiplikation
Algorithmen zur Integer-Multiplikation Multiplikation zweier n-bit Zahlen ist zurückführbar auf wiederholte bedingte Additionen und Schiebeoperationen (in einfachen Prozessoren wird daher oft auf Multiplizierwerke
Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS
Gleit komma zahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen wird eine große Dynamik benötigt: sowohl sehr kleine als auch sehr große Zahlen sollen einheitlich dargestellt
Zahlendarstellungen und Rechnerarithmetik*
Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien
Grundlagen der Rechnerarchitektur
Grundlagen der Rechnerarchitektur [CS3100.010] Wintersemester 2014/15 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 5 Rechnerarithmetik
Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit
Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert
Arithmetik: Vorzeichenregeln und Überlauf, Exponenten & Normalisierung, Umrechnungen. Architektur: - Rechnerarchitektur, Instruktionssatz, Assembler
F. Zahlendarstellung und Rechnerarithmetik F.1. Einordnung & Inhalte Zahlendarstellungen: binär, BCD oder als ASCII-Text, Einer- und Zweierkomplement, Gleit- & Festkommazahlen. Arithmetik: Vorzeichenregeln
Computerarithmetik (1)
Computerarithmetik () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis
2.1.2 Gleitkommazahlen
.1. Gleitkommazahlen Überblick: Gleitkommazahlen Gleitkommadarstellung Arithmetische Operationen auf Gleitkommazahlen mit fester Anzahl von Mantissen- und Exponentenbits Insbesondere Rundungsproblematik:
Binäre Gleitkommazahlen
Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72
Zahlen in Binärdarstellung
Zahlen in Binärdarstellung 1 Zahlensysteme Das Dezimalsystem Das Dezimalsystem ist ein Stellenwertsystem (Posititionssystem) zur Basis 10. Das bedeutet, dass eine Ziffer neben ihrem eigenen Wert noch einen
3 Rechnen und Schaltnetze
3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s
Grundlagen der Betriebssysteme
Grundlagen der Betriebssysteme [CS2100] Sommersemester 2014 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 2 Zahlendarstellungen
bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke
Rechnerarithmetik Rechnerarithmetik 22 Prof. Dr. Rainer Manthey Informatik II Übersicht bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke in diesem
Zahlendarstellung und Rechnerarithmetik
G G.1.1 Inhaltlich Zahlendarstellung: lesbare ASCII Zeichenkette, ganzzahliger Integer, Gleitkommazahl, Festkommazahl. Arithmetik: Vorzeichenregeln, Exponenten, Vorzeichen, Überlauf. Zahlendarstellung
Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung
Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000
Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1
Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg
Integrierte Schaltungen
Integrierte Schaltungen Klassen von Chips: SSI (Small Scale Integrated) circuit: 1 bis 10 Gatter MSI (Medium Scale Integrated) circuit: 10 bis 100 Gatter LSI (Large Scale Integrated) circuit: 100 bis 100
Rechnergrundlagen SS Vorlesung
Rechnergrundlagen SS 2007 3. Vorlesung Inhalt Zahlensysteme Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag Binary Offset 1er-Komplement 2er-Komplement Addition und Subtraktion binär dargestellter
a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127.
Übung 2, Aufgabe 4) a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127. 1,125 in IEEE 754 (32Bit) 0,125 2 = 0,25 0,25 2 = 0,5 0,5 2 = 1 1,125 10 = 1,001 2 Da die Zahl bereits
Binärdarstellung von Fliesskommazahlen
Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M
Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1
Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2013/2014 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg
Das Maschinenmodell Datenrepräsentation
Das Maschinenmodell Datenrepräsentation Darstellung von Zahlen/Zeichen in der Maschine Bit (0/1) ist die kleinste Informationseinheit Größere Einheiten durch Zusammenfassen mehrerer Bits, z.b. 8 Bit =
2 Darstellung von Zahlen und Zeichen
2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f
Das Rechnermodell - Funktion
Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze
Einführung in die Programmiertechnik
Einführung in die Programmiertechnik Darstellung von Zahlen Natürliche Zahlen: Darstellungsvarianten Darstellung als Text Üblich, wenn keine Berechnung stattfinden soll z.b. Die Regionalbahn 28023 fährt
2 Repräsentation von elementaren Daten
2 Repräsentation von elementaren Daten Alle (elemtaren) Daten wie Zeichen und Zahlen werden im Dualsystem repräsentiert. Das Dualsystem ist ein spezielles B-adisches Zahlensystem, nämlich mit der Basis
Technische Informatik - Eine Einführung
Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine
Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1
Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 vorzeichenlose Zahl: 15 vorzeichenlose Zahl: 18 vorzeichenlose Zahl: 13 Zweierkomplement: - 1
Kapitel 2. Zahlensysteme, Darstellung von Informationen
Kapitel 2 Zahlensysteme, Darstellung von Informationen 1 , Darstellung von Informationen Ein Computer speichert und verarbeitet mehr oder weniger große Informationsmengen, je nach Anwendung und Leistungsfähigkeit.
Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79
Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator
Teil II. Schaltfunktionen
Teil II Schaltfunktionen 1 Teil II.1 Zahlendarstellung 2 b-adische Systeme Sei b IN mit b > 1 und E b = {0, 1,..., b 1} (Alphabet). Dann ist jede Fixpunktzahl z (mit n Vorkomma und k Nachkommastellen)
Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2
Leseprobe Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-4331- Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4331-
Übungen zu Informatik 1
Communication Systems Group (CSG) Prof. Dr. Burkhard Stiller, Universität Zürich, Binzmühlestrasse 14, CH-8050 Zürich Telefon: +41 44 635 6710, Fax: +41 44 635 6809, [email protected] Fabio Hecht, Telefon:
Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt
Technische Grundlagen der Informatik Kapitel 8 Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Kapitel 8: Themen Zahlensysteme - Dezimal - Binär Vorzeichen und Betrag Zweierkomplement Zahlen
Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär
Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten
21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?
Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen
Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik
Kapitel 1 Zahlendarstellung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Zahlensystemkonvertierung Motivation Jede nichtnegative Zahl z lässt
Einführung in die Informatik I
Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik
1. Vorzeichen und Betrag (engl. Sign-/Magnitude) 2. Stellenkomplement 3. Basiskomplement
3 Darstellungsformen für Zahlen Informatik II SS 24 Dipl.-Inform. Michael Ebner. Vorzeichen und Betrag (engl. Sign-/Magnitude) 2. Stellenkomplement 3. Basiskomplement Warum 3 Darstellungsformen? Ziel:
Lösung 1. Übungsblatt
Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung
Grundzüge der Informatik Zahlendarstellungen (7)
Grundzüge der Informatik Zahlendarstellungen (7) Sylvia Swoboda [email protected] Überblick Konvertierung von ganzen Zahlen Konvertierung von Festkommazahlen Darstellung negativer Zahlen 1
Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme
Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik
Computergrundlagen Zahlensysteme
Computergrundlagen Zahlensysteme Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren, Widerständen und Kondensatoren
Kapitel 2. Zahlensysteme
Kapitel 2 Zahlensysteme 13.08.12 K.Kraft D:\MCT_Vorlesung\Folien2013\Zahlensysteme_2\Zahlensysteme.odt 2-1 Zahlensysteme Definitionen Ziffern : Zeichen zur Darstellung von Zahlen Zahl : Eine Folge von
5 Verarbeitungsschaltungen
5 Verarbeitungsschaltungen Folie 1 5 Verarbeitungsschaltungen Häufig genutzte Funktionen gibt es als fertige Bausteine zu kaufen. 5.1 Addierer logische Schaltungen zur Addition zweier Dualzahlen Alle Grundrechenarten
2 Rechnen auf einem Computer
2 Rechnen auf einem Computer 2.1 Binär, Dezimal und Hexadezimaldarstellung reeller Zahlen Jede positive reelle Zahl r besitzt eine Darstellung der Gestalt r = r n r n 1... r 1 r 0. r 1 r 2... (1) := (
Gleitkommaarithmetik. Erhöhen der Genauigkeit. Grundlagen der Rechnerarchitektur Logik und Arithmetik 124
Gleitkommaarithmetik Erhöhen der Genauigkeit Grundlagen der Rechnerarchitektur Logik und Arithmetik 124 Guard Bit, Round Bit und Sticky Bit Bei der Darstellung der Addition und Multiplikation haben wir
Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10
Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist
, 2015S Übungstermin: Mi.,
VU Grundlagen digitaler Systeme Übung 1: Zahlendarstellungen, Numerik 183.580, 2015S Übungstermin: Mi., 18.03.2015 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen Hilfsmittel
Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016
Musterlösung 1 Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den
Grundstrukturen: Speicherorganisation und Zahlenmengen
Zahlendarstellung Zahlen und ihre Darstellung in Digitalrechnern Grundstrukturen: Speicherorganisation und Zahlenmengen Linear organisierter Speicher zu einer Adresse gehört ein Speicher mit 3 Bit-Zellen
Vertiefungsstoff zum Thema Darstellung von Zahlen
Vertiefungsstoff zum Thema Darstellung von Zahlen Addition von Zahlen in BCD-Kodierung Einerkomplementdarstellung von ganzen Zahlen Gleitpunktdarstellung nach dem IEEE-754-Standard 1 Rechnen mit BCD-codierten
1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement
Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im
Grundlagen der Technischen Informatik. 4. Übung
Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Polyadische Zahlensysteme Gleitkomma-Arithmetik 4.
Einführung in die Systemprogrammierung
Einführung in die Systemprogrammierung Repräsentierung Rationaler Zahlen Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 19. Juni 2015 Rationale Zahlen Wie können wir Rationale
1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:
Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der
Rechnergrundlagen SS Vorlesung
Rechnergrundlagen SS 27 5. Vorlesung Inhalt Interpretation hexadezimal dargestellter Integer-Zahlen Little Endian / Big Endian Umrechnung in eine binäre Darstellung Ausführung von Additionen Optimierte
Inhalt: Binärsystem 7.Klasse - 1 -
Binärsystem 7.Klasse - 1 - Inhalt: Binärarithmetik... 2 Negative Zahlen... 2 Exzess-Darstellung 2 2er-Komplement-Darstellung ( two s complement number ) 2 Der Wertebereich vorzeichenbehafteter Zahlen:
Grundlagen der Datenverarbeitung - Zahlensysteme
1. Zahlensysteme 1.1.Dezimalsystem Das Dezimalsystem ist das System, in dem wir gewohnt sind zu zählen und zu rechnen. Zahlen werden durch die Ziffern 0,1,2,...,9 dargestellt. Die Zahl 7243 wird als Siebentausendzweihundertdreiundvierzig
Dipl.-Ing. Halit Ünver Datenbanken/Künstliche Intelligenz FAW/n. Zahlensysteme
Dipl.-Ing. Halit Ünver 7.. Datenbanken/Künstliche Intelligenz FAW/n Zahlensysteme Seite Zahlensysteme Dipl.-Ing. Halit Ünver 7.. Inhalt I. Informatik und Zahlen für Wirtschaftswissenschaftler? II. III.
Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner
Institut für Telematik Universität zu Lübeck Programmieren Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 8/9 Prof. Dr. Christian Werner 3- Überblick Typische Merkmale moderner Computer
2. Zahlendarstellung und Rechenregeln in Digitalrechnern
Zahlendarstellung und Rechenregeln in Digitalrechnern Folie. Zahlendarstellung und Rechenregeln in Digitalrechnern. Zahlensysteme Dezimales Zahlensystem: Darstellung der Zahlen durch Ziffern 0,,,..., 9.
FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10
FB ET/IT Binäre Rechenoperationen WS 9/ Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbst erstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen
12. Tutorium Digitaltechnik und Entwurfsverfahren
12. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 13 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 11/12
FB ET/IT Binäre Rechenoperationen WS /2 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbsterstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen
Zahlen und Zeichen (1)
Zahlen und Zeichen () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis
Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013
Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013 Im folgenden soll ein Überblick über die in Computersystemen bzw. Programmiersprachen verwendeten Zahlen inklusive ausgewählter Algorithmen (in
5. Übung: Binäres Rechnen und Fließkommazahlen Abteilung Verteilte Systeme, Universität Ulm
5. Übung: Binäres Rechnen und Fließkommazahlen Aufgabe 1: Binäres Rechnen a) Berechnen Sie: x = 01100101b*(0101101b-10110100b)+10101b. Alle Zahlen sind 8 Bit breit und in Zweierkomplement-Notation angegeben.
Rechnerstrukturen Winter 2015 4. WICHTIGE SCHALTNETZE. (c) Peter Sturm, University of Trier 1
4. WICHTIGE SCHALTNETZE (c) Peter Sturm, University of Trier 1 Wichtige Schaltnetze Häufig verwendete Grundfunktionen Umwandeln (Decoder) Verteilen (Multiplexer) und Zusammenfassen (Demultiplexer) Arithmetisch-
Einführung in die Computerorientierte Mathematik
Einführung in die Computerorientierte Mathematik Wintersemester 2014/15 Thomas Gerstner Institut für Mathematik Goethe-Universität Frankfurt 28. Oktober 2014 Inhaltsverzeichnis Inhaltsverzeichnis ii 1
II. Grundlagen der Programmierung
II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123
2.5. Gleitkommaarithmetik
2.5. Gleitkommaarithmetik Bei vorgegebener Länge m des Kodeworts (der rechnerinternen Darstellung) lassen sich nur 2 m verschiedene Werte darstellen. In der Mehrzahl der Fälle ist das zu wenig. Ein Ausweg
3. Datentypen, Ausdrücke und Operatoren
3. Datentypen, Ausdrücke und Operatoren Programm muß i.a. Daten zwischenspeichern Speicherplatz muß bereitgestellt werden, der ansprechbar, reserviert ist Ablegen & Wiederfinden in höheren Programmiersprachen
3 Arithmetische Schaltungen
. Schaltungselemente Arithmetische Schaltungen. Schaltungselemente Logikgatter Treiber; gibt am Ausgang denselben Logikpegel aus, der auch am Eingang anliegt Inverter; gibt am Ausgang den Logikpegel des
Rechnerstrukturen WS 2012/13
Rechnerstrukturen WS 2012/13 Repräsentation von Daten Repräsentation natürlicher Zahlen (Wiederholung) Repräsentation von Texten Repräsentation ganzer Zahlen Repräsentation rationaler Zahlen Repräsentation
Einstieg in die Informatik mit Java
1 / 34 Einstieg in die Informatik mit Java Zahldarstellung und Rundungsfehler Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 34 1 Überblick 2 Darstellung ganzer Zahlen,
Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen
Großübung 1: Zahlensysteme Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Lehrender: Dr. Klaus Richter, Institut für Informatik; E-Mail: [email protected]
Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik
Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren,
Grundlagen der Informatik I. Übung
Grundlagen der Informatik I Übung Studiengang Wirtschaftsingenieurwesen Wintersemester 2013/2014 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich Informatik/Mathematik Friedrich-List-Platz
Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik
Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Helmar Burkhart Departement Informatik Universität Basel [email protected] Helmar Burkhart Werkzeuge der Informatik Lektion 1:
7. Übung zur Vorlesung Grundlagen der Informatik
7. Übung zur Vorlesung Grundlagen der Informatik 13.Interne Darstellung von Daten In der Vorlesung wurde bereits darauf hingewiesen, dass ein Rechner intern lediglich die Zustände 0 (kein Signal liegt
Repräsentation von Daten Binärcodierung ganzer Zahlen
Kapitel 3: Repräsentation von Daten Binärcodierung ganzer Zahlen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Repräsentation von Daten im Computer (dieses und nächstes
Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc.
Fixpunktdarstellung Fixed-point numbers Bsp. Dezimaldarstellung Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc. Binärdarstellung
Grundlagen der Informatik I. Übung
Grundlagen der Informatik I Übung Studiengang Wirtschaftsingenieurwesen Wintersemester 1/13 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich Informatik/Mathematik Friedrich-List-Platz
Mikroprozessor als universeller digitaler Baustein
2. Mikroprozessor 2.1 Allgemeines Mikroprozessor als universeller digitaler Baustein Die zunehmende Integrationsdichte von elektronischen Schaltkreisen führt zwangsläufige zur Entwicklung eines universellen
1 : Die Rechnungsarten
1 von 22 23.10.2006 14:08 0 : Inhalt von Kapitel DAT 1 : Die Rechnungsarten 2 : Die Worte 3 : Hilfsprozessoren 4 : Binäre Zahlendarstellung 5 : Interpretationen 6 : Division mit Rest 7 : Horner Schema
Informatik Übungsaufgaben
Tobias Krähling email: Homepage: 11..7 Version: 1.1 Zusammenfassung Die Übungsaufgaben stammen aus den Übungsaufgaben und Anwesenheitsaufgaben zur Vorlesung»Einführung
Computerarithmetik ( )
Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur
Lösungsvorschlag zu 1. Übung
Prof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 09/10 Lösungsvorschlag zu 1. Übung 1 Präsenzübungen 1.1 Schnelltest a) Welche der Aussagen treffen auf jeden
Das negative Zweierkomplementzahlensystem
Das negative Zweierkomplementzahlensystem Ines Junold 07. Dezember 2009 1 / 21 Inhaltsverzeichnis 1 Einleitung 2 Das konventionelle Zweierkomplement 3 Das negative Zweierkomplementsystem 4 Zusammenfassung
2.0 Zahlendarstellung, Konvertierungsalgorithmen und arithmetische Algorithmen
2.0 Zahlendarstellung, Konvertierungsalgorithmen und arithmetische Algorithmen Ziele dieses Kapitels Kennenlernen wesentlicher Zahlensysteme und die Konvertierung von Zahlen zwischen unterschiedlichen
TOTAL DIGITAL - Wie Computer Daten darstellen
TOTAL DIGITAL - Wie Computer Daten darstellen Computer verarbeiten Daten unter der Steuerung eines Programmes, das aus einzelnen Befehlen besteht. Diese Daten stellen Informationen dar und können sein:
Tutorium Rechnerorganisation
Woche 1 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu
