Technische Informatik - Eine Einführung
|
|
|
- Alexander Bader
- vor 10 Jahren
- Abrufe
Transkript
1 Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: Abgabe: Technische Informatik - Eine Einführung Zahlendarstellungen Aufgabe 1 (0 Punkte) Wiederholen Sie anhand der folgenden Teilaufgaben den Umgang mit der Binärdarstellung. a) Beweisen Sie die Gültigkeit der Gleichung n 1 i=0 2 i = 2 n 1. b) Wie viele Stellen werden jeweils für die Darstellungen der Dezimalzahlen in Binärdarstellung (ohne Vorzeichen) mindestens benötigt? Aufgabe 2 (0 Punkte) Gegeben sei die 32 bit-zahl x = Interpretieren Sie x als a) Zahl in Betrag-Vorzeichen-Darstellung mit drei Nachkommastellen, b) Zahl in Einerkomplementdarstellung mit drei Nachkommastellen, c) Zahl in Zweikomplementdarstellung mit vier Nachkommastellen und d) Gleitkommazahl nach dem Ieee 754 Standard. 1
2 Aufgabe 3 (0 Punkte) Gegeben seien die Dezimalzahlen x = 127, 625 und y = 3, Stellen sie die beiden Zahlen in der Zweierkomplementdarstellung mit einer Länge von jeweils 16 Stellen inkl. 6 Nachkommastellen dar. Aufgabe 4 (0 Punkte) Berechnen Sie für die im folgenden gegebenen vier Zahlen in unterschiedlichen Zahlendarstellungen jeweils alle anderen Darstellungen. Dezimal mit Vorzeichen und Betrag (vorderste Stelle + = positive Zahl, - = negative Zahl) 16-Bit Binär mit Vorzeichen und Betrag (höchstwertigstes Bit 0 = positive Zahl, 1 = negative Zahl) 16-Bit Binär in der Einer-Komplement Darstellung 16-Bit Binär in der Zweier-Komplement Darstellung Oktal (interpretiert als Zweier-Komplement) Hexadezimal (interpretiert als Zweier-Komplement) Wichtig: Verwenden Sie für die dezimale, oktale und hexadezimale Darstellungsform nur so viele Stellen, wie für die Darstellung mindestens benötigt. Gegeben sind die Zahlen: Dezimal mit Vorzeichen und Betrag A0F1 Hexadezimal (interpretiert als Zweierkomplementdarstellung) Oktal (interpretiert als Zweierkomplementdarstellung) Bit Binär in der Zweierkomplementdarstellung Aufgabe 5 (0 Punkte) Gegeben ist die Zahl 78. Schreiben Sie die Zahl in Zweierkomplementdarstellung mit einem Byte und mit vier Byte auf. Darstellung mit einem Byte: Darstellung mit 2-Byte: Aufgabe 6 (0 Punkte) Der Speicher des Zuse-Rechners Z1 erlaubt es, binäre Zahlen als 22 Bit-Worte darzustellen. Jede gespeicherte Zahl besteht aus dem Vorzeichen (1 Bit), dem Exponenten (7 Bit) und der Mantisse (14 Bit). 2
3 Der Aufbau einer solchen binären Zahl sieht wie folgt aus: x = v a 6 a 5 a 4 a 3 a 2 a 1 a 0 b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 b 9 b 10 b 11 b 12 b 13 b 14 wobei v, a i, b i {0, 1}. Der dezimale Wert ergibt sich aus dez(x) = ( 1) v 2 (( 5 i=0 a i 2 i ) (64 a 6 )) (1 + a) Die Speicherbelegung sei nun wie folgt gegeben: Vorzeichen Exponent Mantisse 1. Zahl Zahl Zahl i= 14 b i 2 i ). Welche Zahlen wurden im folgenden Speicher abgelegt? Geben Sie den zugehörigen dezimalen Wert an. b) Wie lautet die größte positive Zahl, die in diesem Speicher abgelegt werden kann? Geben Sie den dezimalen Wert an. c) Wie lautet die betragsmäßig kleinste Zahl, die in diesem Speicher abgelegt werden kann und eine Mantisse b ungleich 0 besitzt, d.h. i, so dass b i 0? Geben Sie den dezimalen Wert an. Aufgabe 7 (0 Punkte) Eine Zahlendarstellung zur Basis b über der Ziffernmenge D 1Z wird dargestellt durch ±(... a 2 a 1 a 0.a 1 a 2...) b mit a i D und beliebigem i Z und interpretiert als ±( + a 2 b 2 + a 1 b 1 + a 0 + a 1 b 1 + a 2 b 2 + ). Betrachten Sie die Darstellung zur Basis b = und zu dieser Basis dar. 10 mit D = {0, 1,..., 9}. Stellen Sie die Zahlen Aufgabe 8 (0 Punkte) Gegeben sei eine beliebige n-bit-darstellung (a n 1,..., a 2, a 1, a 0 ) in a) einer vorzeichenbehafteten binären Darstellung (ein Bit für das Vorzeichen), b) der Zweikomplement-Darstellung und c) der Einerkomplement-Darstellung 3
4 einer Zahl x Wie sehen die Darstellungen jeweils aus, wenn die Bitbreite von n auf 2n erweitert wird? Die jeweils dargestellte Zahl x soll unverändert bleiben. Beweisen Sie ihre Konstruktion. Aufgabe 9 (0 Punkte) Gegeben sei die dezimale Zahl Wandeln Sie diese Zahl in die folgenden Darstellungen mit jeweils 12 Stellen (in der entsprechenden Darstellung) um: Binär mit Betrag-Vorzeichen: Binär im Einserkomplement: Binär im Zweierkomplement: Binär im Zweierkomplement in oktaler Schreibweise: Binär im Zweierkomplement in hexadezimaler Schreibweise: Aufgabe 10 (0 Punkte) Sei α die n-bit Zweierkomplementdarstellung (ohne Nachkommastellen) einer ganzen Zahl x, auf die folgendes Verfahren angewendet wird: i) Invertiere jede Bitstelle von α. ii) iii) Addiere auf die niederwertigste Bitstelle der so erhaltenen Binärzahl eine Eins. Nenne die so konstruierte Darstellung β α Beweisen Sie formal, dass β α die Zweierkomplementdarstellung der Zahl x ist. Aufgabe 11 (0 Punkte) Die Zahlendarstellung ( a 2 a 1 a 0.a 1 a 2 ) b zur Basis 3 mit a i D := { 1, 0, 1} werde durch φ 3 ( a 2 a 1 a 0.a 1 a 2 ) = + a a a 0 + a a interpretiert. Die Ziffer 1 werde im Folgenden durch das Symbol 1 ausgedrückt. Bemerken Sie bitte, dass in dieser Zahlendarstellung kein Vorzeichen vorgesehen ist. i) Welche dezimalen Werte werden durch 1101, und dargestellt? ii) iii) Wie lassen sich in dieser ternären Darstellung Zahlen negieren? Beweisen Sie Ihre Aussage. Wie lassen sich in dieser ternären Darstellung Zahlen runden, wenn man nur endliche Darstellungen betrachtet? Unter Runden verstehen wir hierbei die Operation, die zu einer nicht ganzen Zahl die ganze Zahl ermittelt, die am nächsten liegt. Begründen Sie Ihren Vorschlag. 4
5 Aufgabe 12 (0 Punkte) Eine Zahlendarstellung zur Basis b über der Ziffernmenge D werde dargestellt durch ±(... a 2 a 1 a 0.a 1 a 2...) b = ±( + a 2 b 2 + a 1 b 1 + a 0 + a 1 b 1 + a 2 b 2 + ) mit a i D und beliebigem i Z. Für die Konvertierung zwischen binären (b = 2), oktalen (b = 2 3 ) und hexadezimalen (b = 2 4 ) Werten soll für beliebige k N die Beziehung (... a 2 a 1 a 0.a 1 a 2...) b = (... A 2 A 1 A 0.A 1 A 2...) b k mit ausgenutzt werden. ( i Z) A i = (a k i+k 1... a k i+1 a k i ) b, i) Was sagt diese Beziehung aus? Zeigen Sie die Korrektheit dieser Beziehung. ii) Wandeln Sie den oktalen Wert in den entsprechenden binären, quarternären (b = 2 2 ) und hexadezimalen Wert um. Aufgabe 13 (0 Punkte) Gegeben sei eine n-stellige Darstellung einer Zahl zur Basis b durch eine Interpretation φ(x n 1,..., x 0 ) mit x i {0,..., b 1}. Berechnen Sie für folgende Darstellungen bei gegebenen b und n den Wert der kleinsten und größten darstellbaren Zahl. Wie würden Sie die jeweilige Darstellung bezeichnen? φ(x n 1,..., x 0 ) := n 1 i=0 φ(x n 1,..., x 0 ) := ( 1) (x n 1>0) φ(x n 1,..., x 0 ) := Es gilt (x n 1 > 0) = 1 x n 1 0. n 2 i=0 x i b i (1) n 2 i=0 x i b i (2) x i b i (x n 1 > 0) b n 1 (3) Aufgabe 14 (0 Punkte) Sei x eine Gleitkommazahl einfacher Genauigkeit nach dem Ieee 754 Standard mit Wandeln Sie x in die folgenden Darstellungen mit jeweils zwei Nachkommastellen um. Dezimal mit Betrag-Vorzeichen: 5
6 Binär mit Betrag-Vorzeichen: Binär im Einerkomplement: Binär im Zweierkomplement: Aufgabe 15 (0 Punkte) Zeigen Sie, dass es im Zweier-Komplement nur eine Darstellung der Zahl 0 gibt, wenn die Anzahl der Stellen vor dem Komma und die Anzahl der Stellen hinter dem Komma fest vorgegeben sind. Aufgabe 16 (0 Punkte) Im alten Ägypten multiplizierten die Weisen des Landes zwei nichtnegative und von Null verschiedene ganze Zahlen a und b, indem sie in einer Iteration die Zahl a mit 2 multiplizierten und die Zahl b durch 2 ganzzahlig dividierten, was sie im Kopf rechnen konnten. Dies taten sie solange, bis der Multiplikator b gleich 1 war. Da gerade Zahlen Unglück brachten das hatte etwas mit dem Sonnengott zu tun, wurden die Zwischenergebnisse, in denen der Multiplikator b gerade war, gestrichen. Das Ergebnis konnte durch Aufaddieren aller nicht gestrichenen Multiplikanten a berechnet werden. Beispiel: Multipliziere 5 und 27: Ergebnis: = 135 = a b gestrichen 5 27 nein nein 20 6 ja 40 3 nein 80 1 nein Beweisen Sie (zum Beispiel mittels Induktion), dass der vorgestellte Algorithmus korrekt arbeitet, d. h. zwei positive ganze Zahlen korrekt miteinander multipliziert. Aufgabe 17 (0 Punkte) i) Interpretieren Sie die Bitfolge als 32-Bit IEEE Gleitkommazahl. Wie lautet die Dezimaldarstellung? ii) Gegeben sind die Zahlen x = und y = im 32-Bit IEEE Gleitkommaformat. Führen Sie die Addition von x und y im 32-Bit IEEE Gleitkommaformat aus. 6
7 iii) Erklären Sie den Sinn der Normierung bei Gleitkommazahlen! Aufgabe 18 (0 Punkte) Gegeben seien die beiden Zahlen x = 19 und y = 6.5. Geben Sie x, y und das Ergebnis von x y in Gleitkommadarstellung mit einfacher Genauigkeit (Ieee 754 Standard) an. x : y : x y : Aufgabe 19 (0 Punkte) Die Interpretation φ (n) 2 : {0, 1} n Z bezeichne das Zweierkomplement und die Abbildung φ (n) 1 : {0, 1} n Z das Einerkomplement mit n Bits. Die Anzahl der Nachkommastellen sei Null. Seien x, y, s {0, 1} n und c n 1 {0, 1} mit (1) φ (n) 2 (x) + φ(n) 2 (y) [ 2 n 1, 2 n 1 1 ], (2) s = (s n 1,..., s 0 ) ist die formale Summe von x und y, (3) c n 1 ist der beim Bilden der formalen Summe von x und y an der (n 1) ten Stelle entstehende ausgehende Übertrag. Zeigen Sie, dass die Gleichung φ (n) 1 (x) + φ(n) 1 (y) = φ(n) 1 (s) + c n gilt, d. h dass bei der Addition im Einerkomplement die formale Summe zu bilden ist und dann der ausgehende Übertrag von der höchstwertigsten Stelle an der niederwertigsten Stelle aufaddiert werden muss. Hinweis: Aus der Vorlesung wissen Sie, dass φ (n) 2 (x) + φ(n) 2 (y) = φ(n) 2 (s) gilt. Überlegen Sie sich, wie Sie aus φ (n) 2 (s) die Zahl φ(n) 1 (z) für alle z {0, 1}n berechnen können und machen sie dann eine Fallunterscheidung über (x n 1, y n 1 ) {0, 1} 2. Aufgabe 20 (0 Punkte) In der Vorlesung wurden bereits einige elementare Hardware-Bausteine vorgestellt. Ein weiterer solcher Baustein ist COMPARE zum Vergleich von Zahlen (d. h. zwei Eingänge für die Operanden a und b sowie zwei Ausgänge für die Resultate von a = b (gleich) und a < b (echt kleiner)). Überlegen Sie sich einen möglichst effizienten Baustein zum Vergleich von zwei Gleitkommadarstellung nach IEEE 754 Standard. Überlegen Sie sich, wie man diesen Vergleich auf den Vergleich von Zahlen in der Zweierkomplementdarstellung zurückführen kann. Aufgabe 21 (0 Punkte) 7
8 Sei b N und b 1 fest gegeben. Dann heißen Zahlen der Form m b e Gleitpunktzahlen zur Basis b, wobei m R als Mantisse oder Signifikant und e Z als Exponent bezeichnet wird. Falls b 1 m < 1 ist, spricht man von einer normierten Gleitpunktzahl m ist der Absolutbetrag der Zahl m. Sei nun ein x R \ {0} gegeben. Beweisen Sie, dass x auf genau eine Weise als normierte Gleitpunktzahl x = m b e geschrieben werden kann. 8
Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10
Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist
BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?
BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert
Binärdarstellung von Fliesskommazahlen
Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M
Einführung in die Informatik I
Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik
Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1
Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 vorzeichenlose Zahl: 15 vorzeichenlose Zahl: 18 vorzeichenlose Zahl: 13 Zweierkomplement: - 1
Grundlagen der Informatik
Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................
Vertiefungsstoff zum Thema Darstellung von Zahlen
Vertiefungsstoff zum Thema Darstellung von Zahlen Addition von Zahlen in BCD-Kodierung Einerkomplementdarstellung von ganzen Zahlen Gleitpunktdarstellung nach dem IEEE-754-Standard 1 Rechnen mit BCD-codierten
Binäre Gleitkommazahlen
Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72
Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1
Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg
a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127.
Übung 2, Aufgabe 4) a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127. 1,125 in IEEE 754 (32Bit) 0,125 2 = 0,25 0,25 2 = 0,5 0,5 2 = 1 1,125 10 = 1,001 2 Da die Zahl bereits
Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik
Kapitel 1 Zahlendarstellung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Zahlensystemkonvertierung Motivation Jede nichtnegative Zahl z lässt
Übungen zu Informatik 1
Communication Systems Group (CSG) Prof. Dr. Burkhard Stiller, Universität Zürich, Binzmühlestrasse 14, CH-8050 Zürich Telefon: +41 44 635 6710, Fax: +41 44 635 6809, [email protected] Fabio Hecht, Telefon:
Grundlagen der Informatik (BSc) Übung Nr. 5
Übung Nr. 5: Zahlensysteme und ihre Anwendung Bitte kreuzen Sie in der folgenden Auflistung alle Zahlensysteme an, zu welchen jeder Ausdruck als Zahl gehören kann! (Verwenden Sie 'x für Wahl, ' ' für Ausschluß
2. Negative Dualzahlen darstellen
2.1 Subtraktion von Dualzahlen 2.1.1 Direkte Subtraktion (Tafelrechnung) siehe ARCOR T0IF Nachteil dieser Methode: Diese Form der Subtraktion kann nur sehr schwer von einer Elektronik (CPU) durchgeführt
Computerarithmetik ( )
Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur
Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär
Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten
1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:
Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der
Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1
Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2013/2014 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg
Übung RA, Kapitel 1.2
Übung RA, Kapitel 1.2 Teil 1: Zahlen und Logik A) Aufgaben zu den ganzen Zahlen 1. Konvertieren Sie die folgenden Zahlen in die Binärform: 1984 Immer durch 2 teilen, der Rest ergibt das Bit. Jeweils mit
Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird.
Zahlensysteme Definition: Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. In der Informatik spricht man auch von Stellenwertsystem,
Theoretische Informatik SS 04 Übung 1
Theoretische Informatik SS 04 Übung 1 Aufgabe 1 Es gibt verschiedene Möglichkeiten, eine natürliche Zahl n zu codieren. In der unären Codierung hat man nur ein Alphabet mit einem Zeichen - sagen wir die
Kapitel 4A: Einschub - Binärcodierung elementarer Datentypen. Einschub: Teile aus Kapitel 2 in Küchlin/Weber: Einführung in die Informatik
Einschub: Binärcodierung elementarer Datentypen Teile aus Kapitel 2 in Küchlin/Weber: Einführung in die Informatik Unterscheide Zahl-Wert Zahl-Bezeichner Zu ein- und demselben Zahl-Wert kann es verschiedene
2 Darstellung von Zahlen und Zeichen
2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f
4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04
4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04 JOACHIM VON ZUR GATHEN, OLAF MÜLLER, MICHAEL NÜSKEN Abgabe bis Freitag, 14. November 2003, 11 11 in den jeweils richtigen grünen oder roten Kasten
Information in einem Computer ist ein
4 Arithmetik Die in den vorhergehenden Kapiteln vorgestellten Schaltungen haben ausschließlich einfache, Boole sche Signale verarbeitet. In diesem Kapitel wird nun erklärt, wie Prozessoren mit Zahlen umgehen.
Zahlensysteme Seite -1- Zahlensysteme
Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4
Zeichen bei Zahlen entschlüsseln
Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
Übungsaufgaben. - Vorgehensweise entsprechend dem Algorithmus der schriftlichen Multiplikation
Übungsaufgaben Anmerkung Allen Beispielen soll noch hinzugefügt sein, dass wertvolle Hinweise, also die Tipps und Tricks die der schnellen maschinellen Multiplikation zu Grunde liegen, neben dem toff zur
1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement
Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im
Das Rechnermodell - Funktion
Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze
Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung
Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000
Zahlensysteme Das 10er-System
Zahlensysteme Übungsblatt für die entfallende Stunde am 22.10.2010. Das 10er-System... 1 Umrechnung in das 10er-System... 2 2er-System... 2 8er-System... 2 16er-System... 3 Umrechnung in andere Zahlensysteme...
FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10
FB ET/IT Binäre Rechenoperationen WS 9/ Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbst erstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen
Zahlensysteme: Oktal- und Hexadezimalsystem
20 Brückenkurs Die gebräuchlichste Bitfolge umfasst 8 Bits, sie deckt also 2 8 =256 Möglichkeiten ab, und wird ein Byte genannt. Zwei Bytes, also 16 Bits, bilden ein Wort, und 4 Bytes, also 32 Bits, formen
Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik
Wurzeln als Potenzen mit gebrochenen Exponenten Zur Einstimmung Wir haben die Formel benutzt x m n = x m n nach der eine Exponentialzahl potenziert wird, indem man die Exponenten multipliziert. Dann sollte
Lösung 1. Übungsblatt
Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung
FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 11/12
FB ET/IT Binäre Rechenoperationen WS /2 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbsterstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen
in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen
Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen allgemeine Gleitkommazahl zur Basis r
Eine Logikschaltung zur Addition zweier Zahlen
Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung
Binäre Division. Binäre Division (Forts.)
Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:
Einführung in die Programmierung
Technische Universität Carolo Wilhelmina zu Brauschweig Institut für rechnergestützte Modellierung im Bauingenierwesen Prof. Dr.-Ing. habil. Manfred Krafczyk Pockelsstraße 3, 38106 Braunschweig http://www.irmb.tu-bs.de
0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet).
Aufgabe 0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). 1. i) Wie ist die Darstellung von 50 im Zweier =Komplement? ii) Wie ist die Darstellung von 62 im Einer =Komplement?
Der Zwei-Quadrate-Satz von Fermat
Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat
Zahlendarstellungen und Rechnerarithmetik*
Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
TECHNISCHE UNIVERSITÄT MÜNCHEN
TECHISCHE UIVERSITÄT MÜCHE Zentrum Mathematik PRF. R.R. JÜRGE RICHTER-GEBERT, VAESSA KRUMMECK, MICHAEL PRÄHFER Höhere Mathematik für Informatiker I (Wintersemester 003/004) Aufgabenblatt 1 (4. ktober 003)
BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de
BSZ für Elektrotechnik Dresden Zahlenformate Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de Gliederung 1 Überblick 2 Grundaufbau der Zahlensysteme 2.1 Dezimalzahlen 2.2 Binärzahlen = Dualzahlen
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 18
Kapitel 3 Datentypen und Variablen Seite 1 von 18 Datentypen - Einführung - Für jede Variable muss ein Datentyp festgelegt werden. - Hierdurch werden die Wertemenge und die verwendbaren Operatoren festgelegt.
Das Maschinenmodell Datenrepräsentation
Das Maschinenmodell Datenrepräsentation Darstellung von Zahlen/Zeichen in der Maschine Bit (0/1) ist die kleinste Informationseinheit Größere Einheiten durch Zusammenfassen mehrerer Bits, z.b. 8 Bit =
Numerisches Programmieren, Übungen
Technische Universität München SoSe 0 Institut für Informatik Prof Dr Thomas Huckle Dipl-Math Jürgen Bräckle Nikola Tchipev, MSc Numerisches Programmieren, Übungen Musterlösung Übungsblatt: Zahlendarstellung,
5. Übung: Binäres Rechnen und Fließkommazahlen Abteilung Verteilte Systeme, Universität Ulm
5. Übung: Binäres Rechnen und Fließkommazahlen Aufgabe 1: Binäres Rechnen a) Berechnen Sie: x = 01100101b*(0101101b-10110100b)+10101b. Alle Zahlen sind 8 Bit breit und in Zweierkomplement-Notation angegeben.
N Bit binäre Zahlen (signed)
N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101
Aufgabensammlung Bruchrechnen
Aufgabensammlung Bruchrechnen Inhaltsverzeichnis Bruchrechnung. Kürzen und Erweitern.................................. 4. Addition von Brüchen................................... Multiplikation von Brüchen...............................
Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme
Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik
Daten verarbeiten. Binärzahlen
Daten verarbeiten Binärzahlen In Digitalrechnern werden (fast) ausschließlich nur Binärzahlen eingesetzt. Das Binärzahlensystem ist das Stellenwertsystem mit der geringsten Anzahl von Ziffern. Es kennt
Grundlagen der Technischen Informatik. 4. Übung
Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Polyadische Zahlensysteme Gleitkomma-Arithmetik 4.
Informatik I: Abschnitt 7
Informatik I: Abschnitt 7 Inhalt: 7. Interne Informationsdarstellung 7.1 Ganzzahlige Datentypen 7.2 Gleitkomma-Datentypen Die Folien basieren zum Teil auf einen Foliensatz von R. Großmann und T. Wiedemann
Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192.
Binäres und dezimales Zahlensystem Ziel In diesem ersten Schritt geht es darum, die grundlegende Umrechnung aus dem Dezimalsystem in das Binärsystem zu verstehen. Zusätzlich wird auch die andere Richtung,
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN
ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden
Plotten von Linien ( nach Jack Bresenham, 1962 )
Plotten von Linien ( nach Jack Bresenham, 1962 ) Ac Eine auf dem Bildschirm darzustellende Linie sieht treppenförmig aus, weil der Computer Linien aus einzelnen (meist quadratischen) Bildpunkten, Pixels
Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS
Gleit komma zahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen wird eine große Dynamik benötigt: sowohl sehr kleine als auch sehr große Zahlen sollen einheitlich dargestellt
21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?
Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
1 Mathematische Grundlagen
Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.
50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte
50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien
Grundlagen der Informatik I Informationsdarstellung
Grundlagen der Informatik I Informationsdarstellung Einführung in die Informatik, Gumm, H.-P./Sommer, M. Themen der heutigen Veranstaltung. ASCIi Code 2. Zeichenketten 3. Logische Operationen 4. Zahlendarstellung
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc.
Fixpunktdarstellung Fixed-point numbers Bsp. Dezimaldarstellung Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc. Binärdarstellung
Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt
Technische Grundlagen der Informatik Kapitel 8 Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Kapitel 8: Themen Zahlensysteme - Dezimal - Binär Vorzeichen und Betrag Zweierkomplement Zahlen
Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.
Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,
Grundlagen der Informatik Übungen 1.Termin
: : : : : : : : : : : : : : : : : : : : : : Grundlagen der Informatik Übungen 1.Termin Dipl.-Phys. Christoph Niethammer Grundlagen der Informatik 2012 1 : : : : : : : : : : : : : : : : : : : : : : Kontakt
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der
V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,
Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen
Black Box erklärt Zahlensysteme.
Black Box erklärt Zahlensysteme. Jeder von uns benutzt aktiv mindestens zwei Zahlenssysteme, oftmals aber so selbstverständlich, dass viele aus dem Stegreif keines mit Namen nennen können. Im europäischen
Analysis I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. M. Hinze Dr. P. Kiani Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 2 Aufgabe 1: (12 Punkte) a) Beweisen
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler
Zahlensysteme. von Christian Bartl
von Inhaltsverzeichnis Inhaltsverzeichnis... 2 1. Einleitung... 3 2. Umrechnungen... 3 2.1. Dezimalsystem Binärsystem... 3 2.2. Binärsystem Dezimalsystem... 3 2.3. Binärsystem Hexadezimalsystem... 3 2.4.
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens
Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................
Einführung in die Programmierung
Name, Vorname Matrikelnummer Probeklausur zur Vorlesung Einführung in die Programmierung WS 2008/09 Dauer: 2 Stunden Hinweise: Schreiben Sie Ihren Namen und Ihre Matrikelnummer auf dieses Deckblatt und
a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:
Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend
Theoretische Grundlagen der Informatik WS 09/10
Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3
Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden.
Multiplikation Die schriftliche Multiplikation ist etwas schwieriger als die Addition. Zum einen setzt sie das kleine Einmaleins voraus, zum anderen sind die Überträge, die zu merken sind und häufig in
Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16. Vorbereitende Aufgaben. Präsenzaufgaben
Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16 Fakultät für Informatik Lehrstuhl 14 Lars Hildebrand, Marcel Preuß, Iman Kamehkhosh, Marc Bury, Diana Howey Übungsblatt
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in
Professionelle Seminare im Bereich MS-Office
Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion
Grundlagen der Informatik Übungen 1. Termin Zahlensysteme
Grundlagen der Informatik Übungen 1. Termin Zahlensysteme M. Sc. Yevgen Dorozhko [email protected] Kurzvorstellung M. Sc. Yevgen Dorozhko Ausbildung: 2008: M. Sc. Systemprogrammieren, Nationale technische
2 Einfache Rechnungen
2 Einfache Rechnungen 2.1 Zahlen Computer, auch bekannt als Rechner, sind sinnvoller eingesetzt, wenn sie nicht nur feste Texte ausgeben, sondern eben auch rechnen. Um das Rechnen mit Zahlen zu verstehen,
2.0 Zahlendarstellung, Konvertierungsalgorithmen und arithmetische Algorithmen
2.0 Zahlendarstellung, Konvertierungsalgorithmen und arithmetische Algorithmen Ziele dieses Kapitels Kennenlernen wesentlicher Zahlensysteme und die Konvertierung von Zahlen zwischen unterschiedlichen
Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung
Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer Programmiertechnik Zahlensysteme und Datendarstellung Zahlensysteme Problem: Wie stellt man (große) Zahlen einfach, platzsparend und rechnergeeignet
3 Zahlensysteme in der Digitaltechnik
3 Zahlensysteme in der Digitaltechnik System Dezimal Hexadezimal Binär Oktal Basis, Radix 10 16 2 8 Zahlenwerte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 0 1 10 11 100
Informationsdarstellung im Rechner
Informationsdarstellung im Rechner Dr. Christian Herta 15. Oktober 2005 Einführung in die Informatik - Darstellung von Information im Computer Dr. Christian Herta Darstellung von Information im Computer
Mikro-Controller-Pass 1
Seite: 1 Zahlensysteme im Selbststudium Inhaltsverzeichnis Vorwort Seite 3 Aufbau des dezimalen Zahlensystems Seite 4 Aufbau des dualen Zahlensystems Seite 4 Aufbau des oktalen Zahlensystems Seite 5 Aufbau
Also kann nur A ist roter Südler und B ist grüner Nordler gelten.
Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf
Lineare Gleichungssysteme
Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen
Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster
Es gibt in Excel unter anderem die so genannten Suchfunktionen / Matrixfunktionen Damit können Sie Werte innerhalb eines bestimmten Bereichs suchen. Als Beispiel möchte ich die Funktion Sverweis zeigen.
Mikro-Controller-Pass 1
MikroControllerPass Lernsysteme MC 805 Seite: (Selbststudium) Inhaltsverzeichnis Vorwort Seite 2 Addition Seite 3 Subtraktion Seite 4 Subtraktion durch Addition der Komplemente Dezimales Zahlensystem:Neunerkomplement
XONTRO Newsletter. Makler. Nr. 16
XONTRO Newsletter Makler Nr. 16 Seite 1 In XONTRO werden zum 24. Januar 2005 folgende Änderungen eingeführt: Inflationsindexierte Anleihen Stückzinsberechnung für französische und italienische Staatsanleihen
