3 Zahlensysteme in der Digitaltechnik
|
|
|
- Rudolph Flater
- vor 10 Jahren
- Abrufe
Transkript
1 3 Zahlensysteme in der Digitaltechnik System Dezimal Hexadezimal Binär Oktal Basis, Radix Zahlenwerte A B C D E F DIGITALTECHNIK 3-1
2 3.1 Stellenwertsysteme Grundprinzip: Summe von Produkten: D = Σ d j R j Dezimalzahl: D Radix des Zahlensystems der Quellenzahl: R Ziffer der Stelle j: d j Stellenwertindex: j Index der höchstwertigen Stelle (MSD): m - 1 Index der niederwertigsten Stelle (LSD): -k Anzahl unterschiedlicher Ziffern d j : R Grösste Ziffer d jmax : R 1 Anzahl von Summationselementen links vom Komma: m Anzahl von Summationselementen rechts vom Komma: k Gewicht des Stellenwertes R j DIGITALTECHNIK 3-2
3 3.2 Konversion von Zahlen unterschiedlicher Stellenwertsysteme Problem: Wie lässt sich die gegebene Dezimalzahl D in ein anderes Stellenwertsystem mit der Radix R umrechnen? Aufspaltung in ganzzahligen Anteil und Bruchteil: D = Σ r j R j = Σ r j R j + Σ r -j R -j = D 1 + D 2 Teilsumme links vom Komma (Ganzzahliger Teil): D 1 = Σ r j R j Teilsumme rechts vom Komma (Bruchteil): D 2 = Σ r -j R -j Umformung der Potenzdarstellung von D in eine Produktdarstellung mit der Radix R als Multiplikator (bzw. dem Kehrwert der Radix 1/R als Multiplikator) D 1 = (... ((r m-1 R + r m-2 )R + r m-3 )R +... r 1 )R + r 0 D 2 = ( (... (r -k /R + r -k+1 )/R r -2 )/R + r -1 )/R Nachfolgend werden die Anteile D1 und D2 unterschiedlich behandelt. DIGITALTECHNIK 3-3
4 Konversionsschema (I) 1. Schritt: Die Produktdarstellung zeigt, dass wir die unbekannten Ziffern r j durch Division des Ganzzahlanteils durch die Radix des Zielsystems erhalten: D 1 /R = Q 0 + r 0 Ganzzahlergebnis der Division: Q 0 Der Divisionsrest ist die Ziffer der niederwertigsten Stelle: r 0 2. Schritt: Wir wiederholen die Division (m-1) mal bis der Ganzzahlanteil Null wird und der Divisionsrest übrig bleibt: Q 0 /R = Q 1 + r 1 Q 1 /R = Q 2 + r 2.. Q m-1 /R = r m-1 3. Schritt: Das Ergebnis des konvertierten Ganzzahlanteils R 1 mit den bekannten r j kann geschrieben werden als: D 1 = R 1 = r m-1 R m-1 + r m-2 R m r 0 DIGITALTECHNIK 3-4
5 Konversionsschema (II) 4. Schritt: Der Bruchteil D 2 muss mit der Radix R multipliziert werden, um das r j zu isolieren. Das Produkt enthält zwei Komponenten: Den Bruchanteil FP -2 und den ganzzahligen Anteil r -1 D 2 * R = FP -2 + r Schritt: Die Anzahl (k-1) der gleichartigen Wiederholungen ist gegeben durch die Genauigkeit, mit der der Bruchteil D2 (des Quellahlensystems) durch den Bruchanteil R 2 des Zielzahlensystems angenähert werden soll. Die Ergebnisse müssen von unten nach oben gelesen werden, womit sich die Ziffern r j vom LSD bis hinauf zum MSD ergeben: FP -2 * R = FP -3 + r -2 FP -3 * R = FP -4 + r -3.. FP -(k+2) * R = FP -(k+1) + r -k 6. Schritt: Das Ergebnis des Bruchteils R 2 mit den bekannten r j kann demnach geschrieben werden als: D 2 = R 2 = r -1 R -1 + r -2 R r -(k+1) R -(k+1) + r -k + FP -(k+1) DIGITALTECHNIK 3-5
6 Umwandlung der Dezimalzahl in das Dual und Hexadezimalsystem (aus [3]) Ganzzahliger Anteil: Nachkommaanteil: DIGITALTECHNIK 3-6
7 Rückwandlung der Binärzahl , bzw. der Hex-Zahl BE,3D (aus [1]) Ganzzahliger Anteil: Nachkommaanteil: DIGITALTECHNIK 3-7
8 Spezielle Umwandlungen n Stellen einer Zahl mit der Radix R A können zusammengefasst werden und bedeuten eine Stelle einer Zahl mit der Radix R B (n > 0, integer). Beispiele: n = 4, R A = 2, R B = 16: Binär Hexadezial Konversion Binär R A : Hexadezimal R B : n = 3, R A = 2, R B = 8: Binär Oktal Konversion Binär R A : Oktal R B : n = 4, R A = 16, R B = 2: Hexadezimal Binär Konversion Hexadezimal R A : AFFE. 123 Binär R B : DIGITALTECHNIK 3-8
9 3.3 Addition und Subtraktion von Binärzahlen Digitale Systeme arbeiten in Binärzahlendarstellung, daher müssen Regeln zur Durchführung arithmetischer Operationen definiert werden. Nach Umwandlung in das Dezimalsystem müssen sich gleichwertige Ergebnisse ergeben. Additionsregeln: = 0; = 1; = 1; = 0 mit einem Carry Bit (Übertragsbit) in die nächst höhere Position! Beispiele: Carry Bits Carry Bits Subtraktionsregeln: 0 0 = 0; 1 0 = 1; 1 1 = 0; 0 1 = 1 mit einem Borrow Bit (Ausleihbit) aus der nächst höheren Position! Beispiele : Borrow Bits Borrow Bits DIGITALTECHNIK 3-9
Grundlagen der Informatik
Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................
Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10
Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist
Mikro-Controller-Pass 1
Seite: 1 Zahlensysteme im Selbststudium Inhaltsverzeichnis Vorwort Seite 3 Aufbau des dezimalen Zahlensystems Seite 4 Aufbau des dualen Zahlensystems Seite 4 Aufbau des oktalen Zahlensystems Seite 5 Aufbau
1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:
Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der
Zahlensysteme Das 10er-System
Zahlensysteme Übungsblatt für die entfallende Stunde am 22.10.2010. Das 10er-System... 1 Umrechnung in das 10er-System... 2 2er-System... 2 8er-System... 2 16er-System... 3 Umrechnung in andere Zahlensysteme...
Black Box erklärt Zahlensysteme.
Black Box erklärt Zahlensysteme. Jeder von uns benutzt aktiv mindestens zwei Zahlenssysteme, oftmals aber so selbstverständlich, dass viele aus dem Stegreif keines mit Namen nennen können. Im europäischen
BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de
BSZ für Elektrotechnik Dresden Zahlenformate Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de Gliederung 1 Überblick 2 Grundaufbau der Zahlensysteme 2.1 Dezimalzahlen 2.2 Binärzahlen = Dualzahlen
Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird.
Zahlensysteme Definition: Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. In der Informatik spricht man auch von Stellenwertsystem,
Daten verarbeiten. Binärzahlen
Daten verarbeiten Binärzahlen In Digitalrechnern werden (fast) ausschließlich nur Binärzahlen eingesetzt. Das Binärzahlensystem ist das Stellenwertsystem mit der geringsten Anzahl von Ziffern. Es kennt
Einführung in die Informatik I
Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik
Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1
Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 vorzeichenlose Zahl: 15 vorzeichenlose Zahl: 18 vorzeichenlose Zahl: 13 Zweierkomplement: - 1
Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär
Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten
Zahlensysteme. von Christian Bartl
von Inhaltsverzeichnis Inhaltsverzeichnis... 2 1. Einleitung... 3 2. Umrechnungen... 3 2.1. Dezimalsystem Binärsystem... 3 2.2. Binärsystem Dezimalsystem... 3 2.3. Binärsystem Hexadezimalsystem... 3 2.4.
4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04
4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04 JOACHIM VON ZUR GATHEN, OLAF MÜLLER, MICHAEL NÜSKEN Abgabe bis Freitag, 14. November 2003, 11 11 in den jeweils richtigen grünen oder roten Kasten
1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement
Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im
Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme
Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik
Lösung 1. Übungsblatt
Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung
Grundlagen der Informatik Übungen 1.Termin
: : : : : : : : : : : : : : : : : : : : : : Grundlagen der Informatik Übungen 1.Termin Dipl.-Phys. Christoph Niethammer Grundlagen der Informatik 2012 1 : : : : : : : : : : : : : : : : : : : : : : Kontakt
Einführung in die Programmierung
Technische Universität Carolo Wilhelmina zu Brauschweig Institut für rechnergestützte Modellierung im Bauingenierwesen Prof. Dr.-Ing. habil. Manfred Krafczyk Pockelsstraße 3, 38106 Braunschweig http://www.irmb.tu-bs.de
Technische Informatik - Eine Einführung
Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine
Information in einem Computer ist ein
4 Arithmetik Die in den vorhergehenden Kapiteln vorgestellten Schaltungen haben ausschließlich einfache, Boole sche Signale verarbeitet. In diesem Kapitel wird nun erklärt, wie Prozessoren mit Zahlen umgehen.
Grundlagen der Informatik Übungen 1. Termin Zahlensysteme
Grundlagen der Informatik Übungen 1. Termin Zahlensysteme M. Sc. Yevgen Dorozhko [email protected] Kurzvorstellung M. Sc. Yevgen Dorozhko Ausbildung: 2008: M. Sc. Systemprogrammieren, Nationale technische
Zahlendarstellungen und Rechnerarithmetik*
Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien
Zahlensysteme: Oktal- und Hexadezimalsystem
20 Brückenkurs Die gebräuchlichste Bitfolge umfasst 8 Bits, sie deckt also 2 8 =256 Möglichkeiten ab, und wird ein Byte genannt. Zwei Bytes, also 16 Bits, bilden ein Wort, und 4 Bytes, also 32 Bits, formen
Binär- und Hexadezimal-Zahl Arithmetik.
Binär- und Hexadezimal-Zahl Arithmetik. Prof. Dr. Dörte Haftendorn, MuPAD 4, http://haftendorn.uni-lueneburg.de Aug.06 Automatische Übersetzung aus MuPAD 3.11, 24.04.02 Version vom 12.10.05 Web: http://haftendorn.uni-lueneburg.de
Zahlensysteme Seite -1- Zahlensysteme
Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4
Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen
Großübung 1: Zahlensysteme Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Lehrender: Dr. Klaus Richter, Institut für Informatik; E-Mail: [email protected]
Zahlensysteme. Zahl 0 0 0 0 0 5 5. Stellenwert Zahl 0 0 0 0 0 50 5. Zahl = 55 +50 +5
Personal Computer in Betrieb nehmen 1/6 Weltweit setzen die Menschen alltäglich das Zehnersystem für Zählen und Rechnen ein. Die ursprüngliche Orientierung stammt vom Zählen mit unseren 10 Fingern. Für
Im Original veränderbare Word-Dateien
Binärsystem Im Original veränderbare Word-Dateien Prinzipien der Datenverarbeitung Wie du weißt, führen wir normalerweise Berechnungen mit dem Dezimalsystem durch. Das Dezimalsystem verwendet die Grundzahl
Übung zur Wirtschaftsinformatik I. Zahlensysteme / Codierung
WS 06/07 Thema 4: Zahlensysteme / Codierung 1 Übung zur Winfo I - Themenplan - Informationsverarbeitung in Unternehmen Tabellenkalkulation Anwendungen PC-Komponenten Zahlensysteme / Codierung Boole sche
Kapitel 2. Zahlensysteme, Darstellung von Informationen
Kapitel 2 Zahlensysteme, Darstellung von Informationen 1 , Darstellung von Informationen Ein Computer speichert und verarbeitet mehr oder weniger große Informationsmengen, je nach Anwendung und Leistungsfähigkeit.
Modul 114. Zahlensysteme
Modul 114 Modulbezeichnung: Modul 114 Kompetenzfeld: Codierungs-, Kompressions- und Verschlüsselungsverfahren einsetzen 1. Codierungen von Daten situationsbezogen auswählen und einsetzen. Aufzeigen, welche
Die Zahlensysteme. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.
Die Zahlensysteme Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de 1 Einführung Seite 1 2 Das Umrechnen von Zahlen aus unterschiedlichen
Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192.
Binäres und dezimales Zahlensystem Ziel In diesem ersten Schritt geht es darum, die grundlegende Umrechnung aus dem Dezimalsystem in das Binärsystem zu verstehen. Zusätzlich wird auch die andere Richtung,
3 Rechnen und Schaltnetze
3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s
Das Rechnermodell - Funktion
Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze
DIGITALTECHNIK 02 ZAHLENSYSTEME
Seite 1 von 15 DIGITALTECHNIK 02 ZAHLENSYSTEME Inhalt Seite 2 von 15 1 ALLGEMEINES ZU ZAHLENSYSTEMEN... 3 1.1 ZAHLENSYSTEME... 3 1.2 KENNZEICHEN VON ZAHLENSYSTEMEN... 4 1.3 BILDUNGSGESETZE... 4 1.4 STELLENWERTSYSTEM...
Grundlagen der Technischen Informatik. 4. Übung
Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Polyadische Zahlensysteme Gleitkomma-Arithmetik 4.
Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung
Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000
Das Maschinenmodell Datenrepräsentation
Das Maschinenmodell Datenrepräsentation Darstellung von Zahlen/Zeichen in der Maschine Bit (0/1) ist die kleinste Informationseinheit Größere Einheiten durch Zusammenfassen mehrerer Bits, z.b. 8 Bit =
Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2
Leseprobe Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-4331- Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4331-
Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16. Vorbereitende Aufgaben. Präsenzaufgaben
Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16 Fakultät für Informatik Lehrstuhl 14 Lars Hildebrand, Marcel Preuß, Iman Kamehkhosh, Marc Bury, Diana Howey Übungsblatt
Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 18
Kapitel 3 Datentypen und Variablen Seite 1 von 18 Datentypen - Einführung - Für jede Variable muss ein Datentyp festgelegt werden. - Hierdurch werden die Wertemenge und die verwendbaren Operatoren festgelegt.
2. Negative Dualzahlen darstellen
2.1 Subtraktion von Dualzahlen 2.1.1 Direkte Subtraktion (Tafelrechnung) siehe ARCOR T0IF Nachteil dieser Methode: Diese Form der Subtraktion kann nur sehr schwer von einer Elektronik (CPU) durchgeführt
Kapitel 4A: Einschub - Binärcodierung elementarer Datentypen. Einschub: Teile aus Kapitel 2 in Küchlin/Weber: Einführung in die Informatik
Einschub: Binärcodierung elementarer Datentypen Teile aus Kapitel 2 in Küchlin/Weber: Einführung in die Informatik Unterscheide Zahl-Wert Zahl-Bezeichner Zu ein- und demselben Zahl-Wert kann es verschiedene
Infocode. Auswertung von Systemmeldungen
Infocode Auswertung von Systemmeldungen Allgemeines... 3 Umrechnung... 4 Heizkostenverteiler 200-bx/200wx... 4 Splitrechenwerk 235-mmx... 5 Inhalt 2 Infocode Hexadezimale Darstellung des Infocodes Die
Mikro-Controller-Pass 1
MikroControllerPass Lernsysteme MC 805 Seite: (Selbststudium) Inhaltsverzeichnis Vorwort Seite 2 Addition Seite 3 Subtraktion Seite 4 Subtraktion durch Addition der Komplemente Dezimales Zahlensystem:Neunerkomplement
Alexander Halles. Zahlensysteme
Stand: 26.01.2004 - Inhalt - 1. Die verschiedenen und Umwandlungen zwischen diesen 3 1.1 Dezimalzahlensystem 3 1.2 Das Dualzahlensystem 4 1.2.1 Umwandlung einer Dezimalzahl in eine Dualzahl 4 1.2.2 Umwandlung
21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?
Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen
FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10
FB ET/IT Binäre Rechenoperationen WS 9/ Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbst erstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen
Binärdarstellung von Fliesskommazahlen
Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M
a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127.
Übung 2, Aufgabe 4) a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127. 1,125 in IEEE 754 (32Bit) 0,125 2 = 0,25 0,25 2 = 0,5 0,5 2 = 1 1,125 10 = 1,001 2 Da die Zahl bereits
Programmierung mit NQC: Kommunikation zwischen zwei RCX
Programmierung mit NQC: Kommunikation zwischen zwei RCX Teil : Grundlagen Martin Schmidt 7. Februar 24 Teil : Grundlagen Zahlensysteme : Binärsystem Ziffern: und Bit = binary digit (Binärziffer) Einfach
Repräsentation von Daten Binärcodierung ganzer Zahlen
Kapitel 3: Repräsentation von Daten Binärcodierung ganzer Zahlen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Repräsentation von Daten im Computer (dieses und nächstes
Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1
Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg
Informationsdarstellung im Rechner
Informationsdarstellung im Rechner Dr. Christian Herta 15. Oktober 2005 Einführung in die Informatik - Darstellung von Information im Computer Dr. Christian Herta Darstellung von Information im Computer
FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 11/12
FB ET/IT Binäre Rechenoperationen WS /2 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbsterstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen
Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik
Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren,
Theoretische Informatik SS 04 Übung 1
Theoretische Informatik SS 04 Übung 1 Aufgabe 1 Es gibt verschiedene Möglichkeiten, eine natürliche Zahl n zu codieren. In der unären Codierung hat man nur ein Alphabet mit einem Zeichen - sagen wir die
N Bit binäre Zahlen (signed)
N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101
BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?
BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert
Übungsaufgaben. - Vorgehensweise entsprechend dem Algorithmus der schriftlichen Multiplikation
Übungsaufgaben Anmerkung Allen Beispielen soll noch hinzugefügt sein, dass wertvolle Hinweise, also die Tipps und Tricks die der schnellen maschinellen Multiplikation zu Grunde liegen, neben dem toff zur
Binäre Gleitkommazahlen
Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72
Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1
Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2013/2014 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg
Grundlagen der Informatik (BSc) Übung Nr. 5
Übung Nr. 5: Zahlensysteme und ihre Anwendung Bitte kreuzen Sie in der folgenden Auflistung alle Zahlensysteme an, zu welchen jeder Ausdruck als Zahl gehören kann! (Verwenden Sie 'x für Wahl, ' ' für Ausschluß
Zur Universalität der Informatik. Gott ist ein Informatiker. Die Grundordnung der Welt läßt sich mathematisch formulieren:
Daten und ihre Codierung Seite: 1 Zur Universalität der Informatik Gott ist ein Informatiker Die Grundordnung der Welt läßt sich mathematisch formulieren: Naturgesetze, wie wir sie in der Physik, Chemie
Übung RA, Kapitel 1.2
Übung RA, Kapitel 1.2 Teil 1: Zahlen und Logik A) Aufgaben zu den ganzen Zahlen 1. Konvertieren Sie die folgenden Zahlen in die Binärform: 1984 Immer durch 2 teilen, der Rest ergibt das Bit. Jeweils mit
Leitung 1 Leitung 2 0 0 0 1 1 0 1 1
1 1 Vorbetrachtungen Wie könnte eine Codierung von Zeichen im Computer realisiert werden? Der Computer arbeitet mit elektrischem Strom, d. h. er kann lediglich zwischen den beiden Zuständen Strom an und
Zahlensysteme Dezimal-System
Zahlensysteme Dezimal-System Zahlenvorrat: 0,1,2,3,4,5,6,7,8,9 Mögliche unterschiedliche Zeichen pro Stelle:10 Basis: 10 Kennzeichnung: Index 10 oder D (dezimal) Wertigkeit 10 5 10 4 10 3 10 2 10 1 10
Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung
Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer Programmiertechnik Zahlensysteme und Datendarstellung Zahlensysteme Problem: Wie stellt man (große) Zahlen einfach, platzsparend und rechnergeeignet
Binär Codierte Dezimalzahlen (BCD-Code)
http://www.reiner-tolksdorf.de/tab/bcd_code.html Hier geht es zur Startseite der Homepage Binär Codierte Dezimalzahlen (BCD-) zum 8-4-2-1- zum Aiken- zum Exeß-3- zum Gray- zum 2-4-2-1- 57 zum 2-4-2-1-
1Computergrundlagen = 1*16 + 0*8 + 1*4 + 1*2 + 0*1
Kapitel 1 1Computergrundlagen Zusammenfassung des Stoffes In diesem Kapitel haben Sie die Komponenten eines Computers und die Rolle von Computern in Netzwerken kennen gelernt. Wir stellten insbesondere
Teil II. Schaltfunktionen
Teil II Schaltfunktionen 1 Teil II.1 Zahlendarstellung 2 b-adische Systeme Sei b IN mit b > 1 und E b = {0, 1,..., b 1} (Alphabet). Dann ist jede Fixpunktzahl z (mit n Vorkomma und k Nachkommastellen)
Aufgabensammlung Bruchrechnen
Aufgabensammlung Bruchrechnen Inhaltsverzeichnis Bruchrechnung. Kürzen und Erweitern.................................. 4. Addition von Brüchen................................... Multiplikation von Brüchen...............................
1. Stellenwerte im Dualsystem
1. a) Definitionen Stellenwertsystem Ein Zahlensystem bei dem der Wert einer Ziffer innerhalb einer Ziffernfolge von ihrer Stelle abhängt, wird Stellenwertsystem genannt. Die Stellenwerte sind also ganzzahlige
Englische Division. ... und allgemeine Hinweise
Das folgende Verfahren ist rechnerisch identisch mit dem Normalverfahren; es unterscheidet sich nur in der Schreibweise des Rechenschemas Alle Tipps und Anmerkungen, die über die Besonderheiten dieser
Technische Informatik Basispraktikum Sommersemester 2001
Technische Informatik Basispraktikum Sommersemester 2001 Protokoll zum Versuchstag 4 Datum: 21.6.2001 Gruppe: David Eißler/ Autor: Verwendete Messgeräte: - digitales Experimentierboard (EB6) - Netzgerät
Übungen zu Informatik 1
Communication Systems Group (CSG) Prof. Dr. Burkhard Stiller, Universität Zürich, Binzmühlestrasse 14, CH-8050 Zürich Telefon: +41 44 635 6710, Fax: +41 44 635 6809, [email protected] Fabio Hecht, Telefon:
Inhaltsverzeichnis. Inhalt. 1 Einleitung
Inhalt 3 Inhaltsverzeichnis 1 Einleitung 1.1 Digitale und analoge Signale... 9 1.2 Digitale Darstellung... 12 1.3 Datenübertragung... 14 1.4 Aufgaben digitaler Schaltungen... 17 1.5 Geschichte der Digitalrechner...
Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS
Gleit komma zahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen wird eine große Dynamik benötigt: sowohl sehr kleine als auch sehr große Zahlen sollen einheitlich dargestellt
5. Übung: Binäres Rechnen und Fließkommazahlen Abteilung Verteilte Systeme, Universität Ulm
5. Übung: Binäres Rechnen und Fließkommazahlen Aufgabe 1: Binäres Rechnen a) Berechnen Sie: x = 01100101b*(0101101b-10110100b)+10101b. Alle Zahlen sind 8 Bit breit und in Zweierkomplement-Notation angegeben.
Aufgaben zu Stellenwertsystemen
Aufgaben zu Stellenwertsystemen Aufgabe 1 a) Zähle im Dualsystem von 1 bis 16! b) Die Zahl 32 wird durch (100000) 2 dargestellt. Zähle im Dualsystem von 33 bis 48! Zähle schriftlich! Aufgabe 2 Wandle die
1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104
1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104 zu erhalten? Probe! 3) Von zwei Zahlen ist die eine
Numerisches Programmieren, Übungen
Technische Universität München SoSe 0 Institut für Informatik Prof Dr Thomas Huckle Dipl-Math Jürgen Bräckle Nikola Tchipev, MSc Numerisches Programmieren, Übungen Musterlösung Übungsblatt: Zahlendarstellung,
Zahlen im Computer (Klasse 7 Aufbaukurs Informatik)
Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Die Bildauswahl erfolgte in Anlehnung an das Alter der Kinder Prof. J. Walter Bitte römische Zahlen im Geschichtsunterricht! Messsystem mit Mikrocontroller
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN
ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden
2 Darstellung von Zahlen und Zeichen
2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f
Einführung in die Informatik Inf, SAT
Einführung in die Informatik Inf, SAT Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik [email protected] http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659
Grundlagen der Technischen Informatik. 3. Übung
Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Zahlendarstellungen
2.0 Zahlendarstellung, Konvertierungsalgorithmen und arithmetische Algorithmen
2.0 Zahlendarstellung, Konvertierungsalgorithmen und arithmetische Algorithmen Ziele dieses Kapitels Kennenlernen wesentlicher Zahlensysteme und die Konvertierung von Zahlen zwischen unterschiedlichen
Einführung in die Informatik Inf, SAT
Einführung in die Informatik Inf, SAT Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik [email protected] http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659
Die Subnetzmaske/Netzwerkmaske
Die Subnetzmaske/Netzwerkmaske Die Subnetzmaske (auch Netzwerkmaske genannt) ist eine mehrstellige Binärzahl (Bitmaske), die in einem Netzwerk eine IP-Adresse in eine Netzadresse und eine Geräteadresse
Grundlagen der Informatik
Grundlagen der Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik [email protected] http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659 338 FB Automatisierung
Langenscheidt Training plus, Mathe 6. Klasse
Langenscheidt Training plus - Mathe Langenscheidt Training plus, Mathe 6. Klasse Bearbeitet von Uwe Fricke 1. Auflage 13. Taschenbuch. ca. 128 S. Paperback ISBN 978 3 68 60073 9 Format (B x L): 17,1 x
Gussnummern-Lesesystem
Gussnummern-Lesesystem Die Einzigartigkeit des visolution-systems liegt in der Verwendung von 3D- Bildverarbeitung. Bei dem Erstellen von Nummern auf Gussteilen kann die Qualität der Gussnummern sowohl
Zahlen und Zeichen (1)
Zahlen und Zeichen () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis
Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen
Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen Technische Informatik Versuch 2 Julian Bergmann, Dennis Getzkow 8. Juni 203 Versuch 2 Einführung Im Versuch 2 sollte sich mit
Grundlagen der Technischen Informatik. 3. Übung
Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Zahlendarstellungen
Grundlagen der Informatik I. Übung
Grundlagen der Informatik I Übung Studiengang Wirtschaftsingenieurwesen Wintersemester 1/13 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich Informatik/Mathematik Friedrich-List-Platz
Daten, Informationen, Kodierung. Binärkodierung
Binärkodierung Besondere Bedeutung der Binärkodierung in der Informatik Abbildung auf Alphabet mit zwei Zeichen, in der Regel B = {0, 1} Entspricht den zwei möglichen Schaltzuständen in der Elektronik:
