Rechnerstrukturen WS 2012/13
|
|
|
- Walter Heinrich
- vor 10 Jahren
- Abrufe
Transkript
1 Rechnerstrukturen WS 2012/13 Repräsentation von Daten Repräsentation natürlicher Zahlen (Wiederholung) Repräsentation von Texten Repräsentation ganzer Zahlen Repräsentation rationaler Zahlen Repräsentation anderer Daten Hinweis: Folien teilweise a. d. Basis von Materialien von Thomas Jansen 9. Oktober 2012 Rechnerstrukturen º» Repräsentation von Daten 1
2 b-adische Darstellung Eigenschaften Theorem Für jede Basis b N\{1} und jede natürliche Zahl n N lässt sich n eindeutig darstellen als n = n 0 b 0 +n 1 b 1 + +n l b l = l n i b i i=0 mit l N 0, n 0,n 1,...,n l {0,1,...,b 1} und n l > 0. Rechnerstrukturen º» Repräsentation von Daten 2
3 Umrechnung Basis 10 Basis b Algorithmus 1 Eingabe Basis b N\{1}, Betragszahl n N Ausgabe Repräsentation (n l n l 1 n 1 n 0 ) b 1. l := 1 2. So lange n > 0 gilt 3. l := l n l := n b n/b 5. n := n/b b n l n n 1 B B B also = (97B3) 16 n n Rechnerstrukturen 3 º» Repräsentation von Daten
4 Umrechnung Basis 10 Basis b Algorithmus 1 Eingabe Basis b N\{1}, Betragszahl n N Ausgabe Repräsentation (n l n l 1 n 1 n 0 ) b 1. l := 1 2. So lange n > 0 gilt 3. l := l n l := n b n/b 5. n := n/b Definition Unter einem Algorithmus (auch Lösungsverfahren) versteht man eine genau definierte Handlungsvorschrift zur Lösung eines Problems oder einer bestimmten Art von Problemen in endlich vielen Schritten. Rechnerstrukturen º» Repräsentation von Daten 3 Quelle: Wikipedia
5 Repräsentation von Texten Wir können alles aufschreiben. Repräsentation von Texten zentral naiver Ansatz Codierung A 0, B 1,... und dann Binärcodierung Probleme Welche Zeichen sollen codiert werden? Wie kann man Daten mit anderen austauschen? Lösung Standards Rechnerstrukturen º» Repräsentation von Daten 4
6 ASCII American Standard Code for Information Interchange verabschiedet 1963 von der American Standards Organization (ASO) 7 Bit Code für die USA gedacht codiert Zeichen und Steuercodes Rechnerstrukturen º» Repräsentation von Daten 5
7 ASCII NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI DLE DC1 XON DC3 XOF NAK SYN ETB CAN EM SUB ESC FS GS RS US ! # $ % & ( ) +, -. / : ; < = >? A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] a b c d e f g h i j k l m n o p q r s t u v w x y z { } DEL Rechnerstrukturen º» Repräsentation von Daten 6
8 ASCII Problem viele wichtige Zeichen fehlen Lösung längere Codierung, Code erweitern Anmerkung Erweitern ist besser als ersetzen. bekannteste Erweiterung hier ISO auch ISO Latin 1 genannt Rechnerstrukturen º» Repräsentation von Daten 7
9 ISO (ISO Latin 1) International Organization for Standardization (gegründet 1947) ISO Latin 1 8 Bit Code (8 Bits nennt man 1 Byte) enthält viele Sonderzeichen für westeuropäische Sprachen (z. B. Umlaute (ä, ö, ü,...)) enthält nicht alle gewünschten Zeichen (z. B. e, japanische Schriftzeichen,...) Rechnerstrukturen º» Repräsentation von Daten 8
10 Unicode aktueller Standard Unicode 6.2 (26. September 2012) verwaltet vom Unicode-Konsortium ( unterstützt verschiedene Codierungsformate (Unicode Transformation Format): UTF-8, UTF-16, UTF-32 mit 8, 16, 32 Bits längere Formate erweitern kürzere Formate vereinbart auch weitere Informationen (z. B. Schreibrichtung, Kombination von Zeichen (Codepoints)) Rechnerstrukturen º» Repräsentation von Daten 9
11 Repräsentation ganzer Zahlen Wunsch ganze Zahlen z Z repräsentieren können Vereinbarung feste Repräsentationslänge l Wie viele verschiedene Zahlen kann man so höchstens repräsentieren? l Positionen, jeweils 2 Möglichkeiten 2 l verschiedene Bitmuster der Länge l Wie Zahlenbereich verwenden positive und negative Zahlen unterscheiden? Rechnerstrukturen º» Repräsentation von Daten 10
12 Vorzeichenbetragsmethode erstes Bit Vorzeichen restliche Bits Betragszahl (Binärdarstellung) Vorzeichenbit s = 1 Vorzeichen negativ Begründung Zahl = ( 1)s Betragszahl kleinste darstellbare Zahl ( 2 l 1 1 ) größte darstellbare Zahl 2 l 1 1 Eigenschaften + symmetrisch + Vorzeichenwechsel einfach 0 nicht eindeutig Vergleich von Zahlen schwierig Rechnerstrukturen º» Repräsentation von Daten 11
13 Darstellung mit Bias (Exzessdarstellung) Wähle feste Verschiebung b (Bias). z wird als z + b dargestellt (Binärdarstellung) übliche Werte für Bias b = 2 l 1 oder b = 2 l 1 1 kleinste darstellbare Zahl b größte darstellbare Zahl 2 l 1 b Eigenschaften + 0 eindeutig + alle Codes ausgenutzt + Vergleich von Zahlen einfach + bei üblichem Bias erstes Bit vorzeichenbitanalog nicht symmetrisch Vorzeichenwechsel schwierig Rechnerstrukturen º» Repräsentation von Daten 12
14 Einerkomplementdarstellung nicht-negative Zahlen Binärdarstellung negative Zahlen Komplement der Binärdarstellung kleinste darstellbare Zahl ( 2 l 1 1 ) größte darstellbare Zahl 2 l 1 1 Eigenschaften + symmetrisch + erstes Bit wie Vorzeichenbit 0 nicht eindeutig Verschwendung eines Codes Vergleich von Zahlen schwierig Rechnerstrukturen º» Repräsentation von Daten 13
15 Zweierkomplementdarstellung nicht-negative Zahlen Binärdarstellung negative Zahlen (Komplement der Binärdarstellung)+1 kleinste darstellbare Zahl ( 2 l 1) größte darstellbare Zahl 2 l 1 1 Eigenschaften + 0 eindeutig repräsentiert + erstes Bit wie Vorzeichenbit + alle Codes ausgenutzt Vergleich von Zahlen schwierig üblichste Darstellung Rechnerstrukturen º» Repräsentation von Daten 14
16 Zweierkomplementdarstellung II Beachte: Ex. geschlossene Form zur Berechnung der im Zweierkomplement repräsentierten Zahl Theorem Ein Bitvektor a = (a n 1,...,a 0 ) repräsentiert bei einer Kodierung im Zweierkomplement die Zahl n 2 int(a) = a n 1 2 n 1 + a i 2 i i=0 Z.B.: int(1101) = { } = ( 3) 10 Rechnerstrukturen º» Repräsentation von Daten 15
17 Zweierkomplementdarstellung III Hinweis: Für die Zahlendarstellung im Zweierkomplement ergibt sich folgendes Zahlenrad 2er Komplement Ganzzahlen Bereichsüberschreitung negativ positiv Bereichsüberschreitung Rechnerstrukturen º» Repräsentation von Daten 16
18 Alles verstanden? haben l = 5, b = 2 l 1 = 2 4 = 16, z = Welche Zahl wird denn nun repräsentiert? Beobachtung Das hängt von der Darstellung ab. Vorzeichenbetragsdarstellung 1 }{{} 0010 }{{} Vorzeichen Betrag (0010) 2 = = 2 also ( 1) 1 2 = 2 Rechnerstrukturen º» Repräsentation von Daten 17
19 Alles verstanden? haben l = 5, b = 2 l 1 = 2 4 = 16, z = Welche Zahl wird denn nun repräsentiert? Beobachtung Das hängt von der Darstellung ab. Darstellung mit Bias b = 16 (Exzessdarstellung) (10010) 2 = = 2+16 = 18 also }{{} 18 }{{} 16 = 2 Zahl Bias Rechnerstrukturen º» Repräsentation von Daten 18
20 Alles verstanden? haben l = 5, b = 2 l 1 = 2 4 = 16, z = Welche Zahl wird denn nun repräsentiert? Beobachtung Das hängt von der Darstellung ab. Einerkomplementdarstellung erstes Bit 1, also negativ Komplement = (01101) 2 = = = 13 also 13 Rechnerstrukturen º» Repräsentation von Daten 19
21 Alles verstanden? haben l = 5, b = 2 l 1 = 2 4 = 16, z = Welche Zahl wird denn nun repräsentiert? Beobachtung Das hängt von der Darstellung ab. Zweierkomplementdarstellung erstes Bit 1, also negativ = Komplement = (01110) 2 = = = 14 also 14 Rechnerstrukturen º» Repräsentation von Daten 20
22 Beispielsammlung Darstellungen feste Länge l = 5, (2 l = 32, 2 l 1 = 16, 2 l 1 1 = 15) z VZ-Betrag Bias b = 16 Bias b = 15 1er-K. 2er-K Rechnerstrukturen º» Repräsentation von Daten 21
23 Repräsentation rationaler Zahlen Wunsch rationale Zahlen q Q repräsentieren können Vereinbarung feste Repräsentationslänge l Bits Idee wenn schon feste Darstellungslänge, dann auch feste Position des Kommas Beispiele l = 8, 3 Nachkommastellen 10, , , , , ,78 nicht darstellbar 12, nicht darstellbar, aber runden denkbar Rechnerstrukturen º» Repräsentation von Daten 22
24 Festkommazahlen klar Basis 10 für uns nicht brauchbar zum Glück Übertragung auf Basis 2 ganz einfach Beispiel = 16 = 8 = 4 = 2 = 1 = 0,5 = 0,25 = 0, , ,5 +0,125 = 22,625 allgemein bei v Vorkomma- und m Nachkommastellen z = v 1 z i 2 i i= m Rechnerstrukturen º» Repräsentation von Daten 23
25 Binärdarstellung rationaler Zahlen Beobachtung unabhängig von Darstellungslänge nicht alle Zahlen darstellbar Beispiel 0,2 nicht als binäre Festkommazahl darstellbar Beweis durch Widerspruch (Annahme Doch!) dann 0,2 = 1 5 = 1 also 1 5 also 5a = 2 m = i= m z i 2 i mit m N, z i {0,1} m m z j 2 j = 2 m z j 2 m j j=1 m 1 = 2 m k=0 Widerspruch j=1 z k m 2 k = a mit a,m N 2m mit k = m j Rechnerstrukturen º» Repräsentation von Daten 24
26 Ist die Binärdarstellung schlecht? Nein! Es gibt für jede Basis nicht darstellbare rationale Zahlen, die in anderen Basen darstellbar sind. Beispiel 1 3 = (0,1) 3, zur Basis 10 nicht darstellbar Ist Festkommadarstellung schlecht? jedenfalls unflexibel eher für spezielle Anwendungen geeignet Rechnerstrukturen º» Repräsentation von Daten 25
27 Gleitkommazahlen andere Idee Position des Kommas nach Bedarf z = ( 1) s m 10 e mit s {0,1}, e Z, m Q und 1 m < 10 Exponent e bestimmt Position des Kommas Mantisse m normalisierte Gleitkommazahlendarstellung Rechnerstrukturen º» Repräsentation von Daten 26
28 Gleitkommazahlen für uns besser Basis 2 z = ( 1) s m 2 e mit s {0,1}, e Z, m Q und 1 m < 2 Beobachtungen Mantisse hat immer erste Ziffer 1 0 ist so nicht darstellbar immer besser an Standards halten Rechnerstrukturen º» Repräsentation von Daten 27
29 IEEE Institute of Electrical & Electronics Engineers z = ( 1) s m 2 e mit s {0,1}, e Z, m Q und 1 m < 2 Festlegungen führende 1 der Mantisse wird nicht mit abgespeichert (heißt implizite Eins ) Mantisse in Binärcodierung (Festkommazahlen mit Ziffern ausschließlich hinter dem Komma) Exponent in Exzessdarstellung mit Bias b = 2 le 1 1 Rechnerstrukturen º» Repräsentation von Daten 28
30 IEEE feste Anzahlen von Bits Gesamtlänge Vorzeichen Exponent Mantisse Precision single double Hinweis: In IEEE auch 16/128 bit Binär- sowie 32/64 bit Dezimalformate Besonderheiten beim Exponenten Verkleinerung des zulässigen Bereichs um 1 auf beiden Seiten auf e min = b+1 = ( 2 le 1 1 ) +1, und e max = 2 le 1 b 1 = 2 le 1 1 dient der Codierung besonderer Zahlen Rechnerstrukturen º» Repräsentation von Daten 29
31 IEEE : ein Beispiel l = 32, l s = 1, l e = 8, l m = 23 b = = 127, e min = b +1 = 126, e max = 2 8 b 2 = 127 Wir wollen 3 darstellen. negativ, also Vorzeichenbit 1 Darstellung als Summe von Zweierpotenzen 3 = 2+1 = = ( ) 2 1 Exponent 1 Exzessdarstellung 1 + b = 128 darstellen 128 = ( ) 2 Mantisse 1,1, implizite Eins entfällt, also Ergebnis }{{} } {{ 0000} } {{ } VZ Exponent Mantisse Rechnerstrukturen º» Repräsentation von Daten 30
32 IEEE : noch ein Beispiel l = 32, l s = 1, l e = 8, l m = 23 b = = 127, e min = b +1 = 126, e max = 2 8 b 2 = 127 Wir wollen 0, darstellen. positiv, also Vorzeichenbit 0 Darstellung als Summe von Zweierpotenzen 0, = = = ( ) 2 5 Exponent 5 Exzessdarstellung 5 + b = 122 darstellen 122 = ( ) 2 Mantisse 1,11, implizite Eins entfällt, also Ergebnis }{{} } {{ 1010} } {{ } VZ Exponent Mantisse Rechnerstrukturen º» Repräsentation von Daten 31
33 IEEE : ein letztes Beispiel l = 32, l s = 1, l e = 8, l m = 23 b = = 127, e min = b +1 = 126, e max = 2 8 b 2 = 127 Wir haben }{{} } {{ 0001} } {{ } VZ Exponent Mantisse Vorzeichenbit 0, also positiv Exponent ( ) 2 = 177, stellt 177 b = = 50 dar Mantisse zuzüglich impliziter Eins 1, (1, ) 2 = also ( ) 2 50 = = Rechnerstrukturen º» Repräsentation von Daten 32
34 IEEE : Besondere Zahlen VZ Exponent Mantisse Zahl 0 e max e max +1 0 s e max +1 0 NaN 0 e min e min ( lm ) s e min 1 m 0 ( 1) s m i 2 i 2 e min i=1 NaN not a number Welches Bitmuster repräsentiert die Null? letzte Zeile denormalisierte Darstellung Rechnerstrukturen º» Repräsentation von Daten 33
35 Wozu denormalisierte Zahlen? klar noch kleinere Zahlen darstellbar Beispiel If x y Then z := 1/(x y) x = y = klar x y aber ohne denormalisierte Darstellung x y = 0 gerundet denormalisiert x y = : auf jeden Fall besser If x y 0 Then z := 1/(x y) Rechnerstrukturen º» Repräsentation von Daten 34
36 Repräsentation anderer Daten hier für uns interessant primitive Daten (von Hardware direkt unterstützt) zentral Programme in der Regel Bitmuster fester Länge (z.b. 4 Byte): Befehl, Operand Problem Was repräsentiert ein Byte im Speicher? kaum verwendet: Typbits Rechnerstrukturen º» Repräsentation von Daten 35
37 Repräsentation von Datenfolgen Speicher oft in Worten organisiert Wort ja nach Rechner 2 Bytes, 4 Bytes,... heterogene Daten hintereinander in den Speicher schreiben dabei manchmal Wortgrenzen beachten dann leere Zellen (Bytes) möglich homogene Daten Arrays Problem Wie erkennt man das Ende der Folge? feste Anzahl vereinbaren Länge am Anfang speichern spezielles Endezeichen verwenden Rechnerstrukturen º» Repräsentation von Daten 36
Rechnerstrukturen. Michael Engel und Peter Marwedel. Sommer TU Dortmund, Fakultät für Informatik
Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik Sommer 2014 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 10. April 2014 1/37 1 Repräsentation
Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 15/16
Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 15/16 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund [email protected] http://ls1-www.cs.tu-.de Übersicht
Binäre Gleitkommazahlen
Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72
Vertiefungsstoff zum Thema Darstellung von Zahlen
Vertiefungsstoff zum Thema Darstellung von Zahlen Addition von Zahlen in BCD-Kodierung Einerkomplementdarstellung von ganzen Zahlen Gleitpunktdarstellung nach dem IEEE-754-Standard 1 Rechnen mit BCD-codierten
Binärdarstellung von Fliesskommazahlen
Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M
2 Darstellung von Zahlen und Zeichen
2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f
in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen
Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen allgemeine Gleitkommazahl zur Basis r
Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen
Kapitel 4: Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Codierung von rationalen Zahlen Konvertierung
Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1
Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg
Zahlen und Zeichen (1)
Zahlen und Zeichen () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis
Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS
Gleit komma zahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen wird eine große Dynamik benötigt: sowohl sehr kleine als auch sehr große Zahlen sollen einheitlich dargestellt
Technische Informatik - Eine Einführung
Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine
Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik
Kapitel 1 Zahlendarstellung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Zahlensystemkonvertierung Motivation Jede nichtnegative Zahl z lässt
Computerarithmetik ( )
Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur
Binäre Division. Binäre Division (Forts.)
Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:
Programmieren in C Einführung
Programmieren in C Einführung Aufbau eines Programms Einfache Programme Datentypen und Vereinbarungen Das Entwicklungswerkzeug Seite Einfache Programme Kugeltank-Berechnung #include void main
Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung
Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer Programmiertechnik Zahlensysteme und Datendarstellung Zahlensysteme Problem: Wie stellt man (große) Zahlen einfach, platzsparend und rechnergeeignet
Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1
Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2013/2014 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg
Rechnerstrukturen, Teil 1
Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 18/19 Prof. Dr. Jian- Jia Chen Fakultät für Informatik Technische Universität Dortmund jian- [email protected] http://ls12- www.cs.tu-.de Übersicht 1. Organisatorisches
Das Rechnermodell - Funktion
Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze
Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10
Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist
Das Maschinenmodell Datenrepräsentation
Das Maschinenmodell Datenrepräsentation Darstellung von Zahlen/Zeichen in der Maschine Bit (0/1) ist die kleinste Informationseinheit Größere Einheiten durch Zusammenfassen mehrerer Bits, z.b. 8 Bit =
Rechnerstrukturen WS 2012/13
Rechnerstrukturen WS 2012/13 Repräsentation von Daten Repräsentation von Texten (Wiederholung) Repräsentation ganzer Zahlen (Wiederholung) Repräsentation rationaler Zahlen (Wiederholung) Repräsentation
0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet).
Aufgabe 0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). 1. i) Wie ist die Darstellung von 50 im Zweier =Komplement? ii) Wie ist die Darstellung von 62 im Einer =Komplement?
Inhalt: Binärsystem 7.Klasse - 1 -
Binärsystem 7.Klasse - 1 - Inhalt: Binärarithmetik... 2 Negative Zahlen... 2 Exzess-Darstellung 2 2er-Komplement-Darstellung ( two s complement number ) 2 Der Wertebereich vorzeichenbehafteter Zahlen:
a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127.
Übung 2, Aufgabe 4) a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127. 1,125 in IEEE 754 (32Bit) 0,125 2 = 0,25 0,25 2 = 0,5 0,5 2 = 1 1,125 10 = 1,001 2 Da die Zahl bereits
Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär
Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten
Einführung in die Informatik I
Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik
Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 18
Kapitel 3 Datentypen und Variablen Seite 1 von 18 Datentypen - Einführung - Für jede Variable muss ein Datentyp festgelegt werden. - Hierdurch werden die Wertemenge und die verwendbaren Operatoren festgelegt.
2. Negative Dualzahlen darstellen
2.1 Subtraktion von Dualzahlen 2.1.1 Direkte Subtraktion (Tafelrechnung) siehe ARCOR T0IF Nachteil dieser Methode: Diese Form der Subtraktion kann nur sehr schwer von einer Elektronik (CPU) durchgeführt
1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:
Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der
Grundlagen der Informatik
Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................
2 Rechnen auf einem Computer
2 Rechnen auf einem Computer 2.1 Binär, Dezimal und Hexadezimaldarstellung reeller Zahlen Jede positive reelle Zahl r besitzt eine Darstellung der Gestalt r = r n r n 1... r 1 r 0. r 1 r 2... (1) := (
Kapitel 3. Codierung von Text (ASCII-Code, Unicode)
Kapitel 3 Codierung von Text (ASCII-Code, Unicode) 1 Kapitel 3 Codierung von Text 1. Einleitung 2. ASCII-Code 3. Unicode 2 1. Einleitung Ein digitaler Rechner muss jede Information als eine Folge von 0
Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1
Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 vorzeichenlose Zahl: 15 vorzeichenlose Zahl: 18 vorzeichenlose Zahl: 13 Zweierkomplement: - 1
Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013
Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013 Im folgenden soll ein Überblick über die in Computersystemen bzw. Programmiersprachen verwendeten Zahlen inklusive ausgewählter Algorithmen (in
Informationsdarstellung im Rechner
Informationsdarstellung im Rechner Dr. Christian Herta 15. Oktober 2005 Einführung in die Informatik - Darstellung von Information im Computer Dr. Christian Herta Darstellung von Information im Computer
Übung zur Wirtschaftsinformatik I. Zahlensysteme / Codierung
WS 06/07 Thema 4: Zahlensysteme / Codierung 1 Übung zur Winfo I - Themenplan - Informationsverarbeitung in Unternehmen Tabellenkalkulation Anwendungen PC-Komponenten Zahlensysteme / Codierung Boole sche
Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc.
Fixpunktdarstellung Fixed-point numbers Bsp. Dezimaldarstellung Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc. Binärdarstellung
Rechnerstrukturen. Michael Engel und Peter Marwedel SS TU Dortmund, Fakultät für Informatik
Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik SS 2013 Hinweis: Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 15. April 2013 1 Repräsentation
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
Professionelle Seminare im Bereich MS-Office
Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion
Teil II. Schaltfunktionen
Teil II Schaltfunktionen 1 Teil II.1 Zahlendarstellung 2 b-adische Systeme Sei b IN mit b > 1 und E b = {0, 1,..., b 1} (Alphabet). Dann ist jede Fixpunktzahl z (mit n Vorkomma und k Nachkommastellen)
Zahlensysteme: Oktal- und Hexadezimalsystem
20 Brückenkurs Die gebräuchlichste Bitfolge umfasst 8 Bits, sie deckt also 2 8 =256 Möglichkeiten ab, und wird ein Byte genannt. Zwei Bytes, also 16 Bits, bilden ein Wort, und 4 Bytes, also 32 Bits, formen
Theoretische Informatik SS 04 Übung 1
Theoretische Informatik SS 04 Übung 1 Aufgabe 1 Es gibt verschiedene Möglichkeiten, eine natürliche Zahl n zu codieren. In der unären Codierung hat man nur ein Alphabet mit einem Zeichen - sagen wir die
BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?
BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert
183.580, WS2012 Übungsgruppen: Mo., 22.10.
VU Grundlagen digitaler Systeme Übung 2: Numerik, Boolesche Algebra 183.580, WS2012 Übungsgruppen: Mo., 22.10. Aufgabe 1: Binäre Gleitpunkt-Arithmetik Addition & Subtraktion Gegeben sind die Zahlen: A
Informatik I: Abschnitt 7
Informatik I: Abschnitt 7 Inhalt: 7. Interne Informationsdarstellung 7.1 Ganzzahlige Datentypen 7.2 Gleitkomma-Datentypen Die Folien basieren zum Teil auf einen Foliensatz von R. Großmann und T. Wiedemann
Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt
Technische Grundlagen der Informatik Kapitel 8 Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Kapitel 8: Themen Zahlensysteme - Dezimal - Binär Vorzeichen und Betrag Zweierkomplement Zahlen
Gliederung. Was ist der Unicode? Warum gibt es den Unicode? Wie funktioniert er? Wo ist mein Schriftzeichen? Kritische Stimmen
Unicode Gliederung Was ist der Unicode? Warum gibt es den Unicode? Wie funktioniert er? Wo ist mein Schriftzeichen? Kritische Stimmen Was ist der Unicode? ein Datensatz von Schriftzeichen wie viele andere
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
Wissenswertes über binäre Felder
Wissenswertes über binäre Felder Inhaltsverzeichnis Genauigkeit des PC-Taschenrechners 2 Genauigkeit des PC-Taschenrechners ab Windows 7 2 Ausgangspunkt 3 Binäres Feld ohne Vorzeichen-Definition 3 Binäres
21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?
Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
Darstellung von Informationen
Darstellung von Informationen Bit, Byte, Speicherzelle und rbeitsspeicher Boolesche Operationen, Gatter, Schaltkreis Bit Speicher (Flipflop) Binär- Hexadezimal und Dezimalzahlensystem, Umrechnungen Zweierkomplement
Organisatorisches. Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Was sind primitive Datentypen? Primitive Datentypen
Organisatorisches Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Tutorfragestunden (Start: Heute)
Übungen zu Informatik 1
Communication Systems Group (CSG) Prof. Dr. Burkhard Stiller, Universität Zürich, Binzmühlestrasse 14, CH-8050 Zürich Telefon: +41 44 635 6710, Fax: +41 44 635 6809, [email protected] Fabio Hecht, Telefon:
Zahlensysteme Seite -1- Zahlensysteme
Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4
Anzahl Pseudotedraden: Redundanz: Weitere Eigenschaften?
1. Aufgabe: Aiken-Code Erstellen Sie die Codetabelle für einen Aiken-Code. Dieser Code hat die Wertigkeit 2-4-2-1. Tipp:Es gibt hier mehrere Lösungen, wenn nicht die Bedingung Aiken-Code gegeben wäre.
Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung
Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000
Zahlendarstellungen und Rechnerarithmetik*
Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien
Kapitel 4A: Einschub - Binärcodierung elementarer Datentypen. Einschub: Teile aus Kapitel 2 in Küchlin/Weber: Einführung in die Informatik
Einschub: Binärcodierung elementarer Datentypen Teile aus Kapitel 2 in Küchlin/Weber: Einführung in die Informatik Unterscheide Zahl-Wert Zahl-Bezeichner Zu ein- und demselben Zahl-Wert kann es verschiedene
Grundlagen der Informatik (BSc) Übung Nr. 5
Übung Nr. 5: Zahlensysteme und ihre Anwendung Bitte kreuzen Sie in der folgenden Auflistung alle Zahlensysteme an, zu welchen jeder Ausdruck als Zahl gehören kann! (Verwenden Sie 'x für Wahl, ' ' für Ausschluß
Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf Seite 1 von 11
Kapitel 11 Zeichenverarbeitung Seite 1 von 11 Zeichenverarbeitung - Jedem Zeichen ist ein Zahlencode zugeordnet. - Dadurch wird ermöglicht, zwischen verschiedenen Systemen Texte auszutauschen. - Es werden
Numerische Datentypen. Simon Weidmann
Numerische Datentypen Simon Weidmann 08.05.2014 1 Ganzzahlige Typen 1.1 Generelles Bei Datentypen muss man immer zwei elementare Eigenschaften unterscheiden: Zuerst gibt es den Wertebereich, zweitens die
Englische Division. ... und allgemeine Hinweise
Das folgende Verfahren ist rechnerisch identisch mit dem Normalverfahren; es unterscheidet sich nur in der Schreibweise des Rechenschemas Alle Tipps und Anmerkungen, die über die Besonderheiten dieser
Übung RA, Kapitel 1.2
Übung RA, Kapitel 1.2 Teil 1: Zahlen und Logik A) Aufgaben zu den ganzen Zahlen 1. Konvertieren Sie die folgenden Zahlen in die Binärform: 1984 Immer durch 2 teilen, der Rest ergibt das Bit. Jeweils mit
4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140
4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}
Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.
Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren
15 Optimales Kodieren
15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen
6.2 Scan-Konvertierung (Scan Conversion)
6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster
Barcode- Referenzhandbuch
Barcode- Referenzhandbuch Version 0 GER/AUS/SWI-GER 1 Einführung 1 Übersicht 1 1 Dieses Referenzhandbuch bietet Informationen zum Drucken von Barcodes über Steuerbefehle, die direkt an ein Brother-Druckergerät
Merke: Mit jedem zusätzlichen Bit verdoppelt sich die Anzahl der darstellbaren Zahlen bzw. Zustände
1 2 Merke: Mit jedem zusätzlichen Bit verdoppelt sich die Anzahl der darstellbaren Zahlen bzw. Zustände 3 Die Zuordnung der Himmelsrichtungen zu den dreistelligen Binärzahlen, also Norden 000 Süden 001
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen
Plotten von Linien ( nach Jack Bresenham, 1962 )
Plotten von Linien ( nach Jack Bresenham, 1962 ) Ac Eine auf dem Bildschirm darzustellende Linie sieht treppenförmig aus, weil der Computer Linien aus einzelnen (meist quadratischen) Bildpunkten, Pixels
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
Zeichen bei Zahlen entschlüsseln
Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren
1 Mathematische Grundlagen
Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.
3. Informationsdarstellung
Fakultät Informatik Institut Systemarchitektur Professur Datenschutz und Datensicherheit WS 204/205 3. Informationsdarstellung Dr.-Ing. Elke Franz [email protected] 3 Informationsdarstellung Bitfolgen
der Eingabe! Haben Sie das Ergebnis? Auf diesen schwarzen Punkt kommen wir noch zu sprechen.
Medizintechnik MATHCAD Kapitel. Einfache Rechnungen mit MATHCAD ohne Variablendefinition In diesem kleinen Kapitel wollen wir die ersten Schritte mit MATHCAD tun und folgende Aufgaben lösen: 8 a: 5 =?
Advanced Encryption Standard. Copyright Stefan Dahler 20. Februar 2010 Version 2.0
Advanced Encryption Standard Copyright Stefan Dahler 20. Februar 2010 Version 2.0 Vorwort Diese Präsentation erläutert den Algorithmus AES auf einfachste Art. Mit Hilfe des Wissenschaftlichen Rechners
Technische Informatik I
Technische Informatik I Vorlesung 2: Zahldarstellung Joachim Schmidt [email protected] Übersicht Geschichte der Zahlen Zahlensysteme Basis / Basis-Umwandlung Zahlsysteme im Computer Binärsystem,
Aufgabe 6 Excel 2013 (Fortgeschrittene) Musterlösung
- 1 - Aufgabe 6 Excel 2013 (Fortgeschrittene) Musterlösung 1. Die Tabelle mit den Werten und Gewichten der Gegenstände, sowie die Spalte mit der Anzahl ist vorgegeben und braucht nur eingegeben zu werden
Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2
Leseprobe Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-4331- Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4331-
Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik
Wurzeln als Potenzen mit gebrochenen Exponenten Zur Einstimmung Wir haben die Formel benutzt x m n = x m n nach der eine Exponentialzahl potenziert wird, indem man die Exponenten multipliziert. Dann sollte
Beweisbar sichere Verschlüsselung
Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit [email protected] 6
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009)
Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Probleme unseres Alltags E-Mails lesen: Niemand außer mir soll meine Mails lesen! Geld abheben mit der EC-Karte: Niemand außer mir soll
Konzepte der Informatik
Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens
Übungsaufgaben. - Vorgehensweise entsprechend dem Algorithmus der schriftlichen Multiplikation
Übungsaufgaben Anmerkung Allen Beispielen soll noch hinzugefügt sein, dass wertvolle Hinweise, also die Tipps und Tricks die der schnellen maschinellen Multiplikation zu Grunde liegen, neben dem toff zur
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x
N Bit binäre Zahlen (signed)
N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101
Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme
Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik
