Technische Informatik I
|
|
|
- Tomas Cornelius Schulz
- vor 10 Jahren
- Abrufe
Transkript
1 Technische Informatik I Vorlesung 2: Zahldarstellung Joachim Schmidt [email protected]
2 Übersicht Geschichte der Zahlen Zahlensysteme Basis / Basis-Umwandlung Zahlsysteme im Computer Binärsystem, Hexadezimalsystem, BCD Negative Zahlen 1er / 2er Komplement Floating Point - wissenschaftliche Zahlen ASCII / Unicode-Kodierung Schlußfolgerung April 25, 2002 Vorlesung 2: Zahldarstellung 2
3 Zahlwahrnehmung Wieso hat der Mensch den Zahlbegriff entwickelt? Beobachtung der Natur Wunsch, sich darüber zu verständigen Voraussetzung: Alle Menschen haben die gleiche Zahlwahrnehmung Ist das wirklich so? April 25, 2002 Vorlesung 2: Zahldarstellung 3
4 Zahlwahrnehmung April 25, 2002 Vorlesung 2: Zahldarstellung 4
5 Zählen Zählen Zahlgefühl Natürliche Grenze liegt bei 3-5 Für alles weitere muss man zählen Man benötigt ein Zahlensysstem April 25, 2002 Vorlesung 2: Zahldarstellung 5
6 Zahlensysteme Was macht ein Zahlensystem aus? Künstlich geschaffenes System Bijektion Objekt/Symbol Element einer Menge Symbole in Beziehung setzten Rechnen Sollte möglichst allgemein verständlich sein April 25, 2002 Vorlesung 2: Zahldarstellung 6
7 Zahlzeichen April 25, 2002 Vorlesung 2: Zahldarstellung 7
8 Zahlzeichen Der Mensch hat viele verschiedene Möglichkeiten entwickelt, Zahlen symbolisch darzustellen Konkrete Zahlzeichen Gegenstände aller Art Kerben in Knochen oder Holz Geknotete Schnüre Gesten mit Fingern, Zehen und anderen Körperteilen April 25, 2002 Vorlesung 2: Zahldarstellung 8
9 Zahlzeichen Mündliche Zahlzeichen Die Einheit: Sonne, Mond Das Paar: Augen, Flügel eines Vogels Die Drei: Blätter des Klees Die Vier: Pfoten eines Tieres Vom Sinneseindruck losgelöste Zahlwörter eins, zwei, drei Schriftliche Zahlzeichen Graphische Zeichen aller Art April 25, 2002 Vorlesung 2: Zahldarstellung 9
10 Zahlensysteme mit verschiedenen Basen Dualsystem Quinärsystem Oktalsystem Dezimalsystem Doudezimalsystem Hexadezimalsystem Vigesimalsystem Sexagesimalsystem Repräsentation im Rechner Zählen mit einer Hand Menschenlesbare Darstellung von Maschinenzahlen Zählen mit den Fingern Dutzend, gut zu rechnen Menschenlesbare Darstellung von Maschinenzahlen Zählen mit Fingern und Zehen Astronomie, Mathematik Basis 2 Basis 5 Basis 8 Basis 10 Basis 12 Basis 16 Basis 20 Basis 60 April 25, 2002 Vorlesung 2: Zahldarstellung 10
11 Eigenschaften der Basis Man benötigt eine für den Menschen überschaubare Größenordnung als Basis kleinere Basis längere Darstellung einfacheres System wenig Zahlzeichen überschaubares "1x1" Grössere Basis kürzere Darstellung schwierigeres System viele Zahlzeichen quadratisch wachsendes "1x1" April 25, 2002 Vorlesung 2: Zahldarstellung 11
12 Zahlendarstellung Basis des Zahlensystems: B Ziffer: a i {0, 1, 2,, B-1} Zahl: <a 0, a 1, a 2,, a n > Wert: geschrieben: a n a n-1 a 2 a 1 a 0 a 0 *B 0 + a 1 *B a n *B n n = Σ a i *B i i=1 April 25, 2002 Vorlesung 2: Zahldarstellung 12
13 Zahlendarstellung April 25, 2002 Vorlesung 2: Zahldarstellung 13
14 Umwandlung Binär Hexadezimal Einfache Lesbarkeit Höhere Informationsdichte April 25, 2002 Vorlesung 2: Zahldarstellung 14
15 Verschiedene Zahlensysteme Binär Oktal Dezimal Hexadezimal A April 25, 2002 Vorlesung 2: Zahldarstellung 15
16 BCD Binary Coded Decimal Zahlenformat in COBOL Darstellung von Brüchen Vermeidung von Rundungsfehlern Anwendung bei Versicherungen / Banken April 25, 2002 Vorlesung 2: Zahldarstellung 16
17 Basiskonversion Wunsch: Jedes Zahlensystem in jedes andere überführen Algorithmus: Umzurechnende Zahl: A, neue Zahl: B=0 Alte Basis: B A, neue Basis: B B Schrittzähler: n=0 Teile (ganzzahlig mit Rest) Zahl A durch neue Basis B B Speichere Ergebnis wieder in A zur Basis B A Füge den Rest als Ziffer zur Basis B B an Stelle n in B ein Nächster Schritt: n += 1 Solange, bis Zahl A=0 April 25, 2002 Vorlesung 2: Zahldarstellung 17
18 Basiskonversion April 25, 2002 Vorlesung 2: Zahldarstellung 18
19 Grundrechenarten Binär Angelehnt an schriftliche Addition / Multiplikation Wegen Basis 2 sehr einfach Multiplikation zurückgeführt auf Addition April 25, 2002 Vorlesung 2: Zahldarstellung 19
20 Negative Zahlen Wunsch: Auch negative Zahlen darstellen 1. Bit codiert Vorzeichen (Sign Bit) Weniger Bits für eigentliche Zahl übrig Vorsicht beim Rechnen! April 25, 2002 Vorlesung 2: Zahldarstellung 20
21 Einerkomplement Andere Darstellung negativer Zahlen Ersetzte jede 0 durch eine 1, jede 1 durch 0 Bitweise Negation Enthält ebenfalls Vorzeichenbit April 25, 2002 Vorlesung 2: Zahldarstellung 21
22 Einerkomplement Darstellung ist eindeutig +20: -20: Zwei Darstellungen der Null: +0: -0: April 25, 2002 Vorlesung 2: Zahldarstellung 22
23 Zweierkomplement Weitere Darstellung negativer Zahlen Ersetzte jede 0 durch eine 1, jede 1 durch 0 Bitweise Negation Addiere 1 Enthält Vorzeichenbit April 25, 2002 Vorlesung 2: Zahldarstellung 23
24 Zweierkomplement Es gibt keine negative 0 Hat andere Singularität : ist sein eigenes Komplement: = Unsymmetrisch +20: -20: April 25, 2002 Vorlesung 2: Zahldarstellung 24
25 Graphische Darstellung: 2er Komplement April 25, 2002 Vorlesung 2: Zahldarstellung 25
26 Subtraktion in Komplementdarstellung Vorteil: Subtraktion = Addition einer negativen Zahl Nur ein Algorithmus / Schaltwerk nötig Problem: Overflow / Bereichsüberschreitung April 25, 2002 Vorlesung 2: Zahldarstellung 26
27 Subtraktion in Komplementdarstellung April 25, 2002 Vorlesung 2: Zahldarstellung 27
28 Fließkommazahlen Warum? Auch rationale Zahlen darstellen Sehr große und sehr kleine Zahlen darstellen Lieber feste Anzahl relevanter Stellen als fester Wertebereich Keine feste Position für den Dezimalpunkt Floating Point (FP) Fließkomma-Maschinenzahlen (FKM) April 25, 2002 Vorlesung 2: Zahldarstellung 28
29 Fließkommazahlen Wie? Angelehnt an wissenschaftliche Notation: = * = * 10 0 = * 2 1 Darstellung ist nicht eindeutig April 25, 2002 Vorlesung 2: Zahldarstellung 29
30 Prinzip Fließkommazahlen Jede reelle Zahl läßt sich ausdrücken durch ± Mantisse * Basis Exponent Basis im wissenschaftlichen System: 10 Basis im Rechner: 2 (bzw. 2 n ) April 25, 2002 Vorlesung 2: Zahldarstellung 30
31 Darstellung Fließkommazahlen April 25, 2002 Vorlesung 2: Zahldarstellung 31
32 Dynamik Fließkommazahlen April 25, 2002 Vorlesung 2: Zahldarstellung 32
33 Standards Fließkommazahlen Standards definiert in IEEE 754, 1985 Single Precision (32 Bit) Bereich: Double Precision (64 Bit) Bereich: Extended Precision (80 Bit) Meist nur intern benutzt April 25, 2002 Vorlesung 2: Zahldarstellung 33
34 Normierung Fließkommazahlen 1 Vorzeichenbit: 0 = positiv, 1 = negativ Mantisse: normalisiert, d.h. führendes Bit = 1 ( kann deshalb weggelassen werden ) Basis = 2 Exponent + 127, um das Vorzeichen des Exonenten nicht abspeichern zu müssen April 25, 2002 Vorlesung 2: Zahldarstellung 34
35 Normierung Fließkommazahlen April 25, 2002 Vorlesung 2: Zahldarstellung 35
36 Fließkommazahlen April 25, 2002 Vorlesung 2: Zahldarstellung 36
37 Probleme Fließkommazahlen Darstellung nicht eindeutig A == B? Nicht jede reelle Zahl läßt sich exakt darstellen: 1 /3 = Rechenoperationen (insbesondere Multiplikation und Division) relativ aufwendig, Berechnung im Floating-Point-Prozessor VL: Numerische Methoden der Informatik April 25, 2002 Vorlesung 2: Zahldarstellung 37
38 ASCII American Standard Code for Information Interchange 127 Zeichen (7 Bit) Alphabet Ziffern Sonderzeichen Steuerzeichen Erweiterung: 256 Zeichen (8 Bit) Unicode: Zeichen (16 Bit) April 25, 2002 Vorlesung 2: Zahldarstellung 38
39 Unicode April 25, 2002 Vorlesung 2: Zahldarstellung 39
40 Schlußfolgerung I Jede Zahl / Information läßt sich im Binärsystem darstellen Die meisten Rechenoperationen lassen sich auf elementare Operationen (Addition) zurückführen April 25, 2002 Vorlesung 2: Zahldarstellung 40
41 Schlußfolgerung II Jede Zahl / Information läßt sich beliebig genau im Rechner darstellen Jede Rechenoperation läßt sich beliebig genau durchführen Für Grundrechenarten gibt es effiziente Algorithmen Einschränkungen durch Geschwindigkeit und Speichergröße April 25, 2002 Vorlesung 2: Zahldarstellung 41
42 Literatur und Links Universalgeschichte der Zahlen Georges Ifrah, GLB Parkland, 1998 Structured Computer Organization Andrew S. Tanenbaum, Prentice Hall, 1999 Vorlesung: Numerische Methoden der Informatik (voraussichtlich WS 02/03) elearn.rvs.uni-bielefeld.de April 25, 2002 Vorlesung 2: Zahldarstellung 42
43 Technische Informatik I Nächste Woche: Vorlesung 3: Bool sche Algebra Mirco Hilbert [email protected]
Einführung in die Informatik I
Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik
Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung
Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer Programmiertechnik Zahlensysteme und Datendarstellung Zahlensysteme Problem: Wie stellt man (große) Zahlen einfach, platzsparend und rechnergeeignet
Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10
Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist
Grundlagen der Informatik
Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................
Binäre Gleitkommazahlen
Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72
Binärdarstellung von Fliesskommazahlen
Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M
1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:
Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der
Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird.
Zahlensysteme Definition: Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. In der Informatik spricht man auch von Stellenwertsystem,
21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?
Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen
Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär
Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten
Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme
Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik
Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik
Kapitel 1 Zahlendarstellung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Zahlensystemkonvertierung Motivation Jede nichtnegative Zahl z lässt
Informationsdarstellung im Rechner
Informationsdarstellung im Rechner Dr. Christian Herta 15. Oktober 2005 Einführung in die Informatik - Darstellung von Information im Computer Dr. Christian Herta Darstellung von Information im Computer
Vertiefungsstoff zum Thema Darstellung von Zahlen
Vertiefungsstoff zum Thema Darstellung von Zahlen Addition von Zahlen in BCD-Kodierung Einerkomplementdarstellung von ganzen Zahlen Gleitpunktdarstellung nach dem IEEE-754-Standard 1 Rechnen mit BCD-codierten
Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS
Gleit komma zahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen wird eine große Dynamik benötigt: sowohl sehr kleine als auch sehr große Zahlen sollen einheitlich dargestellt
Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen
Kapitel 4: Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Codierung von rationalen Zahlen Konvertierung
Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung
Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000
Das Rechnermodell - Funktion
Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze
Zahlendarstellungen und Rechnerarithmetik*
Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien
Computerarithmetik ( )
Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur
Technische Informatik - Eine Einführung
Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine
Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik
Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren,
Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2
Leseprobe Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-4331- Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4331-
Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1
Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg
Information in einem Computer ist ein
4 Arithmetik Die in den vorhergehenden Kapiteln vorgestellten Schaltungen haben ausschließlich einfache, Boole sche Signale verarbeitet. In diesem Kapitel wird nun erklärt, wie Prozessoren mit Zahlen umgehen.
Binäre Division. Binäre Division (Forts.)
Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:
Lösung 1. Übungsblatt
Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung
Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit
Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert
2 Darstellung von Zahlen und Zeichen
2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f
Zahlensysteme Das 10er-System
Zahlensysteme Übungsblatt für die entfallende Stunde am 22.10.2010. Das 10er-System... 1 Umrechnung in das 10er-System... 2 2er-System... 2 8er-System... 2 16er-System... 3 Umrechnung in andere Zahlensysteme...
BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?
BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert
Im Original veränderbare Word-Dateien
Binärsystem Im Original veränderbare Word-Dateien Prinzipien der Datenverarbeitung Wie du weißt, führen wir normalerweise Berechnungen mit dem Dezimalsystem durch. Das Dezimalsystem verwendet die Grundzahl
Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1
Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 vorzeichenlose Zahl: 15 vorzeichenlose Zahl: 18 vorzeichenlose Zahl: 13 Zweierkomplement: - 1
Zahlensysteme Seite -1- Zahlensysteme
Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4
Kapitel 4A: Einschub - Binärcodierung elementarer Datentypen. Einschub: Teile aus Kapitel 2 in Küchlin/Weber: Einführung in die Informatik
Einschub: Binärcodierung elementarer Datentypen Teile aus Kapitel 2 in Küchlin/Weber: Einführung in die Informatik Unterscheide Zahl-Wert Zahl-Bezeichner Zu ein- und demselben Zahl-Wert kann es verschiedene
Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen
Großübung 1: Zahlensysteme Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Lehrender: Dr. Klaus Richter, Institut für Informatik; E-Mail: [email protected]
Das Maschinenmodell Datenrepräsentation
Das Maschinenmodell Datenrepräsentation Darstellung von Zahlen/Zeichen in der Maschine Bit (0/1) ist die kleinste Informationseinheit Größere Einheiten durch Zusammenfassen mehrerer Bits, z.b. 8 Bit =
2. Negative Dualzahlen darstellen
2.1 Subtraktion von Dualzahlen 2.1.1 Direkte Subtraktion (Tafelrechnung) siehe ARCOR T0IF Nachteil dieser Methode: Diese Form der Subtraktion kann nur sehr schwer von einer Elektronik (CPU) durchgeführt
Daten, Informationen, Kodierung. Binärkodierung
Binärkodierung Besondere Bedeutung der Binärkodierung in der Informatik Abbildung auf Alphabet mit zwei Zeichen, in der Regel B = {0, 1} Entspricht den zwei möglichen Schaltzuständen in der Elektronik:
Numerisches Programmieren, Übungen
Technische Universität München SoSe 0 Institut für Informatik Prof Dr Thomas Huckle Dipl-Math Jürgen Bräckle Nikola Tchipev, MSc Numerisches Programmieren, Übungen Musterlösung Übungsblatt: Zahlendarstellung,
1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement
Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im
Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1
Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2013/2014 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg
Übungen zu Informatik 1
Communication Systems Group (CSG) Prof. Dr. Burkhard Stiller, Universität Zürich, Binzmühlestrasse 14, CH-8050 Zürich Telefon: +41 44 635 6710, Fax: +41 44 635 6809, [email protected] Fabio Hecht, Telefon:
Teil II. Schaltfunktionen
Teil II Schaltfunktionen 1 Teil II.1 Zahlendarstellung 2 b-adische Systeme Sei b IN mit b > 1 und E b = {0, 1,..., b 1} (Alphabet). Dann ist jede Fixpunktzahl z (mit n Vorkomma und k Nachkommastellen)
Übung zur Wirtschaftsinformatik I. Zahlensysteme / Codierung
WS 06/07 Thema 4: Zahlensysteme / Codierung 1 Übung zur Winfo I - Themenplan - Informationsverarbeitung in Unternehmen Tabellenkalkulation Anwendungen PC-Komponenten Zahlensysteme / Codierung Boole sche
Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc.
Fixpunktdarstellung Fixed-point numbers Bsp. Dezimaldarstellung Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc. Binärdarstellung
Grundstrukturen: Speicherorganisation und Zahlenmengen
Zahlendarstellung Zahlen und ihre Darstellung in Digitalrechnern Grundstrukturen: Speicherorganisation und Zahlenmengen Linear organisierter Speicher zu einer Adresse gehört ein Speicher mit 3 Bit-Zellen
Zahlensysteme. Zahl 0 0 0 0 0 5 5. Stellenwert Zahl 0 0 0 0 0 50 5. Zahl = 55 +50 +5
Personal Computer in Betrieb nehmen 1/6 Weltweit setzen die Menschen alltäglich das Zehnersystem für Zählen und Rechnen ein. Die ursprüngliche Orientierung stammt vom Zählen mit unseren 10 Fingern. Für
Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.
Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten
183.580, WS2012 Übungsgruppen: Mo., 22.10.
VU Grundlagen digitaler Systeme Übung 2: Numerik, Boolesche Algebra 183.580, WS2012 Übungsgruppen: Mo., 22.10. Aufgabe 1: Binäre Gleitpunkt-Arithmetik Addition & Subtraktion Gegeben sind die Zahlen: A
Grundlagen der Technischen Informatik. 4. Übung
Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Polyadische Zahlensysteme Gleitkomma-Arithmetik 4.
Zahlen und Zeichen (1)
Zahlen und Zeichen () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis
Zahlensysteme: Oktal- und Hexadezimalsystem
20 Brückenkurs Die gebräuchlichste Bitfolge umfasst 8 Bits, sie deckt also 2 8 =256 Möglichkeiten ab, und wird ein Byte genannt. Zwei Bytes, also 16 Bits, bilden ein Wort, und 4 Bytes, also 32 Bits, formen
BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de
BSZ für Elektrotechnik Dresden Zahlenformate Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de Gliederung 1 Überblick 2 Grundaufbau der Zahlensysteme 2.1 Dezimalzahlen 2.2 Binärzahlen = Dualzahlen
Kapitel 2. Zahlensysteme, Darstellung von Informationen
Kapitel 2 Zahlensysteme, Darstellung von Informationen 1 , Darstellung von Informationen Ein Computer speichert und verarbeitet mehr oder weniger große Informationsmengen, je nach Anwendung und Leistungsfähigkeit.
in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen
Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen allgemeine Gleitkommazahl zur Basis r
Zur Universalität der Informatik. Gott ist ein Informatiker. Die Grundordnung der Welt läßt sich mathematisch formulieren:
Daten und ihre Codierung Seite: 1 Zur Universalität der Informatik Gott ist ein Informatiker Die Grundordnung der Welt läßt sich mathematisch formulieren: Naturgesetze, wie wir sie in der Physik, Chemie
Zahlensysteme. von Christian Bartl
von Inhaltsverzeichnis Inhaltsverzeichnis... 2 1. Einleitung... 3 2. Umrechnungen... 3 2.1. Dezimalsystem Binärsystem... 3 2.2. Binärsystem Dezimalsystem... 3 2.3. Binärsystem Hexadezimalsystem... 3 2.4.
Grundlagen der Informatik Übungen 1.Termin
: : : : : : : : : : : : : : : : : : : : : : Grundlagen der Informatik Übungen 1.Termin Dipl.-Phys. Christoph Niethammer Grundlagen der Informatik 2012 1 : : : : : : : : : : : : : : : : : : : : : : Kontakt
Kapitel 3. Codierung von Text (ASCII-Code, Unicode)
Kapitel 3 Codierung von Text (ASCII-Code, Unicode) 1 Kapitel 3 Codierung von Text 1. Einleitung 2. ASCII-Code 3. Unicode 2 1. Einleitung Ein digitaler Rechner muss jede Information als eine Folge von 0
Grundlagen der Informatik I Informationsdarstellung
Grundlagen der Informatik I Informationsdarstellung Einführung in die Informatik, Gumm, H.-P./Sommer, M. Themen der heutigen Veranstaltung. ASCIi Code 2. Zeichenketten 3. Logische Operationen 4. Zahlendarstellung
Einführung in die Programmierung
Technische Universität Carolo Wilhelmina zu Brauschweig Institut für rechnergestützte Modellierung im Bauingenierwesen Prof. Dr.-Ing. habil. Manfred Krafczyk Pockelsstraße 3, 38106 Braunschweig http://www.irmb.tu-bs.de
TOTAL DIGITAL - Wie Computer Daten darstellen
TOTAL DIGITAL - Wie Computer Daten darstellen Computer verarbeiten Daten unter der Steuerung eines Programmes, das aus einzelnen Befehlen besteht. Diese Daten stellen Informationen dar und können sein:
Daten verarbeiten. Binärzahlen
Daten verarbeiten Binärzahlen In Digitalrechnern werden (fast) ausschließlich nur Binärzahlen eingesetzt. Das Binärzahlensystem ist das Stellenwertsystem mit der geringsten Anzahl von Ziffern. Es kennt
Grundlagen der Informatik (BSc) Übung Nr. 5
Übung Nr. 5: Zahlensysteme und ihre Anwendung Bitte kreuzen Sie in der folgenden Auflistung alle Zahlensysteme an, zu welchen jeder Ausdruck als Zahl gehören kann! (Verwenden Sie 'x für Wahl, ' ' für Ausschluß
Modul 114. Zahlensysteme
Modul 114 Modulbezeichnung: Modul 114 Kompetenzfeld: Codierungs-, Kompressions- und Verschlüsselungsverfahren einsetzen 1. Codierungen von Daten situationsbezogen auswählen und einsetzen. Aufzeigen, welche
Zahlen im Computer (Klasse 7 Aufbaukurs Informatik)
Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Die Bildauswahl erfolgte in Anlehnung an das Alter der Kinder Prof. J. Walter Bitte römische Zahlen im Geschichtsunterricht! Messsystem mit Mikrocontroller
Rechnerstrukturen WS 2012/13
Rechnerstrukturen WS 2012/13 Repräsentation von Daten Repräsentation natürlicher Zahlen (Wiederholung) Repräsentation von Texten Repräsentation ganzer Zahlen Repräsentation rationaler Zahlen Repräsentation
Repräsentation von Daten Binärcodierung ganzer Zahlen
Kapitel 3: Repräsentation von Daten Binärcodierung ganzer Zahlen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Repräsentation von Daten im Computer (dieses und nächstes
Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 18
Kapitel 3 Datentypen und Variablen Seite 1 von 18 Datentypen - Einführung - Für jede Variable muss ein Datentyp festgelegt werden. - Hierdurch werden die Wertemenge und die verwendbaren Operatoren festgelegt.
2 Rechnen auf einem Computer
2 Rechnen auf einem Computer 2.1 Binär, Dezimal und Hexadezimaldarstellung reeller Zahlen Jede positive reelle Zahl r besitzt eine Darstellung der Gestalt r = r n r n 1... r 1 r 0. r 1 r 2... (1) := (
Inhalt: Binärsystem 7.Klasse - 1 -
Binärsystem 7.Klasse - 1 - Inhalt: Binärarithmetik... 2 Negative Zahlen... 2 Exzess-Darstellung 2 2er-Komplement-Darstellung ( two s complement number ) 2 Der Wertebereich vorzeichenbehafteter Zahlen:
Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16. Vorbereitende Aufgaben. Präsenzaufgaben
Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16 Fakultät für Informatik Lehrstuhl 14 Lars Hildebrand, Marcel Preuß, Iman Kamehkhosh, Marc Bury, Diana Howey Übungsblatt
Mikro-Controller-Pass 1
MikroControllerPass Lernsysteme MC 805 Seite: (Selbststudium) Inhaltsverzeichnis Vorwort Seite 2 Addition Seite 3 Subtraktion Seite 4 Subtraktion durch Addition der Komplemente Dezimales Zahlensystem:Neunerkomplement
Leitung 1 Leitung 2 0 0 0 1 1 0 1 1
1 1 Vorbetrachtungen Wie könnte eine Codierung von Zeichen im Computer realisiert werden? Der Computer arbeitet mit elektrischem Strom, d. h. er kann lediglich zwischen den beiden Zuständen Strom an und
Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik
Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Helmar Burkhart Departement Informatik Universität Basel [email protected] Helmar Burkhart Werkzeuge der Informatik Lektion 1:
Binär- und Hexadezimal-Zahl Arithmetik.
Binär- und Hexadezimal-Zahl Arithmetik. Prof. Dr. Dörte Haftendorn, MuPAD 4, http://haftendorn.uni-lueneburg.de Aug.06 Automatische Übersetzung aus MuPAD 3.11, 24.04.02 Version vom 12.10.05 Web: http://haftendorn.uni-lueneburg.de
Zeichen bei Zahlen entschlüsseln
Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren
Zahlensysteme. Formale Methoden der Informatik WiSe 2010/2011 Folie 1 (von 71)
Zahlensysteme Formale Methoden der Informatik WiSe / Folie (von 7) Teil I: Zahlensysteme. Einführung und Zahlensysteme. Zahlensysteme / Algorithmik. Zahlendarstellung im Rechner. Gleitkommazahlen / Fließpunktzahlen
1. Grundlegende Konzepte der Informatik
1. Grundlegende Konzepte der Informatik Inhalt Algorithmen Darstellung von Algorithmen mit Programmablaufplänen Beispiele für Algorithmen Aussagenlogik Zahlensysteme Kodierung Peter Sobe 1 Zahlensysteme
Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013
Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013 Im folgenden soll ein Überblick über die in Computersystemen bzw. Programmiersprachen verwendeten Zahlen inklusive ausgewählter Algorithmen (in
N Bit binäre Zahlen (signed)
N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101
1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung
1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung Inhalt Grundlagen digitaler Systeme Boolesche Algebra / Aussagenlogik Organisation und Architektur von Rechnern Algorithmen,
Übung RA, Kapitel 1.2
Übung RA, Kapitel 1.2 Teil 1: Zahlen und Logik A) Aufgaben zu den ganzen Zahlen 1. Konvertieren Sie die folgenden Zahlen in die Binärform: 1984 Immer durch 2 teilen, der Rest ergibt das Bit. Jeweils mit
FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 11/12
FB ET/IT Binäre Rechenoperationen WS /2 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbsterstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen
Basisinformationstechnologie I
Basisinformationstechnologie I Wintersemester 2012/13 24. Oktober 2012 Grundlagen III Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // [email protected]
Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens
Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................
Black Box erklärt Zahlensysteme.
Black Box erklärt Zahlensysteme. Jeder von uns benutzt aktiv mindestens zwei Zahlenssysteme, oftmals aber so selbstverständlich, dass viele aus dem Stegreif keines mit Namen nennen können. Im europäischen
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10
FB ET/IT Binäre Rechenoperationen WS 9/ Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbst erstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen
1. Stellenwerte im Dualsystem
1. a) Definitionen Stellenwertsystem Ein Zahlensystem bei dem der Wert einer Ziffer innerhalb einer Ziffernfolge von ihrer Stelle abhängt, wird Stellenwertsystem genannt. Die Stellenwerte sind also ganzzahlige
Binär Codierte Dezimalzahlen (BCD-Code)
http://www.reiner-tolksdorf.de/tab/bcd_code.html Hier geht es zur Startseite der Homepage Binär Codierte Dezimalzahlen (BCD-) zum 8-4-2-1- zum Aiken- zum Exeß-3- zum Gray- zum 2-4-2-1- 57 zum 2-4-2-1-
Einführung in die Informatik I
Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik
Anzahl Pseudotedraden: Redundanz: Weitere Eigenschaften?
1. Aufgabe: Aiken-Code Erstellen Sie die Codetabelle für einen Aiken-Code. Dieser Code hat die Wertigkeit 2-4-2-1. Tipp:Es gibt hier mehrere Lösungen, wenn nicht die Bedingung Aiken-Code gegeben wäre.
Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192.
Binäres und dezimales Zahlensystem Ziel In diesem ersten Schritt geht es darum, die grundlegende Umrechnung aus dem Dezimalsystem in das Binärsystem zu verstehen. Zusätzlich wird auch die andere Richtung,
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014
egelsammlung mb2014 THM Friedberg von 6 16.08.2014 15:04 Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 Sammlung von Rechenregeln, extrahiert aus dem Lehrbuch: Erhard Cramer, Johanna Neslehová: Vorkurs
Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt
Technische Grundlagen der Informatik Kapitel 8 Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Kapitel 8: Themen Zahlensysteme - Dezimal - Binär Vorzeichen und Betrag Zweierkomplement Zahlen
4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04
4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04 JOACHIM VON ZUR GATHEN, OLAF MÜLLER, MICHAEL NÜSKEN Abgabe bis Freitag, 14. November 2003, 11 11 in den jeweils richtigen grünen oder roten Kasten
3 Rechnen und Schaltnetze
3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s
