Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016

Größe: px
Ab Seite anzeigen:

Download "Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016"

Transkript

1 Musterlösung 1 Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg in weiterführende Literatur erleichtern. Thema: Zahlensysteme (positive, negative und Bruchzahlen) Übungsblatt Nr.: 1 Datum:

2 Aufgabe 1 (Binär nach Dezimal) a) Wandeln Sie die Binärzahl in eine Dezimalzahl um = = = b) Wandeln Sie die Binärzahl in eine Dezimalzahl um = = = Aufgabe 2 (Dezimal nach Binär) a) Wandeln Sie die Dezimalzahlen 171 und 234 jeweils in eine Binärzahl um. 171 : 2 = 85 Rest: 1 (LSB) 85 : 2 = 42 Rest: 1 42 : 2 = 21 Rest: 0 21 : 2 = 10 Rest: 1 10 : 2 = 5 Rest: 0 5 : 2 = 2 Rest: 1 2 : 2 = 1 Rest: 0 1 : 2 = 0 Rest: 1 (MSB) = : 2 = 117 Rest: 0 (LSB) 117 : 2 = 58 Rest: 1 58 : 2 = 29 Rest: 0 29 : 2 = 14 Rest: 1 14 : 2 = 7 Rest: 0 7 : 2 = 3 Rest: 1 3 : 2 = 1 Rest: 1 1 : 2 = 0 Rest: 1 (MSB) =

3 b) Wandeln Sie die Zahl 124,68 in eine Binärzahl (mit 8 Stellen hinter dem Komma) um. 124 : 2 = 62 Rest: 0 (LSB) 62 : 2 = 31 Rest: 0 31 : 2 = 15 Rest: 1 15 : 2 = 7 Rest: 1 7 : 2 = 3 Rest: 1 3 : 2 = 1 Rest: 1 1 : 2 = 0 Rest: 1 (MSB) = (0) Die führende Null ist an dieser Stelle optional. Wie im Dezimalsystem können Sie beliebig viele führende Nullen einfügen, sofern es sich um eine vorzeichenlose Binärzahl handelt. 0,68 * 2 = 1,36 Rest: 1 (MSB) 0,36 * 2 = 0,72 Rest: 0 0,72 * 2 = 1,44 Rest: 1 0,44 * 2 = 0,88 Rest: 0 0,88 * 2 = 1,76 Rest: 1 0,76 * 2 = 1,52 Rest: 1 0,52 * 2 = 1,04 Rest: 1 0,04 * 2 = 0,08 Rest: 0 (LSB) 0,6810 = Zusammen: 124,6810 = , Aufgabe 3 (Hexadezimal nach Dezimal) Es gilt: n 1 I 16 (a n 1 a 0 ) = I 16 (a i ) 16 i i=0 mit: I 16 (0) = 0, I 16 (1) = 1,, I 16 (A) = 10,, I 16 (F) = 15 Diese Formel gilt übrigens auch analog mit jeder beliebigen anderen Basis. Vergleichen Sie z.b. Aufgabe 1 mit I 2 statt I 16. a) Wandeln Sie die hexadezimale (sedezimale) Zahl 89AB in eine Dezimalzahl um. 89AB 16 = = =

4 b) Wandeln Sie die hexadezimale Zahl FE00 in eine Dezimalzahl um. FE00 16 = = = Aufgabe 4 (Dezimal nach Hexadezimal) a) Wandeln Sie die Dezimalzahl in eine Hexadezimalzahl um : 16 = 771 Rest: 9 (9) 771 : 16 = 48 Rest: 3 (3) 48 : 16 = 3 Rest: 0 (0) 3 : 16 = 0 Rest: 3 (3) = b) Wandeln Sie die Dezimalzahl in eine Hexadezimalzahl um : 16 = 6172 Rest: 13 (D) 6172 : 16 = 385 Rest: 12 (C) 385 : 16 = 24 Rest: 1 (1) 24 : 16 = 1 Rest: 8 (8) 1 : 16 = 0 Rest: 1 (0) = 181CD16 Aufgabe 5 (Dezimal nach Oktal, Oktal nach Dezimal) a) Wandeln Sie die Dezimalzahl 2014 in eine Oktalzahl um : 8 = 251 Rest: : 8 = 31 Rest: 3 31 : 8 = 3 Rest: 7 3 : 8 = 0 Rest: = b) Wandeln Sie die Oktalzahl 2014 in eine Dezimalzahl um = = = Aufgabe 6 (Oktal nach Binär, Oktal nach Hexadezimal) Gegeben sei die Oktalzahl Wandeln Sie diese Zahl a) in eine Binärzahl um. 2 8 = 010 2

5 0 8 = = = = b) in eine Hexadezimalzahl (mit Hilfe der errechneten Binärzahl) um (Die Leerzeichen dienen nur zur besseren optischen Darstellung) = C = = = 40C 16 Aufgabe 7 (Hexadezimal nach Binär, Hexadezimal nach Oktal) Gegeben sei die Hexadezimalzahl DA. Wandeln Sie diese Zahl a) in eine Binärzahl um. D 16 = A 16 = DA 16 = c) in eine Oktalzahl (mit Hilfe der errechneten Binärzahl) um (Die Leerzeichen dienen nur zur besseren optischen Darstellung) = = = 3 8 DA 16 = Aufgabe 8 (Binäre Operationen) Gegeben sind zwei binäre Operanden: 1. Operand: Operand: Führen Sie folgende Operationen durch: a) Addieren Sie die beiden Operanden. Binär Hex Dez D C2 194 b)verknüpfen Sie die beiden Operanden bitweise mit dem UND-Operator UND

6 c) Verknüpfen Sie die beiden Operanden bitweise mit dem ODER-Operator ODER d) Verknüpfen Sie die beiden Operanden bitweise mit dem XOR-Operator XOR Einschub: Herleitung des Zweierkomplements Hinweis: Beachten Sie zunächst Aufgabe 13, um zu verstehen, warum in der Regel mit dem Zweierkomplement gerechnet wird. Durch die Verwendung des Zweierkomplements entfällt die Angabe des Vorzeichens einer Zahl, da dies implizit als erstes Bit einer Binärzahl dargestellt wird. Dies ermöglicht es, eine Subtraktion mittels einer Addition durchzuführen (vgl. Aufgabe 11), sodass keine Fallunterscheidung der Zahlen erfolgen muss. Zur Umwandlung zwischen Dezimalzahlen und Binärzahlen in Zweierkomplementdarstellung sind folgende Schritte durchzuführen: Positive Dezimalzahl in Binärzahl: PD1: Umwandlung wie bei vorzeichenlosen Zahlen (vgl. Aufgabe 2) PD2: Führende Null anfügen Negative Dezimalzahl in Binärzahl: ND1: Betrag der Zahl bilden, also das Vorzeichen entfernen ND2: Umwandeln in Binärdarstellung wie bei vorzeichenloser Zahl ND3: Alle Bits invertieren (entspricht Einerkomplementdarstellung) ND4: 1 addieren Positive Binärzahl in Dezimalzahl: PB1: Umwandlung wie bei vorzeichenlosen Zahlen (vgl. Aufgabe 1) Negative Binärzahl in Dezimalzahl: NB1: Alle Bits invertieren NB2: 1 addieren NB3: Umwandeln in Dezimaldarstellung wie bei vorzeichenloser Zahl NB4: Negatives Vorzeichen hinzufügen Aufgabe 9 (Dezimal in das Zweierkomplement) a) Bilden Sie das Zweierkomplement im Binärsystem für die Zahl -27. ND1: = 27 2 ND2: 27 2 = ND3: = ND4: =

7 b) Bilden Sie das Zweierkomplement im Binär- und Hexadezimalsystem für die Zahl ND1: = ND2: = ND3: = ND4: = Hexadezimal: = CAF5 Aufgabe 10 (Zweierkomplement nach Dezimal) a) Wandeln Sie die Binärzahl in eine vorzeichenbehaftete Dezimalzahl um. Das höchstwertige Bit ist 1, also ist die Zahl negativ. NB1: = NB2: = NB3: = NB4: b) Wandeln Sie die Binärzahl sowohl in eine nicht vorzeichenbehaftete als auch eine vorzeichenbehaftete Dezimalzahl um. Nicht vorzeichenbehaftet: PB1: = Vorzeichenbehaftet: NB1: = NB2: = NB3: = NB4: Aufgabe 11 (Subtraktion) Führen Sie folgende im Dezimalsystem angegebenen Subtraktionen im Binärsystem durch: a) ( ) = = Zweierkomplement: = Überlauf, wird ignoriert Ergebnis = 72 10

8 b) ( ) = = Zweierkomplement: = Zweierkomplement: = c) ( ) = Zweierkomplement: = Zweierkomplement: = Zweierkomplement: = Aufgabe 12 (Subtraktion, Addition) a) Führen Sie die Subtraktion im Binärsystem durch ( ) = = Zweierkomplement: = Zweierkomplement: = b) Vorgegeben ist die Rechnung Es handelt sich um vorzeichenbehaftete Zahlen. Führen sie die Rechnung sowohl im Binär-, als auch im Dezimalsystem durch. Binär: Dezimal: = = = ( )

9 Aufgabe 13 (Einerkomplement, Zweierkomplement) Wandeln Sie die Zahlen 1, 0,-0,-1 in eine vorzeichenbehaftete Binärzahl, eine Einerkomplementzahl und eine Zweierkomplementzahl um. Allgemein Für alle drei Darstellungen gilt, dass die Zahlen eine feste Breite haben. In diesen Beispielen 4 Bit. Es kann vorkommen, dass ein Ergebnis einer Operation um ein Bit breiter ist. Dieses Bit wird je nach Situation Carry oder Overflow genannt, wird aber bei der Betrachtung des Zahlenwerts ignoriert. In einer späteren Vorlesung lernen Sie, warum dieses Bit für den Mikroprozessor trotzdem eine große Relevanz besitzt. Vorzeichenbehaftete Binärzahl Beachten Sie bitte, dass es sich in diesem Absatz um einen theoretischen Ansatz zur Zahlendarstellung handelt. Diese Darstellung wird in der Realität nicht verwendet, sondern wird hier nur der Vollständigkeit halber angegeben. Der eigentlich naheliegende Ansatz zur Darstellung von vorzeichenbehafteten Binärzahlen ist, das erste Bit als Vorzeichen zu wenden (0=positiv, 1=negativ) und alle weiteren Bits zur Darstellung des Wertes zu nutzen. Entsprechend würde sich folgende Schreibweise ergeben: 0 2 = = = = = = = = = = = = = = = = Grundlegender Nachteil dieser Darstellung ist zunächst, dass es zwei Darstellungen für die Null (positiv und negativ) gibt. Darüber hinaus ist die Durchführung einer Rechnung in dieser Darstellungsform umständlich. Denn bereits beim Addieren muss unterschieden werden, ob die Vorzeichen identisch oder verschieden sind. Sind die Vorzeichen gleich, können die Beträge ohne Berücksichtigung der Vorzeichen addiert werden, und anschließend das Vorzeichen wieder gesetzt werden. Sind die Vorzeichen ungleich, muss eine Subtraktion ausgeführt werden. Dabei muss aber stets der Betrag der kleineren Zahl von dem Betrag der größeren Zahl abgezogen werden und im Anschluss das Vorzeichenbit wieder korrekt gesetzt werden.

10 Einerkomplement Für positive Zahlen ändert sich bei der Darstellung im Einerkomplement nichts. Negative Zahlen sind in dieser Darstellung bitweise invers zu den betragsmäßig gleichen positiven Zahlen. Das erste Bit stellt auch hier das Vorzeichen dar, muss aber nicht gesondert betrachtet werden, da durch die Inversion das Bit automatisch den richtigen Wert annimmt. Zu beachten gilt es, dass in dieser Darstellung der betragsmäßig kleinste negative Wert nicht mehr durch eine Folge von Nullen, sondern durch Einsen dargestellt wird. Der größte Wert verhält sich Analog. 0 2 = = = = = = = = = = = = = = = = In dieser Darstellung entfällt bei der Berechnung die Fallunterscheidung, da negative Zahlen in Einerkomplementdarstellung einfach addiert werden können. Die doppelte Null erfordert jedoch im Fall eines Wechsels zwischen den positiven/negativen Bereich eine Korrektur des Ergebnisses. Beispiel: Das erwartete Ergebnis einer dezimalen Rechnung wäre 4, jedoch entspricht die Binärdarstellung einer 3. Offensichtlich ist das Ergebnis genau um 1 daneben, was sich durch das doppelte Auftreten der 0 erklären lässt. Es werden nur die Bits betrachtet, die innerhalb der festgelegten Breite liegen. Zur Korrektur müssen Sie den Wert um 1 erhöhen, wenn das Ergebnis positiv ist, bzw. um 1 erniedrigen, wenn das Ergebnis negativ ist.

11 Zweierkomplement (B-2) In der Zweierkomplementdarstellung werden positive Zahlen weiterhin wie gehabt dargestellt. Für negative Zahlen wird zunächst das Einerkomplement gebildet und im Anschluss eine 1 auf das Ergebnis addiert. 0 2 = = = = = = = = = = = = = = = = = Zwei Dinge fallen in dieser Darstellung sofort auf. Die negative Null entspricht, da der Überlauf wie bereits beschrieben ignoriert wird, genau der Darstellung der positiven Null. Es gibt also nur eine Null. Da nun auf der negativen Seite die Null entfällt, kann dieser Bereich um eine weitere Ziffer nach unten erweitert werden. Durch entfallen der negativen Null muss nun auch keine Korrektur mehr durchgeführt werden, falls eine Bereichsgrenze überschritten wird. Beispiel:

Grundlagen der Technischen Informatik. 3. Übung

Grundlagen der Technischen Informatik. 3. Übung Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Zahlendarstellungen

Mehr

Grundlagen der Technischen Informatik. 3. Übung

Grundlagen der Technischen Informatik. 3. Übung Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Zahlendarstellungen

Mehr

Zahlensysteme und Kodes. Prof. Metzler

Zahlensysteme und Kodes. Prof. Metzler Zahlensysteme und Kodes 1 Zahlensysteme und Kodes Alle üblichen Zahlensysteme sind sogenannte Stellenwert-Systeme, bei denen jede Stelle innerhalb einer Zahl ein besonderer Vervielfachungsfaktor in Form

Mehr

Grundlagen der Technischen Informatik. 3. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit

Grundlagen der Technischen Informatik. 3. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Zahlendarstellungen

Mehr

Rückblick. Zahlendarstellung zu einer beliebigen Basis b. Umwandlung zwischen Zahlendarstellung (214) 5 = (278) 10 =(?) 8

Rückblick. Zahlendarstellung zu einer beliebigen Basis b. Umwandlung zwischen Zahlendarstellung (214) 5 = (278) 10 =(?) 8 Rückblick Zahlendarstellung zu einer beliebigen Basis b (214) 5 = Umwandlung zwischen Zahlendarstellung (278) 10 =(?) 8 25 Rückblick Schnellere Umwandlung zwischen Binärdarstellung und Hexadezimaldarstellung

Mehr

Grundlagen der Technischen Informatik. 3. Übung

Grundlagen der Technischen Informatik. 3. Übung Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Zahlendarstellungen Zahlendarstellungen,

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2012/13 24. Oktober 2012 Grundlagen III Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // jan.wieners@uni-koeln.de

Mehr

1. Grundlegende Konzepte der Informatik

1. Grundlegende Konzepte der Informatik 1. Grundlegende Konzepte der Informatik Inhalt Algorithmen Darstellung von Algorithmen mit Programmablaufplänen Beispiele für Algorithmen Aussagenlogik Zahlensysteme Kodierung Peter Sobe 1 Zahlensysteme

Mehr

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer.

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer. Digitaltechnik Aufgaben + Lösungen 2: Zahlen und Arithmetik Aufgabe 1 Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen a) 4 D b) 13 D c) 118 D d) 67 D Teilen durch die Basis des Zahlensystems.

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik)

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Die Bildauswahl erfolgte in Anlehnung an das Alter der Kinder Prof. J. Walter Bitte römische Zahlen im Geschichtsunterricht! Messsystem mit Mikrocontroller

Mehr

Lösung 1. Übungsblatt

Lösung 1. Übungsblatt Fakultät Informatik, Technische Informatik, Lehrstuhl für Eingebettete Systeme Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung

Mehr

Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte -

Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte - Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte - Sebastian Ebers Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/users/ebers Zahlendarstellung 201010? 16 2010

Mehr

Binärzahlen. Vorkurs Informatik. Sommersemester Institut für Informatik Heinrich-Heine-Universität Düsseldorf

Binärzahlen. Vorkurs Informatik. Sommersemester Institut für Informatik Heinrich-Heine-Universität Düsseldorf Binärzahlen Vorkurs Informatik Institut für Informatik Heinrich-Heine-Universität Düsseldorf Sommersemester 2016 Gliederung 1 Das Binärsystem Einleitung Darstellung 2 Umrechen Modulo und DIV Dezimal in

Mehr

Zahlen in Binärdarstellung

Zahlen in Binärdarstellung Zahlen in Binärdarstellung 1 Zahlensysteme Das Dezimalsystem Das Dezimalsystem ist ein Stellenwertsystem (Posititionssystem) zur Basis 10. Das bedeutet, dass eine Ziffer neben ihrem eigenen Wert noch einen

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen 3 Zahlendarstellung - Zahlensysteme - b-adische Darstellung natürlicher Zahlen - Komplementbildung - Darstellung ganzer und reeller Zahlen Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen......

Mehr

, 2014W Übungstermin: Fr.,

, 2014W Übungstermin: Fr., VU Technische Grundlagen der Informatik Übung 1: Zahlendarstellungen, Numerik 183.579, 2014W Übungstermin: Fr., 17.10.2014 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert

Mehr

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im

Mehr

Grundlagen der Technischen Informatik. 3. Übung

Grundlagen der Technischen Informatik. 3. Übung Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Zahlendarstellungen

Mehr

01 - Zahlendarstellung

01 - Zahlendarstellung 01 - Zahlendarstellung Technische Grundlagen der Informatik Automation Systems Group E183-1 Institute of Computer Aided Automation Vienna University of Technology email: tgi@auto.tuwien.ac.at Zahlendarstellung

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

, 2017S Übungstermin: Di.,

, 2017S Übungstermin: Di., VU Technische Grundlagen der Informatik Übung 1: Zahlendarstellungen, Numerik 183.579, 2017S Übungstermin: Di., 14.03.2017 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 06.03.09 2-1 Heutige große Übung Allgemeines

Mehr

, 2015S Übungstermin: Mi.,

, 2015S Übungstermin: Mi., VU Grundlagen digitaler Systeme Übung 1: Zahlendarstellungen, Numerik 183.580, 2015S Übungstermin: Mi., 18.03.2015 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen Hilfsmittel

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 3. Vorlesung Inhalt Zahlensysteme Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag Binary Offset 1er-Komplement 2er-Komplement Addition und Subtraktion binär dargestellter

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

1. Tutorium Digitaltechnik und Entwurfsverfahren

1. Tutorium Digitaltechnik und Entwurfsverfahren 1. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 25 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division

Mehr

1 Dualsystem Dualzahlen mit Vorzeichen 4. 2 Hexadezimalsystem Hexadezimalzahlen mit Vorzeichen Oktalsystem 13 4 Zahlenring 14

1 Dualsystem Dualzahlen mit Vorzeichen 4. 2 Hexadezimalsystem Hexadezimalzahlen mit Vorzeichen Oktalsystem 13 4 Zahlenring 14 Zahlensysteme Inhalt: 1 Dualsystem 1 1.1 Dualzahlen mit Vorzeichen 4 2 Hexadezimalsystem 8 2.1 Hexadezimalzahlen mit Vorzeichen 10 3 Oktalsystem 13 4 Zahlenring 14 Definition: Ein polyadisches Zahlensystem

Mehr

1. Grundlagen der Informatik Zahlensysteme und interne Zahlendarstellung

1. Grundlagen der Informatik Zahlensysteme und interne Zahlendarstellung 1. Grundlagen der Informatik Zahlensysteme und interne Zahlendarstellung Inhalt Grundlagen digitaler Systeme Boolesche Algebra / Aussagenlogik Organisation und Architektur von Rechnern Zahlensysteme und

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Skript Zahlensysteme

Skript Zahlensysteme Skript Zahlensysteme Dieses Skript enthält die Themen meiner Unterrichtseinheit Zahlensysteme. Hier sollen die Grundlagen für das Verständnis der darauf folgenden Inhalte zu den Abläufen innerhalb des

Mehr

GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK

GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK 1 GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK Aufgabe 1 Bin- und Hex Arithmetik 2 Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln:

Mehr

Binäre Darstellung ganzer Zahlen

Binäre Darstellung ganzer Zahlen Vorlesung Objektorientierte Softwareentwicklung Exkurse use Binäre Darstellung ganzer Zahlen Binärdarstellung natürlicher Zahlen Ganze Zahlen im Einerkomplement Ganze Zahlen im Zweierkomplement Elementare

Mehr

Kapitel 5: Darstellung von Daten im Rechner

Kapitel 5: Darstellung von Daten im Rechner Kapitel 5: Darstellung von Daten im Rechner Kapitel 5 Darstellung von Daten im Rechner und Rechnerarithmetik Literatur: Oberschelp/Vossen, Kapitel 5 Kapitel 5: Darstellung von Daten im Rechner Seite Kapitel

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 1 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Merke: Mit jedem zusätzlichen Bit verdoppelt sich die Anzahl der darstellbaren Zahlen bzw. Zustände

Merke: Mit jedem zusätzlichen Bit verdoppelt sich die Anzahl der darstellbaren Zahlen bzw. Zustände 1 2 Merke: Mit jedem zusätzlichen Bit verdoppelt sich die Anzahl der darstellbaren Zahlen bzw. Zustände 3 Die Zuordnung der Himmelsrichtungen zu den dreistelligen Binärzahlen, also Norden 000 Süden 001

Mehr

Informationsverarbeitung in IT-Systemen

Informationsverarbeitung in IT-Systemen Informationsverarbeitung in IT-Systemen Informationsverarbeitung in IT-Systemen Signalarten Präfixe Zahlensysteme Rechnen mit Dualzahlen Darstellung negativer Dualzahlen Codes Paritätsprüfung Digitaltechnik

Mehr

BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de

BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de BSZ für Elektrotechnik Dresden Zahlenformate Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de Gliederung 1 Überblick 2 Grundaufbau der Zahlensysteme 2.1 Dezimalzahlen 2.2 Binärzahlen = Dualzahlen

Mehr

Zum Nachdenken. Welche Eigenschaften einer Vorzeichendarstellung. erreichen? Wie könnte man Vorzeichenzahlen darstellen?

Zum Nachdenken. Welche Eigenschaften einer Vorzeichendarstellung. erreichen? Wie könnte man Vorzeichenzahlen darstellen? TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Zum Nachdenken Welche Eigenschaften einer Vorzeichendarstellung könnte man versuchen zu erreichen? Wie könnte man Vorzeichenzahlen darstellen? Grundlagen

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 27 4. Vorlesung Inhalt Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag 2er-Komplement BCD Addition und Subtraktion binär dargestellter Zahlen Carry und Overflow Little Endian

Mehr

Digitaltechnik Grundlagen 2. Zahlensysteme

Digitaltechnik Grundlagen 2. Zahlensysteme 2. Zahlensysteme Version 1.0 von 02/2018 Unterschiedliche Zahlensysteme [Quelle: http://www.rechenhilfsmittel.de/zahlen.htm] Zahlensystem der Maya [Quelle: https://www.kindernetz.de] Altäqyptisches Zahlensystem

Mehr

There are only 10 types of people in the world: those who understand binary, and those who don't

There are only 10 types of people in the world: those who understand binary, and those who don't Modul Zahlensysteme In der Digitaltechnik haben wir es mit Signalen zu tun, die zwei Zustände annehmen können: Spannung / keine Spannung oder 1/ oder 5V / V oder beliebige andere Zustände. In diesem Modul

Mehr

Zwischenklausur Informatik, WS 2014/15

Zwischenklausur Informatik, WS 2014/15 Zwischenklausur Informatik, WS /5.. Zugelassene Hilfsmittel: außer Stift und Papier keine Hinweis: Geben Sie bei allen Berechnungen den vollständigen Rechenweg mit an! Alle Aufgaben/Fragen sind unmittelbar

Mehr

DuE-Tutorien 17 und 18

DuE-Tutorien 17 und 18 DuE-Tutorien 17 und 18 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery TUTORIENWOCHE 1 AM 04.11.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Informatik I Modul 2: Rechnerarithmetik (1)

Informatik I Modul 2: Rechnerarithmetik (1) Fall Term 2010, Department of Informatics, IFI, UZH, Switzerland Informatik I Modul 2: Rechnerarithmetik (1) 2010 Burkhard Stiller M2 1 Modul 2: Rechnerarithmetik (1) Zahlensysteme Zahlendarstellung 2010

Mehr

Modul 2: Rechnerarithmetik (1) Informatik I. Modul 2: Rechnerarithmetik (1) Rechnerarithmetik. Formale Grundlagen. Zahlensysteme (1) Zahlensysteme (2)

Modul 2: Rechnerarithmetik (1) Informatik I. Modul 2: Rechnerarithmetik (1) Rechnerarithmetik. Formale Grundlagen. Zahlensysteme (1) Zahlensysteme (2) Fall Term 1, Department of Informatics, IFI, UZH, Switzerland Modul : Rechnerarithmetik (1) Informatik I Modul : Rechnerarithmetik (1) Zahlensysteme Zahlendarstellung 1 Burkhard Stiller M 1 1 Burkhard

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Inhalt. Zahlendarstellungen

Inhalt. Zahlendarstellungen Inhalt 1 Motivation 2 Integer- und Festkomma-Arithmetik Zahlendarstellungen Algorithmen für Integer-Operationen Integer-Rechenwerke Rechnen bei eingeschränkter Präzision 3 Gleitkomma-Arithmetik Zahlendarstellungen

Mehr

Zahlensysteme Seite -1- Zahlensysteme

Zahlensysteme Seite -1- Zahlensysteme Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4

Mehr

Grundlagen der Informatik I. Übung

Grundlagen der Informatik I. Übung Grundlagen der Informatik I Übung Studiengang Wirtschaftsingenieurwesen Wintersemester 1/13 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich Informatik/Mathematik Friedrich-List-Platz

Mehr

Lösung 1. Übungsblatt

Lösung 1. Übungsblatt Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung

Mehr

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Technische Grundlagen der Informatik Kapitel 8 Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Kapitel 8: Themen Zahlensysteme - Dezimal - Binär Vorzeichen und Betrag Zweierkomplement Zahlen

Mehr

5 Zahlenformate und deren Grenzen

5 Zahlenformate und deren Grenzen 1 5 Zahlenformate und deren Grenzen 5.1 Erinnerung B-adische Zahlendarstellung Stellenwertsystem: Jede Ziffer hat ihren Wert, und die Stelle der Ziffer in der Zahl modifiziert den Wert. 745 = 7 100 + 4

Mehr

alphanumerische Zeichen

alphanumerische Zeichen Darstellung von Text 7 Bit pro Zeichen genügen (2 7 = 128) 26 Kleinbuchstaben 26 Großbuchstaben 10 Ziffern alphanumerische Zeichen Sonderzeichen wie '&', '!', ''' nicht druckbare Steuerzeichen, z.b. -

Mehr

Darstellung von negativen binären Zahlen

Darstellung von negativen binären Zahlen Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------

Mehr

DuE-Tutorien 16 und 17

DuE-Tutorien 16 und 17 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Tutorienwoche 1 am 05.11.2010 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der

Mehr

Computer rechnen nur mit Nullen und Einsen

Computer rechnen nur mit Nullen und Einsen Computer rechnen nur mit Nullen und Einsen Name: Unser bekanntes Dezimalsystem mit 10 Ziffern Ein wesentliches Merkmal eines Zahlensystems ist die verwendete Anzahl der Ziffern. Im Dezimalsystem gibt es

Mehr

2.Vorlesung Grundlagen der Informatik

2.Vorlesung Grundlagen der Informatik Christian Baun 2.Vorlesung Grundlagen der Informatik Hochschule Darmstadt WS1112 1/16 2.Vorlesung Grundlagen der Informatik Christian Baun Hochschule Darmstadt Fachbereich Informatik christian.baun@h-da.de

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: +/-/*

Mehr

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben Zwischenklausur Informatik, WS 206/7 4.2.206 Lösungen zu den Aufgaben. Gegeben sind folgende Dualzahlen in Zweierkomplementdarstellung. Geben Sie den jeweils zugehörigen Dezimalwert an! a) entspricht der

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: +/-/*

Mehr

Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4

Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4 Aufgabe 1 Eine Zahl a ist mit 8 Bits vorzeichenlos (8 bit unsigned) dargestellt. Die Zahl y soll die Zahl a multipliziert mit 4 sein (y = a 4 D ). a) Wie viele Bits benötigen Sie für die Darstellung von

Mehr

Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 4.1: Zahlensysteme a) Bitte füllen Sie die leeren Zellen

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung

Mehr

Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2018/19. Allgemeine Informationen zum Praktikum

Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2018/19. Allgemeine Informationen zum Praktikum Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2018/19 Fakultät für Informatik Lehrstuhl 14 Lars Hildebrand Übungsblatt 1 Besprechung: 22. 26.10.2018 (KW 43) Allgemeine

Mehr

2. Ganze Zahlen. 9 * celsius / Celsius to Fahrenheit. (9 * celsius / 5) + 32

2. Ganze Zahlen. 9 * celsius / Celsius to Fahrenheit. (9 * celsius / 5) + 32 Celsius to Fahrenheit // Program: fahrenheit.cpp // Convert temperatures from Celsius to Fahrenheit. #include 2. Ganze Zahlen Auswertung arithmetischer Ausdrücke, Assoziativität und Präzedenz,

Mehr

Arithmetik: Vorzeichenregeln und Überlauf, Exponenten & Normalisierung, Umrechnungen. Architektur: - Rechnerarchitektur, Instruktionssatz, Assembler

Arithmetik: Vorzeichenregeln und Überlauf, Exponenten & Normalisierung, Umrechnungen. Architektur: - Rechnerarchitektur, Instruktionssatz, Assembler F. Zahlendarstellung und Rechnerarithmetik F.1. Einordnung & Inhalte Zahlendarstellungen: binär, BCD oder als ASCII-Text, Einer- und Zweierkomplement, Gleit- & Festkommazahlen. Arithmetik: Vorzeichenregeln

Mehr

Zahlensysteme. Formale Methoden der Informatik WiSe 2008/2009 Folie 1 (von 54)

Zahlensysteme. Formale Methoden der Informatik WiSe 2008/2009 Folie 1 (von 54) Zahlensysteme Formale Methoden der Informatik WiSe 28/29 Folie (von 54) Teil I: Zahlensysteme. Einführung und Zahlensysteme 2. Zahlensysteme / Algorithmik 3. Zahlendarstellung im Rechner Franz-Josef Radermacher,

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Das negative Zweierkomplementzahlensystem. Ines Junold 23. Februar 2010

Das negative Zweierkomplementzahlensystem. Ines Junold 23. Februar 2010 Das negative Zweierkomplementzahlensystem Ines Junold 23. Februar 2010 1 Inhaltsverzeichnis 1 Einleitung 3 2 Das konventionelle Zweierkomplement 4 2.1 Definition.......................................

Mehr

Grundlagen der Informatik I. Übung

Grundlagen der Informatik I. Übung Grundlagen der Informatik I Übung Studiengang Wirtschaftsingenieurwesen Wintersemester 2013/2014 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich Informatik/Mathematik Friedrich-List-Platz

Mehr

mit 0 z 0 b 1 und 0 ẑ b n 1 1. Nach Induktionsannahme besitzt ẑ eine Darstellung der Länge n 1 zur Basis b. Damit ist

mit 0 z 0 b 1 und 0 ẑ b n 1 1. Nach Induktionsannahme besitzt ẑ eine Darstellung der Länge n 1 zur Basis b. Damit ist mit 0 z 0 b 1 und 0 ẑ b n 1 1. Nach Induktionsannahme besitzt ẑ eine Darstellung ẑ = ẑ n 2 b n 2 + + ẑ 1 b 1 + ẑ 0 b 0 der Länge n 1 zur Basis b. Damit ist z = (ẑ n 2 b n 2 + + ẑ 1 b 1 + ẑ 0 b 0 ) b +

Mehr

2. Ganze Zahlen. Beispiel: power8.cpp. Terminologie: L-Werte und R-Werte. Terminologie: L-Werte und R-Werte

2. Ganze Zahlen. Beispiel: power8.cpp. Terminologie: L-Werte und R-Werte. Terminologie: L-Werte und R-Werte 90 Beispiel: power8.cpp 91 2. Ganze Zahlen int a; // Input int r; // Result std::cout > a; Auswertung arithmetischer Ausdrücke, Assoziativität und Präzedenz, arithmetische

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2013/2014 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10 Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Technische Universität Carolo Wilhelmina zu Brauschweig Institut für rechnergestützte Modellierung im Bauingenierwesen Prof. Dr.-Ing. habil. Manfred Krafczyk Pockelsstraße 3, 38106 Braunschweig http://www.irmb.tu-bs.de

Mehr

Digitaltechnik FHDW 1.Q 2007

Digitaltechnik FHDW 1.Q 2007 Digitaltechnik FHDW 1.Q 2007 1 Übersicht 1-3 1 Einführung 1.1 Begriffsdefinition: Analog / Digital 2 Zahlensysteme 2.1 Grundlagen 2.2 Darstellung und Umwandlung 3 Logische Verknüpfungen 3.1 Grundfunktionen

Mehr

Technische Informatik I SS 2005

Technische Informatik I SS 2005 Übungen zur Vorlesung Technische Informatik I SS 2005 Hauck, Schmied, De Melis, Guenkova-Luy Übungsblatt 4 Zahlendarstellung und Rechenarithmetik 1 Zahlenumwandlung Zahlendarstellung Binär wird zur Zahlenumwandlung

Mehr

Zahlensysteme Dezimal-System

Zahlensysteme Dezimal-System Zahlensysteme Dezimal-System Zahlenvorrat: 0,1,2,3,4,5,6,7,8,9 Mögliche unterschiedliche Zeichen pro Stelle:10 Basis: 10 Kennzeichnung: Index 10 oder D (dezimal) Wertigkeit 10 5 10 4 10 3 10 2 10 1 10

Mehr

Algorithmen und Datenstrukturen 02

Algorithmen und Datenstrukturen 02 1. November 2011 Inhaltsverzeichnis 1 Organisatorisches Allgemeine Hinweise Texteditoren 2 Besprechung Blatt 1 Erste Eindrücke 3 Vorbereitung Blatt 2 Zahlensysteme, Datentypen und Ausdrücke String-Operationen

Mehr

Zahlensysteme. Wie Computer Zahlen darstellen und mit ihnen rechnen Peter Ziesche

Zahlensysteme. Wie Computer Zahlen darstellen und mit ihnen rechnen Peter Ziesche Zahlensysteme Wie Computer Zahlen darstellen und mit ihnen rechnen 16.10.2004 Peter Ziesche ahlen Natürliche Zahlen 1, 2, 3,... Ganze Zahlen..., -3, -2, -1, 0, 1, 2, 3,... Rationale Zahlen -2, -1/2, -1/3,

Mehr

B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Z = a 0 B 0 + a 1 B 1 + a 2 B a n-1 B n-1

B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Z = a 0 B 0 + a 1 B 1 + a 2 B a n-1 B n-1 Polyadisches Zahlensystem B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Ganze Zahlen: n-1 Z= a i B i i=0 Z = a 0 B 0 + a 1 B 1 + a 2 B 2 +... + a n-1 B n-1 Rationale Zahlen: n-1 Z= a i B i

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659 338 FB

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659 338 FB

Mehr

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Großübung 1: Zahlensysteme Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Lehrender: Dr. Klaus Richter, Institut für Informatik; E-Mail: richter@informatik.tu-freiberg.de

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung 5. Vorlesung 06.11.2018 1 Zahlendarstellungen 2 Speicherinhalte: Bits Hardware Spannung Ladung Magnetisierung Codierung 0V ungeladen unmagnetisiert 0 5V geladen magnetisiert

Mehr

Computergrundlagen Zahlensysteme

Computergrundlagen Zahlensysteme Computergrundlagen Zahlensysteme Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren, Widerständen und Kondensatoren

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr