Skript Zahlensysteme
|
|
|
- August Böhm
- vor 9 Jahren
- Abrufe
Transkript
1 Skript Zahlensysteme Dieses Skript enthält die Themen meiner Unterrichtseinheit Zahlensysteme. Hier sollen die Grundlagen für das Verständnis der darauf folgenden Inhalte zu den Abläufen innerhalb des Computers (wie zum Beispiel die Codierung oder die Umwandlung analoger in digitale Signale) gelegt werden. Die Aufgaben am Ende des Skriptes dienen der Übung und Vorbereitung auf die Lernerfolgskontrolle. Inhalt Zahlensysteme... 1 Dezimalsystem (Zehnersystem)...1 Dualsystem (Zweiersystem)...1 Hexadezimalsystem (Sechzehnersystem)...2 Umrechnungsverfahren... 3 Dualzahlen in Dezimalzahlen...3 Dezimalzahlen in Dualzahlen...3 Hexadezimalzahlen in Dezimalzahlen...4 Dezimalzahlen in Hexadezimalzahlen...4 Dualzahlen in Hexadezimalzahlen...5 Hexadezimalzahlen in Dualzahlen...5 Signierte Dualzahlen... 6 Darstellung negativer und positiver Dualzahlen...6 Komplementbildung...7 Einerkomplement...7 Zweierkomplement...7 Arithmetische Operationen mit Dualzahlen... 8 Addition...8 Subtraktion mit Hilfe der Zweierkomplement-Addition...8 Aufgaben... 9 Rainer Bertram Zahlensysteme.doc
2 Zahlensysteme Dezimalsystem (Zehnersystem) Zeichenvorrat: 10 Ziffern (0-9) Dezimalzahl , 2 6 Stellennummer Stellenwert Potenzwert 5*1000 4*100 7*10 9*1 2/10 6/100 Zahlenwert ,2 + 0,06 =5479,26 Dualsystem (Zweiersystem) Zeichenvorrat: 2 Ziffern (0,1) Dualsystem , 1 1 Stellennummer Stellenwert Potenzwert 1*64 0*32 1*16 0*8 1*4 1*2 1*1 1*1/2 1*1/4 Zahlenwert ,5 + 0,25 = 87,75 Rainer Bertram Zahlensysteme.doc -1-
3 Hexadezimalsystem (Sechzehnersystem) Zeichenvorrat: 10 Dezimalziffern (0-9) und 6 Buchstaben (A-F) Stellenwert der Dualzahl Dualzahl Dezimalzahl 3 B 7 E, C Stellennummer Stellenwert Potenzwert 3* *256 7*16 14*1 12/16 Zahlenwert ,75 =15230,75 Grundsätzlich gilt: Stellenwert vor dem Komma: W = B n-1 Stellenwert nach dem Komma: W = B -n = 1/B n Rainer Bertram Zahlensysteme.doc -2-
4 : 2 = 28 Rest 1 Umrechnungsverfahren Dualzahlen Dezimalzahlen ,011 2 = 1* * * * * *2-3 = /4 + 1/8 = 46, Dezimalzahlen Dualzahlen Ganze positive Dezimalzahlen: 28 : 2 = 14 Rest 0 14 : 2 = 7 Rest 0 7 : 2 = 3 Rest 1 3 : 2 = 1 Rest 1 1 : 2 = 0 Rest 1 Leserichtung = Dezimalzahlen zwischen 1 und 0: 0, ,375 * 2 = 0,75 = 0,75 0,75 * 2 = 1,5 1,5-1 = 0,5 0,5 * 2 = 1,0 1,0-1 = 0 = 0,011 2 Leserichtung Rainer Bertram Zahlensysteme.doc -3-
5 Hexadezimalzahlen Dezimalzahlen AFFE 16 = A * F * F * E * 16 0 = 10 * * * * 1 = Dezimalzahlen Hexadezimalzahlen Ganze positive Dezimalzahlen: : 16 = 124 Rest 14 E 124 : 16 = 7 Rest 12 C 7 : 16 = 0 Rest 7 7 = 7CE 16 Leserichtung Dezimalzahlen zwischen 1 und 0: 0, ,575 * 16 = 9,2 9,2-9 = 0,2 0,2 * 16 = 3,2 3,2-3 = 0,2 0,2 * 16 = 3,2 3,2-3 = 0,2 = 0, Leserichtung Rainer Bertram Zahlensysteme.doc -4-
6 Dualzahlen Hexadezimalzahlen Dezimalzahl Dualzahl Hexadezimalzahl A B C D E F Dualzahlen Hexadezimalzahlen , F B, 8 E 8 16 Hexadezimalzahlen Dualzahlen 7 D A 2 4, 3 9 C E , Rainer Bertram Zahlensysteme.doc -5-
7 Signierte Dualzahlen Darstellung negativer und positiver Dualzahlen Bei signierten Dualzahlen wird durch das führende Bit - auch MSB (Most Significant Bit) - das Vorzeichen angegeben negativ signierte Dualzahl positiv signierte Dualzahl Beispiel: Vierstellige signierte Dualzahlen Signierte Dualzahl MSB als + oder - und zugehörige Dezimalzahl Zugehörige Zahlengerade des Dezimalsystems Im Dualsystem kann der Zahlenwert (dezimal) durch Änderung der Vorzeichen nicht sofort erkannt werden: = = = = -2 Rainer Bertram Zahlensysteme.doc -6-
8 Komplementbildung Einerkomplement = = = = -7 Durch das Vertauschen der Nullen und Einsen (Einerkomplement) entstehen Zahlen, die (zahlenmäßig) um 1 größer sind = = = = 7 Durch das Vertauschen der Nullen und Einsen (Einerkomplement) entstehen Zahlen, die (zahlenmäßig) um 1 kleiner sind. Zweierkomplement Umwandlung negative in positive und positive in negative Dualzahlen 1. Umwandlung +5 in -5 Zahl Einerkomplement Zweierkomplement Umwandlung -6 in +6 Zahl Einerkomplement Zweierkomplement Umwandlung 0 in 0 (nicht wundern, hieran will ich etwas zeigen ;-) Zahl Einerkomplement Zweierkomplement (1) Der Übertrag wird nicht beachtet!! Rainer Bertram Zahlensysteme.doc -7-
9 Addition Arithmetische Operationen mit Dualzahlen Duales Zahlensystem Dezimalzahlensystem = = = = = = = (1) = 2 Übertrag z.b.: Übertrag Subtraktion mit Hilfe der Zweierkomplement-Addition Von den arithmetischen Funktionen beherrscht die CPU nur das Addieren. Eine Subtraktion wird als Addition einer negativen Zahl aufgefasst. Beispiel: Umwandlung +3 in -3 Zahl Einerkomplement Zweierkomplement Addition: = (1) = 4 Rainer Bertram Zahlensysteme.doc -8-
10 Aufgaben (Hinweis: Liegt dieses Dokument als Word-Datei vor, sind die Lösungen versteckt enthalten) Schreibe zu allen Aufgaben den Rechenweg mit auf! 1. Rechne folgende Zahlen in das Dezimalsystem um: = = = 1 * = 257 D2A 16 = 13 * * * 1 = = * = = * = a) Rechne folgende Zahlen in das Dualsystem um: = : 2 = 12 Rest 0 12 : 2 = 6 Rest 0 6 : 2 = 3 Rest 0 3 : 2 = 1 Rest 1 1 : 2 = 0 Rest = : 2 = 28 Rest 1 28 : 2 = 14 Rest 0 14 : 2 = 7 Rest 0 7 : 2 = 3 Rest 1 3 : 2 = 1 Rest 1 1 : 2 = 0 Rest 1 Rainer Bertram Zahlensysteme.doc -9-
11 43 10 = : 2 = 21 Rest 1 21 : 2 = 10 Rest 1 10 : 2 = 5 Rest 0 5 : 2 = 2 Rest 1 2 : 2 = 1 Rest 0 1 : 2 = 0 Rest 1 b) Rechne ins Hexadezimalsystem = : 16 = 36 Rest : 16 = 2 Rest : 16 = 0 Rest = 50A : 16 = 1290 Rest : 16 = 80 Rest 10 A 80 : 16 = 5 Rest : 16 = 0 Rest Stelle folgende Zahl in einem Zahlensystem mit den drei Zeichen A (Wert 0), B (Wert 1) und C (Wert 2) dar = Lösung: CAB 3 19 : 3 = 6 Rest 1 B 6 : 3 = 2 Rest 0 A 2 : 3 = 0 Rest 2 C Stelle folgende Dezimalzahlen als signierte Dualzahl dar: 6 10 = = = = Rainer Bertram Zahlensysteme.doc -10-
12 Berechne mit signierten Dualzahlen: 5 2 = 3 Ergebnis: 0011 Rechenweg: 2 10 = Einerkomplement: Zweierkomplement: = Rainer Bertram Zahlensysteme.doc -11-
Zahlensysteme und Kodes. Prof. Metzler
Zahlensysteme und Kodes 1 Zahlensysteme und Kodes Alle üblichen Zahlensysteme sind sogenannte Stellenwert-Systeme, bei denen jede Stelle innerhalb einer Zahl ein besonderer Vervielfachungsfaktor in Form
Computer rechnen nur mit Nullen und Einsen
Computer rechnen nur mit Nullen und Einsen Name: Unser bekanntes Dezimalsystem mit 10 Ziffern Ein wesentliches Merkmal eines Zahlensystems ist die verwendete Anzahl der Ziffern. Im Dezimalsystem gibt es
Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit
Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert
1 Zahlen im Dezimalsystem
1 Zahlen im Dezimalsystem Es gibt verschiedene Arten Zahlen aufzuschreiben. Zunächst gibt es verschiedene Zahlzeichen wie chinesische, römische oder arabische. Im deutschsprachigen Raum ist die Verwendung
Basisinformationstechnologie I
Basisinformationstechnologie I Wintersemester 2012/13 24. Oktober 2012 Grundlagen III Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // [email protected]
There are only 10 types of people in the world: those who understand binary, and those who don't
Modul Zahlensysteme In der Digitaltechnik haben wir es mit Signalen zu tun, die zwei Zustände annehmen können: Spannung / keine Spannung oder 1/ oder 5V / V oder beliebige andere Zustände. In diesem Modul
Zahlen in Binärdarstellung
Zahlen in Binärdarstellung 1 Zahlensysteme Das Dezimalsystem Das Dezimalsystem ist ein Stellenwertsystem (Posititionssystem) zur Basis 10. Das bedeutet, dass eine Ziffer neben ihrem eigenen Wert noch einen
Digitaltechnik FHDW 1.Q 2007
Digitaltechnik FHDW 1.Q 2007 1 Übersicht 1-3 1 Einführung 1.1 Begriffsdefinition: Analog / Digital 2 Zahlensysteme 2.1 Grundlagen 2.2 Darstellung und Umwandlung 3 Logische Verknüpfungen 3.1 Grundfunktionen
Rückblick. Zahlendarstellung zu einer beliebigen Basis b. Umwandlung zwischen Zahlendarstellung (214) 5 = (278) 10 =(?) 8
Rückblick Zahlendarstellung zu einer beliebigen Basis b (214) 5 = Umwandlung zwischen Zahlendarstellung (278) 10 =(?) 8 25 Rückblick Schnellere Umwandlung zwischen Binärdarstellung und Hexadezimaldarstellung
Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2
Leseprobe Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-4331- Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4331-
Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016
Musterlösung 1 Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den
1 Dualsystem Dualzahlen mit Vorzeichen 4. 2 Hexadezimalsystem Hexadezimalzahlen mit Vorzeichen Oktalsystem 13 4 Zahlenring 14
Zahlensysteme Inhalt: 1 Dualsystem 1 1.1 Dualzahlen mit Vorzeichen 4 2 Hexadezimalsystem 8 2.1 Hexadezimalzahlen mit Vorzeichen 10 3 Oktalsystem 13 4 Zahlenring 14 Definition: Ein polyadisches Zahlensystem
Grundlagen der Technischen Informatik. 3. Übung
Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Zahlendarstellungen
Zahlensysteme. Zahl 0 0 0 0 0 5 5. Stellenwert Zahl 0 0 0 0 0 50 5. Zahl = 55 +50 +5
Personal Computer in Betrieb nehmen 1/6 Weltweit setzen die Menschen alltäglich das Zehnersystem für Zählen und Rechnen ein. Die ursprüngliche Orientierung stammt vom Zählen mit unseren 10 Fingern. Für
Über Zahlensysteme und das Rechnen mit Hexadezimalzahlen
Über Zahlensysteme und das Rechnen mit Hexadezimalzahlen Zu Risiken und Nebenwirkungen fragen Sie... 1. Zahlen und das Dezimalsystem Es gibt verschiedene Arten, Zahlen aufzuschreiben. Es gibt zunächst
1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:
Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der
1. Grundlegende Konzepte der Informatik
1. Grundlegende Konzepte der Informatik Inhalt Algorithmen Darstellung von Algorithmen mit Programmablaufplänen Beispiele für Algorithmen Aussagenlogik Zahlensysteme Kodierung Peter Sobe 1 Zahlensysteme
Zahlendarstellungen und Rechnerarithmetik*
Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien
Informatik I Modul 2: Rechnerarithmetik (1)
Fall Term 2010, Department of Informatics, IFI, UZH, Switzerland Informatik I Modul 2: Rechnerarithmetik (1) 2010 Burkhard Stiller M2 1 Modul 2: Rechnerarithmetik (1) Zahlensysteme Zahlendarstellung 2010
Modul 2: Rechnerarithmetik (1) Informatik I. Modul 2: Rechnerarithmetik (1) Rechnerarithmetik. Formale Grundlagen. Zahlensysteme (1) Zahlensysteme (2)
Fall Term 1, Department of Informatics, IFI, UZH, Switzerland Modul : Rechnerarithmetik (1) Informatik I Modul : Rechnerarithmetik (1) Zahlensysteme Zahlendarstellung 1 Burkhard Stiller M 1 1 Burkhard
Zahlensysteme Dezimal-System
Zahlensysteme Dezimal-System Zahlenvorrat: 0,1,2,3,4,5,6,7,8,9 Mögliche unterschiedliche Zeichen pro Stelle:10 Basis: 10 Kennzeichnung: Index 10 oder D (dezimal) Wertigkeit 10 5 10 4 10 3 10 2 10 1 10
Übung zur Wirtschaftsinformatik I. Zahlensysteme / Codierung
WS 06/07 Thema 4: Zahlensysteme / Codierung 1 Übung zur Winfo I - Themenplan - Informationsverarbeitung in Unternehmen Tabellenkalkulation Anwendungen PC-Komponenten Zahlensysteme / Codierung Boole sche
Grundlagen der Technischen Informatik. 3. Übung
Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Zahlendarstellungen
Digitaltechnik Grundlagen 2. Zahlensysteme
2. Zahlensysteme Version 1.0 von 02/2018 Unterschiedliche Zahlensysteme [Quelle: http://www.rechenhilfsmittel.de/zahlen.htm] Zahlensystem der Maya [Quelle: https://www.kindernetz.de] Altäqyptisches Zahlensystem
Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme
Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik
1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement
Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im
Einführung in die elektronische Datenverarbeitung. Zahlensysteme
Zahlensysteme Zahlensysteme Vereinbarung (Abbildungsfunktion) zur Interpretation einer Zeichenfolge. Ein Zeichen eines Zahlensystems wird als Ziffer bezeichnet. Darstellung von natürlichen Zahlen im Dezimal-,
Zahlen im Computer (Klasse 7 Aufbaukurs Informatik)
Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Die Bildauswahl erfolgte in Anlehnung an das Alter der Kinder Prof. J. Walter Bitte römische Zahlen im Geschichtsunterricht! Messsystem mit Mikrocontroller
Grundlagen der Informatik I. Übung
Grundlagen der Informatik I Übung Studiengang Wirtschaftsingenieurwesen Wintersemester 1/13 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich Informatik/Mathematik Friedrich-List-Platz
Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte -
Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte - Sebastian Ebers Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/users/ebers Zahlendarstellung 201010? 16 2010
, 2017S Übungstermin: Di.,
VU Technische Grundlagen der Informatik Übung 1: Zahlendarstellungen, Numerik 183.579, 2017S Übungstermin: Di., 14.03.2017 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen
Grundlagen der Technischen Informatik. 3. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit
Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Zahlendarstellungen
01 - Zahlendarstellung
01 - Zahlendarstellung Technische Grundlagen der Informatik Automation Systems Group E183-1 Institute of Computer Aided Automation Vienna University of Technology email: [email protected] Zahlendarstellung
2 Repräsentation von elementaren Daten
2 Repräsentation von elementaren Daten Alle (elemtaren) Daten wie Zeichen und Zahlen werden im Dualsystem repräsentiert. Das Dualsystem ist ein spezielles B-adisches Zahlensystem, nämlich mit der Basis
3 Kodierung von Informationen
43 3 Kodierung von Informationen Bevor ich Ihnen im nächsten Kapitel die einzelnen Bausteine einer Computeranlage vorstelle, möchte ich Ihnen noch kurz zeigen, wie Daten kodiert sein müssen, damit der
Technische Fachhochschule Berlin Fachbereich VIII
Technische Fachhochschule Berlin Fachbereich VIII Ergänzungen Seite von LOGIKPEGEL Logik-Familien sind elektronische Schaltkreise, die binäre Zustände verarbeiten und als logische Verknüpfungen aufgebaut
Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen
3 Zahlendarstellung - Zahlensysteme - b-adische Darstellung natürlicher Zahlen - Komplementbildung - Darstellung ganzer und reeller Zahlen Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen......
1. Tutorium Digitaltechnik und Entwurfsverfahren
1. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 25 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
Informationsdarstellung im Rechner
Informationsdarstellung im Rechner Dr. Christian Herta 15. Oktober 2005 Einführung in die Informatik - Darstellung von Information im Computer Dr. Christian Herta Darstellung von Information im Computer
Dualzahlen
Dualzahlen Ein Schüler soll sich eine Zahl zwischen und 6 denken. Nun soll der Schüler seinen Zahl in folgenden Tabellen suchen und die Nummer der Tabelle nennen in welcher sich seine Zahl befindet. 7
BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de
BSZ für Elektrotechnik Dresden Zahlenformate Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de Gliederung 1 Überblick 2 Grundaufbau der Zahlensysteme 2.1 Dezimalzahlen 2.2 Binärzahlen = Dualzahlen
Grundlagen der Technischen Informatik. 3. Übung
Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Zahlendarstellungen
Mikro-Controller-Pass 1
MikroControllerPass Lernsysteme MC 805 Seite: (Selbststudium) Inhaltsverzeichnis Vorwort Seite 2 Addition Seite 3 Subtraktion Seite 4 Subtraktion durch Addition der Komplemente Dezimales Zahlensystem:Neunerkomplement
Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird.
Zahlensysteme Definition: Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. In der Informatik spricht man auch von Stellenwertsystem,
Informationsverarbeitung in IT-Systemen
Informationsverarbeitung in IT-Systemen Informationsverarbeitung in IT-Systemen Signalarten Präfixe Zahlensysteme Rechnen mit Dualzahlen Darstellung negativer Dualzahlen Codes Paritätsprüfung Digitaltechnik
Grundlagen der Informatik
Grundlagen der Informatik Teil II Speicherung und Interpretation von Information Seite 1 Speicherung und Interpretation von Information Beginn der Datenverarbeitung => Erfindung von Zahlensystemen Quantifizierung
Zahlensysteme. Wie Computer Zahlen darstellen und mit ihnen rechnen Peter Ziesche
Zahlensysteme Wie Computer Zahlen darstellen und mit ihnen rechnen 16.10.2004 Peter Ziesche ahlen Natürliche Zahlen 1, 2, 3,... Ganze Zahlen..., -3, -2, -1, 0, 1, 2, 3,... Rationale Zahlen -2, -1/2, -1/3,
, 2015S Übungstermin: Mi.,
VU Grundlagen digitaler Systeme Übung 1: Zahlendarstellungen, Numerik 183.580, 2015S Übungstermin: Mi., 18.03.2015 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen Hilfsmittel
Vorwort. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN:
Vorwort Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42331-2
Einführung in die Informatik I
Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik
Rechnergrundlagen SS Vorlesung
Rechnergrundlagen SS 27 4. Vorlesung Inhalt Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag 2er-Komplement BCD Addition und Subtraktion binär dargestellter Zahlen Carry und Overflow Little Endian
Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen
Großübung 1: Zahlensysteme Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Lehrender: Dr. Klaus Richter, Institut für Informatik; E-Mail: [email protected]
Kapitel 2. Zahlensysteme, Darstellung von Informationen
Kapitel 2 Zahlensysteme, Darstellung von Informationen 1 , Darstellung von Informationen Ein Computer speichert und verarbeitet mehr oder weniger große Informationsmengen, je nach Anwendung und Leistungsfähigkeit.
2.Vorlesung Grundlagen der Informatik
Christian Baun 2.Vorlesung Grundlagen der Informatik Hochschule Darmstadt WS1112 1/16 2.Vorlesung Grundlagen der Informatik Christian Baun Hochschule Darmstadt Fachbereich Informatik [email protected]
Einführung in die Programmierung
Technische Universität Carolo Wilhelmina zu Brauschweig Institut für rechnergestützte Modellierung im Bauingenierwesen Prof. Dr.-Ing. habil. Manfred Krafczyk Pockelsstraße 3, 38106 Braunschweig http://www.irmb.tu-bs.de
TI II: Computer Architecture Data Representation and Computer Arithmetic
Prof. Dr.-Ing. Jochen Schiller Computer Systems & Telematics 31 30 23 22 0 Sg Characteristic Mantissa TI II: Computer Architecture Data Representation and Computer Arithmetic Systems Representations Basic
Merke: Mit jedem zusätzlichen Bit verdoppelt sich die Anzahl der darstellbaren Zahlen bzw. Zustände
1 2 Merke: Mit jedem zusätzlichen Bit verdoppelt sich die Anzahl der darstellbaren Zahlen bzw. Zustände 3 Die Zuordnung der Himmelsrichtungen zu den dreistelligen Binärzahlen, also Norden 000 Süden 001
Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik
Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division
Grundlagen der Informatik I. Übung
Grundlagen der Informatik I Übung Studiengang Wirtschaftsingenieurwesen Wintersemester 2013/2014 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich Informatik/Mathematik Friedrich-List-Platz
Einführung in die PC-Grundlagen
Jürgen Ortmann Einführung in die PC-Grundlagen 9., aktualisierte Auflage An imprint of Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam
Zahlensysteme und ihre Anwendung
ASCII, ANSI und Unicode belegen übereinstimmend die Positionen 48 bis 57 mit den Ziffern '0'... '9'. 48 57 sind hierbei die Kennziffern von Schriftzeichen. Der Wechsel von arithmetischen Schriftzeichen
Einführung in die Informatik
Einführung in die Informatik Klaus Knopper 26.10.2004 Repräsentation von Zahlen Zahlen können auf unterschiedliche Arten dargestellt werden Aufgabe: Zahlen aus der realen Welt müssen im Computer abgebildet
Alexander Halles. Zahlensysteme
Stand: 26.01.2004 - Inhalt - 1. Die verschiedenen und Umwandlungen zwischen diesen 3 1.1 Dezimalzahlensystem 3 1.2 Das Dualzahlensystem 4 1.2.1 Umwandlung einer Dezimalzahl in eine Dualzahl 4 1.2.2 Umwandlung
Vorlesung Programmieren
Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen
, 5 8. Hunderter Zehner Zehntel. Einer
5 1 11 Das Dezimalsystem Seit wir das erste Mal mit Hilfe unserer Finger»gezählt«haben, ist uns das Dezimalsystem Stück für Stück so vertraut geworden, dass wir es als selbstverständliches und womöglich
1. Stellenwerte im Dualsystem
1. a) Definitionen Stellenwertsystem Ein Zahlensystem bei dem der Wert einer Ziffer innerhalb einer Ziffernfolge von ihrer Stelle abhängt, wird Stellenwertsystem genannt. Die Stellenwerte sind also ganzzahlige
Bei der Darstellung von Daten mit Stromimpulsen gibt es nur 2 ZUSTÄNDE
OSZ Wirtschaft und Sozialversicherung Fach: EDV / Wn LA 1: Grundlagen der Datenverarbeitung LE 1: Information: CODIERUNG VON DATEN Um sich anderen verständlich zu machen, verwendet der (moderne) Mensch
Grundlagen der Informatik
Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................
Zahlensysteme Römische Zahlen
Herbstsemester 211, Institut für Informatik IFI, UZH, Schweiz Modul 2: Rechnerarithmetik (1) Informatik I Modul 2: Rechnerarithmetik (1) Zahlensysteme Zahlendarstellung Zeichendarstellung 211 Burkhard
Informatik I Modul 2: Rechnerarithmetik (1)
Herbstsemester 2011, Institut für Informatik IFI, UZH, Schweiz Informatik I Modul 2: Rechnerarithmetik (1) 2011 Burkhard Stiller M2 1 Modul 2: Rechnerarithmetik (1) Zahlensysteme Zahlendarstellung Zeichendarstellung
Lösung 1. Übungsblatt
Fakultät Informatik, Technische Informatik, Lehrstuhl für Eingebettete Systeme Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung
Kapitel 5: Darstellung von Daten im Rechner
Kapitel 5: Darstellung von Daten im Rechner Kapitel 5 Darstellung von Daten im Rechner und Rechnerarithmetik Literatur: Oberschelp/Vossen, Kapitel 5 Kapitel 5: Darstellung von Daten im Rechner Seite Kapitel
(7) AB 20: Bits und Bytes
Wie speichert ein Computer Informationen? - Binärsystem, Bits und Bytes Wusstet Ihr, dass Computer nur Nullen und Einsen verwenden? Alles, was ihr auf einem Computer seht oder hört Wörter, Bilder, Zahlen,
Einführung in die Computerorientierte Mathematik
Einführung in die Computerorientierte Mathematik Wintersemester 2014/15 Thomas Gerstner Institut für Mathematik Goethe-Universität Frankfurt 17. Oktober 2014 Inhaltsverzeichnis Inhaltsverzeichnis ii 1
3 Zahlensysteme in der Digitaltechnik
3 Zahlensysteme in der Digitaltechnik System Dezimal Hexadezimal Binär Oktal Basis, Radix 10 16 2 8 Zahlenwerte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 0 1 10 11 100
B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Z = a 0 B 0 + a 1 B 1 + a 2 B a n-1 B n-1
Polyadisches Zahlensystem B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Ganze Zahlen: n-1 Z= a i B i i=0 Z = a 0 B 0 + a 1 B 1 + a 2 B 2 +... + a n-1 B n-1 Rationale Zahlen: n-1 Z= a i B i
Inhalt. 2.1 Darstellung von Zahlen. 2.2 Darstellung von Zeichen. 2.3 Boolesche Algebra. 2.4 Aussagenlogik. Informatik 1 / Kapitel 2: Grundlagen
2. Grundlagen Inhalt 2.1 Darstellung von Zahlen 2.2 Darstellung von Zeichen 2.3 Boolesche Algebra 2.4 Aussagenlogik 2 2.1 Darstellung von Zahlen Im Alltag rechnen wir gewöhnlich im Dezimalsystem, d.h.
Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär
Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten
Binärzahlen. Vorkurs Informatik. Sommersemester Institut für Informatik Heinrich-Heine-Universität Düsseldorf
Binärzahlen Vorkurs Informatik Institut für Informatik Heinrich-Heine-Universität Düsseldorf Sommersemester 2016 Gliederung 1 Das Binärsystem Einleitung Darstellung 2 Umrechen Modulo und DIV Dezimal in
Rechnergrundlagen SS Vorlesung
Rechnergrundlagen SS 2007 3. Vorlesung Inhalt Zahlensysteme Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag Binary Offset 1er-Komplement 2er-Komplement Addition und Subtraktion binär dargestellter
Daten, Informationen, Kodierung. Binärkodierung
Binärkodierung Besondere Bedeutung der Binärkodierung in der Informatik Abbildung auf Alphabet mit zwei Zeichen, in der Regel B = {0, 1} Entspricht den zwei möglichen Schaltzuständen in der Elektronik:
Zahlensysteme Seite -1- Zahlensysteme
Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4
KNX TP1 Telegramm. KNX Association
KNX TP1 Telegramm Inhaltsverzeichnis 1 TP1 Telegramm allgemein...3 2 TP1 Telegramm Aufbau...3 3 TP1 Telegramm Zeitbedarf...4 4 TP1 Telegramm Quittung...5 5 Kapitel Telegramm: Informativer Anhang...6 5.1
Computergrundlagen Zahlensysteme
Computergrundlagen Zahlensysteme Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren, Widerständen und Kondensatoren
Inhalt. 2.1 Darstellung von Zahlen. 2.2 Darstellung von Zeichen. 2.3 Boolesche Algebra. 2.4 Aussagenlogik. 2.5 Logische Funktionen
2. Grundlagen Inhalt 2.1 Darstellung von Zahlen 2.2 Darstellung von Zeichen 2.3 Boolesche Algebra 2.4 Aussagenlogik 2.5 Logische Funktionen 2 2.1 Darstellung von Zahlen Im Alltag rechnen wir gewöhnlich
Einführung in die Informatik
Einführung in die Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik [email protected] http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659 338 FB
Chapter 1 Einführung. CCNA 1 version 3.0 Wolfgang Riggert, FH Flensburg auf der Grundlage von
Chapter 1 Einführung CCNA 1 version 3.0 Wolfgang Riggert, FH Flensburg auf der Grundlage von Rick Graziani Cabrillo College Vorbemerkung Die englische Originalversion finden Sie unter : http://www.cabrillo.cc.ca.us/~rgraziani/
Klausur Technische Informatik 1 + E-Technik SS 2013 Prüfer: Sutter Hilfsmittel: keine
Name:. Matrikel-Nr. Anzahl der Aufgaben: 18 Maximal erreichbare Punktezahl: 60 Ergebnis: 1. Gegeben ist der Motorola 1-of-8 Decoder/Demultiplexer MC74F138 mit folgendem Datenblattausschnitt: Datenblattausschnitt
Einführung in die Informatik
Einführung in die Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik [email protected] http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659 338 FB
Basisinformationstechnologie I
Basisinformationstechnologie I Wintersemester 2014/15 29. Oktober 2014 Grundlagen II Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // [email protected]
Die Zahlensysteme. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.
Die Zahlensysteme Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de 1 Einführung Seite 1 2 Das Umrechnen von Zahlen aus unterschiedlichen
