Erstes Mathe-Tutorium am Themen können gewählt werden unter:

Größe: px
Ab Seite anzeigen:

Download "Erstes Mathe-Tutorium am Themen können gewählt werden unter:"

Transkript

1 Mathe-Tutorium Erstes Mathe-Tutorium am Themen können gewählt werden unter: cgzspjt4mkirnrgnrfpkkn3j2vqos/iewform 1

2 Uniersität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Intelligente Datenanalyse Entscheidungsbäume Paul Prasse, Niels Landwehr, Tobias Scheffer

3 Entscheidungsbäume Eine on ielen Anwendungen: Kreditrisiken Länger als 3 Monate beschäftigt? Schufa-Auskunft positi? abgelehnt Ja Arbeitslos? Kredit - Sicherheiten > 5 x erfügbares Einkommen? Kredit - Sicherheiten > 2 x erfügbares Einkommen? abgelehnt Student? angenommen abgelehnt abgelehnt angenommen angenommen abgelehnt 3

4 Entscheidungsbäume Warum? Einfach zu interpretieren. Liefern Klassifikation plus Begründung. Abgelehnt, weil weniger als 3 Monate beschäftigt und Kredit-Sicherheiten < 2 x erfügbares Einkommen. Können aus Beispielen gelernt werden. Einfacher Lernalgorithmus. Effizient, skalierbar. Verschiedene Lernprobleme werden abgedeckt Klassifikations- und Regressionsbäume. Klassifikations-, Regressions-, Modellbäume häufig Komponenten komplexer (z.b. Risiko-)Modelle. 4

5 Klassifikation Eingabe: Instanz (Objekt) x X. Instanzen sind durch Vektoren on Attributen repräsentiert. Eine Instanz ist eine Belegung der Attribute. Instanzen werden auch als Merkmalsektoren bezeichnet. Ausgabe: Klasse y Y; endliche Menge Y. Beispiele: x x x {akzeptiert, abgelehnt}; {Kind, Frau, Mann}. 1 m z.b. Merkmale wie Farbe, Testergebnisse, Form, Klasse wird auch als Zielattribut bezeichnet. 5

6 Klassifikationslernen Eingabe: Trainingsdaten. L ( x, y ),...,( x, y ) 1 1 n n Ausgabe: Klassifikator. x i x x 1 m f : X Y Entscheidungsbaum: Pfad entlang der Kanten zu einem Blatt liefert Klassifikation 6

7 Regression Eingabe: Instanz (Objekt) x X. Instanzen sind durch Vektoren (fett gedruckt) on Attributen (kursi) repräsentiert. Eine Instanz ist eine Belegung der Attribute. Ausgabe: Funktionswert y Y; kontinuierlicher Wert. Lernproblem: kontinuierliche Trainingsdaten. L ( x, y ),...,( x, y ) z.b. 1 1 n ( x 1,3.5),...,(, 2.8) n x N 7

8 Entscheidungsbäume - Aufbau Testknoten: Testen, ob der Wert des Attributs die Bedingung erfüllen; bedingte Verzweigung in einen Ast. Terminalknoten: Liefern einen Wert als Ausgabe. Schufa-Auskunft positi? Länger als 3 Monate beschäftigt? abgelehnt Ja Arbeitslos? Kredit - Sicherheiten > 5 x erfügbares Einkommen? Kredit - Sicherheiten > 2 x erfügbares Einkommen? abgelehnt Student? angenommen abgelehnt abgelehnt angenommen angenommen abgelehnt 8

9 Entscheidungsbäume - Repräsentation Entscheidungsbäume können logische Operationen repräsentieren, wie:,, XOR A B C D E Schufa-Auskunft positi? Länger als 3 Monate beschäftigt? abgelehnt Ja Arbeitslos? Kredit - Sicherheiten > 5 x erfügbares Einkommen? Kredit - Sicherheiten > 2 x erfügbares Einkommen? abgelehnt Student? angenommen abgelehnt abgelehnt angenommen angenommen abgelehnt 9

10 Anwendung on Entscheidungsbäumen Testknoten: führe Test aus, wähle passende Verzweigung, rekursier Aufruf. Terminalknoten: liefere Wert als Klasse zurück. Schufa-Auskunft positi? Länger als 3 Monate beschäftigt? abgelehnt Ja Arbeitslos? Kredit - Sicherheiten > 5 x erfügbares Einkommen? Kredit - Sicherheiten > 2 x erfügbares Einkommen? abgelehnt Student? angenommen abgelehnt abgelehnt angenommen angenommen abgelehnt 10

11 Entscheidungsbäume Wann sinnoll? Entscheidungsbäume sinnoll, wenn: Instanzen durch Attribut-Werte-Paare beschrieben werden. Zielattribut einen diskreten Wertebereich hat. Bei Erweiterung auf Modellbäume auch kontinuierlicherer Wertebereich möglich. Interpretierbarkeit der Vorhersage gewünscht ist. Anwendungsgebiete: Medizinische Diagnose Kreditwürdigkeit Vorerarbeitungsschritt in der Computer Vision (z.b. Objekterkennung) 11

12 Lernen on Entscheidungsbäumen Tag Aussicht Temperatur Luftfeuchtigkeit Wind Tennis? 1 sonnig heiß hoch schwach 2 sonnig heiß hoch stark 3 bedeckt heiß hoch schwach 4 Regen mild hoch schwach 5 Regen kühl normal schwach 6 Regen kühl normal stark 7 bedeckt kühl normal stark 8 sonnig mild hoch schwach 9 sonnig kühl normal schwach 10 Regen mild normal schwach Finde Entscheidungsbaum, der zumindest für die Trainingsdaten die richtige Klasse liefert. Triialer Weg: Erzeuge einen Baum, der lediglich die Trainingsdaten repräsentiert. 12

13 Lernen on Entscheidungsbäumen Tag Aussicht Temperatur Wind Tennis? 1 sonnig heiß schwach 2 sonnig heiß stark 3 bedeckt heiß schwach 4 bedeckt kühl stark 5 bedeckt kühl schwach sonnig Aussicht bedeckt Temperatur Temperatur heiß kühl heiß kühl Wind Wind Wind Wind schwach stark schwach stark schwach stark schwach stark??? 13

14 Lernen on Entscheidungsbäumen Eleganter Weg: Unter den Bäumen, die mit den Trainingsdaten konsistent sind, wähle einen möglichst kleinen Baum (möglichst wenige Knoten). Kleine Bäume sind gut, weil: Sie leichter zu interpretieren sind; Sie in ielen Fällen besser generalisieren; Es gibt mehr Beispiele pro Blattknoten. Klassenentscheidungen in den Blättern stützen sich so auf mehr Beispiele. 14

15 Vollständige Suche nach kleinstem Baum Wie iele Entscheidungsbäume gibt es? Angenommen m binäre Attribute, zwei Klassen. Komplexität einer ollständigen Suche nach kleinstem Baum? 15

16 Lernen on Entscheidungsbäumen Greedy-Algorithmus, der einen kleinen Baum (statt des kleinsten Baumes) findet, dafür aber polynomiell in Anzahl der Attribute ist. Idee für Algorithmus? 16

17 Greedy-Algorithmus Top-Down Konstruktion Solange die Trainingsdaten nicht perfekt klassifiziert sind: Wähle das beste Attribut A, um die Trainingsdaten zu trennen. Erzeuge für jeden Wert des Attributs A einen neuen Nachfolgeknoten und weise die Trainingsdaten dem so entstandenen Baum zu. Problem: Welches Attribut ist das beste? [29 +, 35 -] x 1 x 2 [29 +, 35 -] [21+, 5 -] [8+, 30 -] [18+, 33 -] [11+, 2 -] 17

18 Splitkriterium: Entropie Entropie = Maß für Unsicherheit. S ist Menge on Trainingsdaten. p + ist Anteil on positien Beispielen in S. p ist Anteil on negatien Beispielen in S. Entropie misst die Unsicherheit in S : H S = p + log 2 p + p log 2 p 18

19 Splitkriterium: Entropie H S = Erwartete Anzahl on Bits, die benötigt werden, um die Zielklasse on zufällig gezogenen Beispielen aus der Menge S zu kodieren. Optimaler, kürzester Kode Entropie einer Zufallsariable y: H y = p y = log 2 p(y = ) Empirische Entropie Zufallsariable y auf Daten L : H L, y = p L y = log 2 p L y = 19

20 Splitkriterium: Bedingte Entropie Bedingte Entropie on Zufallsariable y gegeben Ereignis x=: Empirische bedingte Entropie auf Daten L: 20 ' 2 ) ' ( )log ' ( ) ( ) ( x x y p x y p x y H y H ' 2 ) ' ( ˆ )log ' ( ˆ ), ( ), ( L L x x y p x y p x y L H y L H

21 Splitkriterium: Information Gain Entropie der Klassenariable: Unsicherheit über korrekte Klassifikation. Information Gain: Transinformation eines Attributes. Verringerung der Entropie der Klassenariable nach Test des Wertes des Attributes x. Information Gain auf Daten L für Attribut x 21 ) ( ) ( ) ( ) ( y H x p y H x IG x x L y L H x p y L H x L IG ), ( ) ( ˆ ), ( ), (

22 Beispiel Information Gain IG = 0,05 IG = 0,46 IG = 0,05 Beispiele x 1 : Kredit > 3 x Einkommen? x 2 : Länger als 3 Monate beschäftigt? x 3 : Student? y: Kredit zurückgezahlt? 1 Ja Ja Nein Ja 2 Ja Nein Nein Nein 3 Nein Ja Ja Ja 4 Nein Nein Ja Nein 5 Nein Ja Nein Ja 6 Nein Nein Nein Ja H L, y) pˆ ( y )log pˆ ( y ) ( L 2 L 0.92 IG ˆ, y) ( L, x) H( L, y) p L( x ) H( L x 22

23 Beispiel II Information Gain IG L, x = Erwartete Reduktion der Unsicherheit durch den Split an Attribut x. Welcher Split ist besser? [29 +, 35 -] x 1 x 2 [29 +, 35 -] [21+, 5 -] [8+, 30 -] [18+, 33 -] [11+, 2 -] H L, y = log log = 0,99 IG L, x 1 = 0, H L x1=,y H L x1=,y = 0,26 IG L, x 2 = 0, H L x2=,y H L x2=,y = 0,11 23

24 Information Gain / Gain Ratio Motiation: Vorhersage ob ein Student die Prüfung besteht. Wie hoch ist der Information Gain des Attributes Matrikelnummer? Informationsgehalt des Tests ist riesig. 24

25 Information Gain / Gain Ratio Motiation: Vorhersage ob ein Student die Prüfung besteht. Wie hoch ist der Information Gain des Attributes Matrikelnummer? Informationsgehalt des Tests ist riesig. Idee: Informationsgehalt des Tests bestrafen. IG( L, x) GainRatio ( L, x) SplitInfo ( L, x) SplitInfo ( L, x) L x L log 2 L x L 25

26 Beispiel: Info Gain Ratio Welcher Split ist besser? [2+, 2-] x 1 [2+, 2-] x [1+, 0-] [1+, 0 -] [0+, 1-] [0+, 1-] [2+, 1 -] [0+, 1 -] IG L, x 1 = 1 SplitInfo L, x 1 = log = 2 GainRatio L, x 1 = 0,5 IG L, x 2 = ,92 = 0,68 SplitInfo L, x 2 = 3 4 log log = 0,81 GainRatio L, x 2 = 0,84 26

27 Algorithmus ID3 Voraussetzung: Klassifikationslernen, Alle Attribute haben festen, diskreten Wertebereich. Idee: rekursier Algorithmus. Wähle das Attribut, welches die Unsicherheit bzgl. der Zielklasse maximal erringert Information Gain, Gain Ratio, Gini Index Dann rekursier Aufruf für alle Werte des gewählten Attributs. Solange, bis in einem Zweig nur noch Beispiele derselben Klasse sind. Originalreferenz: J.R. Quinlan: Induction of Decision Trees

28 Algorithmus ID3 Eingabe: L ( x, y ),...,( x, y ), erfügbare Attribute = ( x1,..., x m ) 1 1 Wenn alle Beispiele in L dieselbe Klasse y haben, dann gib Terminalknoten mit Klasse y zurück. Wenn Menge der erfügbaren Attribute =, Gib Terminalknoten mit häufigster Klasse in L zurück. Sonst konstruiere Testknoten: Bestimme bestes Attribut x j n n arg max IG( L, x * x erfügbar i Für alle Werte dieses Attributs: Teile Trainingsmenge, Lj (xk, yk ) L xk* j Rekursion: Zweig für Wert = ID3 (, erfügbar \ x ). j i ) L j * 28

29 Algorithmus ID3: Beispiel Beispiele x 1 : Kredit > 3 x Einkommen? x 2 : Länger als 3 Monate beschäftigt? x 3 : Student? y: Kredit zurückgezahlt? 1 Ja Ja Nein Ja 2 Ja Nein Nein Nein 3 Nein Ja Ja Ja 4 Nein Nein Ja Nein 5 Nein Ja Nein Ja 6 Nein Nein Nein Ja 29

30 Kontinuierliche Attribute ID3 wählt Attribute mit größtem Informationsgehalt aus und bildet dann einen Zweig für jeden Wert dieses Attributes. Problem: Geht nur für diskrete Attribute. Attribute wie Größe, Einkommen, Entfernung haben unendlich iele Werte. Idee? 30

31 Kontinuierliche Attribute Idee: Binäre Entscheidungsbäume, -Tests. Problem: Unendlich iele Werte für binäre Tests. Idee: Nur endlich iele Werte kommen in Trainingsdaten or. Beispiel: Kontinuierliches Attribut hat folgende Werte: 0,2; 0,4; 0,7; 0,9 Mögliche Splits: 0,2; 0,4; 0,7; 0,9 Andere Möglichkeiten: Attribute in einen diskreten Wertebereich abbilden. 31

32 Algorithmus C4.5 Weiterentwicklung on ID3 Verbesserungen: auch kontinuierliche Attribute behandelt Trainingsdaten mit fehlenden Attributwerten behandelt Attribute mit Kosten Pruning Nicht der letzte Stand: siehe C5.0 Originalreferenz: J.R. Quinlan: C4.5: Programs for Machine Learning

33 Algorithmus C4.5 Eingabe: L ( x, y ),...,( x, y ). Wenn alle Beispiele in L dieselbe Klasse y haben, dann gib Terminalknoten mit Klasse y zurück. Wenn alle Instanzen identisch sind: Gib Terminalknoten mit häufigster Klasse in L zurück. Sonst konstruiere besten Testknoten, iteriere dazu über alle Attribute. 1 1 Diskrete Attribute: wie ID3. Kontinuierliche Attribute: n Wenn bestes Attribut diskret, Rekursion wie ID3. n [ in x* * ] arg max Attribute, Werte L IG( L,[ xi ]) Wenn bestes Attribut kontinuierlich, teile Trainingsmenge: L ( x, y ) L x links k k k* *, L rechts xk, yk ) L Rekursion: linker Zweig= 4.5( Llinks ) x i ( x * 4 rechts C, rechter Zweig= C.5( L ) k* 33

34 Information Gain für kontinuierliche Attribute Information Gain eines Tests [ x ] : IG([ x ]) H( y) p([ x ]) H x] ( y) p([ x ]) H[ x] ( [ y ) Empirischer Information Gain: IG( L,[ x ]) H( L, y) pˆ ([ ]) (, ) ˆ L x H L [ x] y pl([ x ]) H( L [ x], y) 34

35 C4.5: Beispiel x 1 0,7 0,5 0,5 1 1,5 x 2 t x 2 0,5 f t x 2 1,5 f t x 1 0,5 x 1 0,6 f t f t x 1 0,7 f 35

36 Pruning Problem: Blattknoten, die nur on einem (oder sehr wenigen) Beispielen gestützt werden, liefern häufig keine gute Klassifikation(Generalisierungsproblem). Pruning: Entferne Testknoten, die Blätter mit weniger als einer Mindestzahl on Beispielen erzeugen. Dadurch entstehen Blattknoten, die dann mit der am häufigsten auftretenden Klasse beschriftet werden. 36

37 Pruning mit Schwellwert Für alle Blattknoten: Wenn weniger als r Trainingsbeispiele in den Blattknoten fallen Entferne darüberliegenden Testknoten. Erzeuge neuen Blattknoten, sage Mehrheitsklasse orraus. Regularisierungsparameter r. Einstellung mit Cross Validation. 37

38 Reduced Error Pruning Aufteilen der Trainingsdaten in Trainingsmenge und Pruningmenge. Nach dem Aufbau des Baumes mit der Trainingsmenge: Versuche, zwei Blattknoten durch Löschen eines Tests zusammenzulegen, Solange dadurch die Fehlerrate auf der Pruningmenge erringert wird. 38

39 Umwandlung on Bäumen in Regeln Pfad durch den Baum: Bedingung der Regel Klasse: Schlussfolgerung Pruning on Regeln: Testen, welche Bedingungen weggelassen werden können, ohne dass die Fehlerrate dadurch steigt. 39

40 Umwandlung on Bäumen in Regeln Ausblick sonnig bewölkt regnerisch Luftfeuchtigkeit Ja Wind hoch normal stark schwach Nein Ja Nein Ja R 1 = Wenn Ausblick = sonnig Luftfeuchtigkeit = hoch, dann kein Tennis spielen R 2 = Wenn Ausblick = sonnig Luftfeuchtigkeit = normal, dann Tennis spielen R 3 = Wenn Ausblick = bewölkt, dann Tennis spielen R 4 = Wenn Ausblick = regnerisch Wind = stark, dann kein Tennis spielen R 5 = Wenn Ausblick = regnerisch Wind = schwach, dann Tennis spielen 40

41 Entscheidungsbäume aus großen Datenbanken: SLIQ C4.5 iteriert häufig über die Trainingsmenge Wie häufig? Wenn die Trainingsmenge nicht in den Hauptspeicher passt, wird das Swapping unpraktikabel! SLIQ: Vorsortieren der Werte für jedes Attribut Baum breadth-first aufbauen, nicht depth-first. Originalreferenz: M. Mehta et. al.: SLIQ: A Fast Scalable Classifier for Data Mining

Maschinelles Lernen Entscheidungsbäume

Maschinelles Lernen Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Entscheidungsbäume Paul Prasse Entscheidungsbäume Eine von vielen Anwendungen: Kreditrisiken Kredit - Sicherheiten

Mehr

Entscheidungsbäume. Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen

Entscheidungsbäume. Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Entscheidungsbäume Christoph Sawade /Niels Landwehr/Paul Prasse Silvia Makowski Tobias Scheffer Entscheidungsbäume Eine von vielen

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Entscheidungsbäume

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Entscheidungsbäume Christoph Sawade/Niels Landwehr Jules Rasetaharison, Tobias Scheffer Entscheidungsbäume Eine von vielen Anwendungen:

Mehr

Maschinelles Lernen Entscheidungsbäume

Maschinelles Lernen Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Entscheidungsbäume Christoph Sawade /Niels Landwehr/Paul Prasse Dominik Lahmann Tobias Scheffer Entscheidungsbäume

Mehr

Entscheidungsbäume aus großen Datenbanken: SLIQ

Entscheidungsbäume aus großen Datenbanken: SLIQ Entscheidungsbäume aus großen Datenbanken: SLIQ C4.5 iteriert häufig über die Trainingsmenge Wie häufig? Wenn die Trainingsmenge nicht in den Hauptspeicher passt, wird das Swapping unpraktikabel! SLIQ:

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Überwachtes Lernen: Entscheidungsbäume Literatur Stuart Russell und Peter Norvig: Artificial i Intelligence. Andrew W. Moore: http://www.autonlab.org/tutorials. 2 Überblick

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Überwachtes Lernen: Entscheidungsbäume

INTELLIGENTE DATENANALYSE IN MATLAB. Überwachtes Lernen: Entscheidungsbäume INTELLIGENTE DATENANALYSE IN MATLAB Überwachtes Lernen: Entscheidungsbäume Literatur Stuart Russell und Peter Norvig: Artificial Intelligence. Andrew W. Moore: http://www.autonlab.org/tutorials. 2 Überblick

Mehr

Decision Trees* von Julia Heise, Philipp Thoms, Hans-Martin Wulfmeyer. *Entscheidungsbäume

Decision Trees* von Julia Heise, Philipp Thoms, Hans-Martin Wulfmeyer. *Entscheidungsbäume Decision Trees* von Julia Heise, Philipp Thoms, Hans-Martin Wulfmeyer *Entscheidungsbäume Gliederung 1. Einführung 2. Induktion 3. Beispiel 4. Fazit Einführung 1. Einführung a. Was sind Decision Trees?

Mehr

Entscheidungsbäume. Minh-Khanh Do Erlangen,

Entscheidungsbäume. Minh-Khanh Do Erlangen, Entscheidungsbäume Minh-Khanh Do Erlangen, 11.07.2013 Übersicht Allgemeines Konzept Konstruktion Attributwahl Probleme Random forest E-Mail Filter Erlangen, 11.07.2013 Minh-Khanh Do Entscheidungsbäume

Mehr

3.3 Nächste-Nachbarn-Klassifikatoren

3.3 Nächste-Nachbarn-Klassifikatoren 3.3 Nächste-Nachbarn-Klassifikatoren Schrauben Nägel Klammern Neues Objekt Instanzbasiertes Lernen (instance based learning) Einfachster Nächste-Nachbar-Klassifikator: Zuordnung zu der Klasse des nächsten

Mehr

fuzzy-entscheidungsbäume

fuzzy-entscheidungsbäume fuzzy-entscheidungsbäume klassische Entscheidungsbaumverfahren fuzzy Entscheidungsbaumverfahren Entscheidungsbäume Was ist ein guter Mietwagen für einen Familienurlaub auf Kreta? 27. März 23 Sebastian

Mehr

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Computational Linguistics Universität des Saarlandes Sommersemester 2011 28.04.2011 Entscheidungsbäume Repräsentation von Regeln als Entscheidungsbaum (1) Wann spielt Max Tennis?

Mehr

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Chahine Abid Bachelor Arbeit Betreuer: Prof. Johannes Fürnkranz Frederik Janssen 28. November 2013 Fachbereich Informatik Fachgebiet Knowledge

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hypothesenbewertung Christoph Sawade/Niels Landwehr Dominik Lahmann Tobias Scheffer Überblick Hypothesenbewertung, Risikoschätzung

Mehr

Klassische Klassifikationsalgorithmen

Klassische Klassifikationsalgorithmen Klassische Klassifikationsalgorithmen Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2013 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at

Mehr

Rückblick. Entscheidungsunterstützende Systeme / Kapitel 4: Klassifikation

Rückblick. Entscheidungsunterstützende Systeme / Kapitel 4: Klassifikation Rückblick k-nächste Nachbarn als distanzbasiertes Verfahren zur Klassifikation benötigt sinnvolles Distanzmaß und weist vorher unbekanntem Datenpunkt dann die häufigste Klasse seiner k nächsten Nachbarn

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Modellevaluierung. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Modellevaluierung. Niels Landwehr Universität Potsdam Institut für Informatik ehrstuhl Maschinelles ernen Modellevaluierung Niels andwehr ernen und Vorhersage Klassifikation, Regression: ernproblem Eingabe: Trainingsdaten Ausgabe: Modell

Mehr

4. Lernen von Entscheidungsbäumen

4. Lernen von Entscheidungsbäumen 4. Lernen von Entscheidungsbäumen Entscheidungsbäume 4. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Entscheidungsbaum-Lernen: Übersicht

Entscheidungsbaum-Lernen: Übersicht Entscheidungsbaum-Lernen: Übersicht Entscheidungsbäume als Repräsentationsformalismus Semantik: Klassifikation Lernen von Entscheidungsbäumen vollst. Suche vs. TDIDT Tests, Ausdrucksfähigkeit Maße: Information

Mehr

Klassische Klassifikationsalgorithmen

Klassische Klassifikationsalgorithmen Klassische Klassifikationsalgorithmen Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2012 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at

Mehr

Moderne Methoden der KI: Maschinelles Lernen

Moderne Methoden der KI: Maschinelles Lernen Moderne Methoden der KI: Maschinelles Lernen Prof. Dr.Hans-Dieter Burkhard Vorlesung Entscheidungsbäume Darstellung durch Regeln ID3 / C4.5 Bevorzugung kleiner Hypothesen Overfitting Entscheidungsbäume

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Wintersemester 2009/2010 Musterlösung für das 9. Übungsblatt Aufgabe 1: Decision Trees Gegeben sei folgende Beispielmenge: Age Education Married Income Credit?

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen Universität Potsdam Institut für Informatik Lehrstuhl Niels Landwehr, Silvia Makowski, Christoph Sawade, Tobias Scheffer Organisation Vorlesung/Übung, praktische Informatik. 4 SWS. Übung: Di 10:00-11:30

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Musterlösung für das 7. Übungsblatt Aufgabe 1 Gegeben sei folgende Beispielmenge: Day Outlook Temperature Humidity Wind PlayTennis D1? Hot High Weak No D2 Sunny

Mehr

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Inhalt Grundlagen aus der Wahrscheinlichkeitsrechnung Hypothesenwahl Optimale Bayes Klassifikator Naiver Bayes Klassifikator

Mehr

Analytics Entscheidungsbäume

Analytics Entscheidungsbäume Analytics Entscheidungsbäume Professional IT Master Prof. Dr. Ingo Claßen Hochschule für Technik und Wirtschaft Berlin Regression Klassifikation Quellen Regression Beispiel Baseball-Gehälter Gehalt: gering

Mehr

Einführung. Einführung in die Methoden der Künstlichen Intelligenz. Maschinelles Lernen. Lernen und Agenten. Beispiele

Einführung. Einführung in die Methoden der Künstlichen Intelligenz. Maschinelles Lernen. Lernen und Agenten. Beispiele Einführung Einführung in die Methoden der Künstlichen Intelligenz Maschinelles Lernen Dr. David Sabel WS 2012/13 Direkte Programmierung eines intelligenten Agenten nicht möglich (bisher) Daher benötigt:

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Zusammenfassung

INTELLIGENTE DATENANALYSE IN MATLAB. Zusammenfassung INTELLIGENTE DATENANALYSE IN MATLAB Zusammenfassung Überwachtes Lernen Gegeben: Trainingsdaten mit bekannten Zielattributen (gelabelte Daten). Eingabe: Instanz (Objekt, Beispiel, Datenpunkt, Merkmalsvektor)

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Musterlösung für das 6. Übungsblatt Aufgabe 1 Gegeben sei eine Beispielmenge mit folgenden Eigenschaften: Jedes Beispiel ist durch 10 nominale Attribute A 1,...,

Mehr

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002)

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) 3. Entscheidungsbäume Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) (aus Wilhelm 2001) Beispiel: (aus Böhm 2003) Wann sind Entscheidungsbäume

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Theorie des maschinellen Lernens

Theorie des maschinellen Lernens Theorie des maschinellen Lernens Hans U. Simon 16. Juni 017 18 Entscheidungsbäume Ein Entscheidungsbaum T stellt eine Voraussagefunktion h T : X Y dar. Stellen wir uns der Einfachheit halber einen binären

Mehr

Data Mining und Text Mining Einführung. S2 Einfache Regellerner

Data Mining und Text Mining Einführung. S2 Einfache Regellerner Data Mining und Text Mining Einführung S2 Einfache Regellerner Hans Hermann Weber Univ. Erlangen, Informatik 8 Wintersemester 2003 hans.hermann.weber@gmx.de Inhalt Einiges über Regeln und Bäume R1 ein

Mehr

Kapitel 4: Data Mining DATABASE SYSTEMS GROUP. Überblick. 4.1 Einleitung. 4.2 Clustering. 4.3 Klassifikation

Kapitel 4: Data Mining DATABASE SYSTEMS GROUP. Überblick. 4.1 Einleitung. 4.2 Clustering. 4.3 Klassifikation Überblick 4.1 Einleitung 4.2 Clustering 4.3 Klassifikation 1 Klassifikationsproblem Gegeben: eine Menge O D von Objekten o = (o 1,..., o d ) O mit Attributen A i, 1 i d eine Menge von Klassen C = {c 1,...,c

Mehr

4 Induktion von Regeln

4 Induktion von Regeln 4 Induktion von egeln Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- aare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden. Ein Entscheidungsbaum liefert eine Entscheidung

Mehr

Mathias Krüger / Seminar Datamining

Mathias Krüger / Seminar Datamining Entscheidungsbäume mit SLIQ und SPRINT Mathias Krüger Institut für Informatik FernUniversität Hagen 4.7.2008 / Seminar Datamining Gliederung Einleitung Klassifikationsproblem Entscheidungsbäume SLIQ (

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung. Tobias Scheffer Michael Brückner

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung. Tobias Scheffer Michael Brückner Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hypothesenbewertung Tobias Scheffer Michael Brückner Hypothesenbewertung Ziel: gute Vorhersagen treffen. Bayesian model averaging,

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Niels Landwehr, Jules Rasetaharison, Christoph Sawade, Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Niels Landwehr, Jules Rasetaharison, Christoph Sawade, Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Niels Landwehr, Jules Rasetaharison, Christoph Sawade, Tobias Scheffer Organisation Vorlesung/Übung, praktische

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen II: Klassifikation mit Entscheidungsbäumen Vera Demberg Universität des Saarlandes 12. Juli 2012 Vera Demberg (UdS) Mathe III 12. Juli 2012 1 / 38 Einleitung

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen Unüberwachtes

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 18. Januar 2006 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Splitting. Impurity. c 1. c 2. c 3. c 4

Splitting. Impurity. c 1. c 2. c 3. c 4 Splitting Impurity Sei D(t) eine Menge von Lernbeispielen, in der X(t) auf die Klassen C = {c 1, c 2, c 3, c 4 } verteilt ist. Illustration von zwei möglichen Splits: c 1 c 2 c 3 c 4 ML: III-29 Decision

Mehr

Folien zu Data Mining von I. H. Witten und E. Frank. übersetzt von N. Fuhr

Folien zu Data Mining von I. H. Witten und E. Frank. übersetzt von N. Fuhr Folien zu Data Mining von I. H. Witten und E. Frank übersetzt von N. Fuhr Von Naivem Bayes zu Bayes'schen Netzwerken Naiver Bayes Annahme: Attribute bedingt unabhängig bei gegebener Klasse Stimmt in der

Mehr

5.4 Nächste-Nachbarn-Klassifikatoren

5.4 Nächste-Nachbarn-Klassifikatoren 5.4 Nächste-Nachbarn-Klassifikatoren Schrauben Nägel Klammern Neues Objekt Instanzbasiertes Lernen (instance based learning) Einfacher Nächster-Nachbar-Klassifikator: Zuordnung zu der Klasse des nächsten

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 10: Naive Bayes (V. 1.0)

Mehr

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum 4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Christoph Sawade/Niels Landwehr Paul Prasse

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Christoph Sawade/Niels Landwehr Paul Prasse Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hypothesenbewertung Christoph Sawade/Niels Landwehr Paul Prasse Tobias Scheffer Sawade/Landwehr/Prasse/Scheffer, Maschinelles Lernen

Mehr

Seminarvortrag zum Thema maschinelles Lernen I - Entscheidungsbäume. von Lars-Peter Meyer. im Seminar Methoden wissensbasierter Systeme

Seminarvortrag zum Thema maschinelles Lernen I - Entscheidungsbäume. von Lars-Peter Meyer. im Seminar Methoden wissensbasierter Systeme Seminarvortrag zum Thema maschinelles Lernen I - Entscheidungsbäume von Lars-Peter Meyer im Seminar Methoden wissensbasierter Systeme bei Prof. Brewka im WS 2007/08 Übersicht Überblick maschinelles Lernen

Mehr

3.5 Entscheidungsbaum- Klassifikatoren. Motivation. finden explizites Wissen Entscheidungsbäume sind für die meisten Benutzer verständlich

3.5 Entscheidungsbaum- Klassifikatoren. Motivation. finden explizites Wissen Entscheidungsbäume sind für die meisten Benutzer verständlich 3.5 Entscheidungsbaum- Klassifikatoren Motivation ID Alter Autotyp Risiko 1 23 Familie hoch 2 17 Sport hoch 3 43 Sport hoch 4 68 Familie niedrig 5 32 LKW niedrig Autotyp = LKW LKW Risikoklasse = niedrig

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Gliederung Vorlesung Wissensentdeckung Additive Modelle Katharina Morik, Weihs 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung.6.015 1 von 33 von 33 Ausgangspunkt: Funktionsapproximation Aufteilen der

Mehr

Vorlesung: Künstliche Intelligenz

Vorlesung: Künstliche Intelligenz Vorlesung: Künstliche Intelligenz - KI heute, KI morgen, KI übermorgen- D P LS G ML ES S ST SA NN ME O EA SV Künstliche Intelligenz Miao Wang 1 Inhaltliche Planung für die Vorlesung 1) Definition und Geschichte

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Additive Modelle Katharina Morik, Weihs 2.6.2015 1 von 33 Gliederung 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung 2 von 33 Ausgangspunkt: Funktionsapproximation Die bisher

Mehr

Lernen von Entscheidungsbäumen. Volker Tresp Summer 2014

Lernen von Entscheidungsbäumen. Volker Tresp Summer 2014 Lernen von Entscheidungsbäumen Volker Tresp Summer 2014 1 Anforderungen an Methoden zum Datamining Schnelle Verarbeitung großer Datenmengen Leichter Umgang mit hochdimensionalen Daten Das Lernergebnis

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Klausur zur Vorlesung Maschinelles Lernen: Symbolische Ansätze Prof. J. Fürnkranz Technische Universität Darmstadt Wintersemester 2014/15 Termin: 17. 2. 2015 Name: Vorname: Matrikelnummer: Fachrichtung:

Mehr

Darstellung, Verarbeitung und Erwerb von Wissen

Darstellung, Verarbeitung und Erwerb von Wissen Darstellung, Verarbeitung und Erwerb von Wissen Gabriele Kern-Isberner LS 1 Information Engineering TU Dortmund WiSe 2016/17 G. Kern-Isberner (TU Dortmund) DVEW WiSe 2016/17 1 / 169 Struktur der DVEW 1

Mehr

Modellierung. Entscheidungsbäume, ume, Boosting, Metalerner, Random Forest. Wolfgang Konen Fachhochschule Köln Oktober 2007.

Modellierung. Entscheidungsbäume, ume, Boosting, Metalerner, Random Forest. Wolfgang Konen Fachhochschule Köln Oktober 2007. Modellierung Entscheidungsbäume, ume, Boosting, Metalerner, Random Forest Wolfgang Konen Fachhochschule Köln Oktober 2007 W. Konen DMC WS2007 Seite - 1 W. Konen DMC WS2007 Seite - 2 Inhalt Typen der Modellierung

Mehr

Einführung in die Methoden der Künstlichen Intelligenz. Maschinelles Lernen

Einführung in die Methoden der Künstlichen Intelligenz. Maschinelles Lernen Einführung in die Methoden der Künstlichen Intelligenz Maschinelles Lernen Dr. David Sabel WS 2012/13 Stand der Folien: 14. Februar 2013 Einführung Direkte Programmierung eines intelligenten Agenten nicht

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Fragen aus dem Wissensquiz

Fragen aus dem Wissensquiz und Data-Mining Prof. Dr. Tobias Scheffer SS 2004 Fragen aus dem Wissensquiz Marko Pilop pilop@informatik.hu-berlin.de http://www.informatik.hu-berlin.de/ pilop 2004-07-20 (v0.70 30. Juli 2004) Humboldt-Universität

Mehr

Induktion von Entscheidungsbäumen

Induktion von Entscheidungsbäumen Induktion von Entscheidungsbäumen Christian Borgelt Institut für Wissens- und Sprachverarbeitung Otto-von-Guericke-Universität Magdeburg Universitätsplatz 2, 39106 Magdeburg E-mail: borgelt@iws.cs.uni-magdeburg.de

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

Einführung in die Methoden der Künstlichen Intelligenz

Einführung in die Methoden der Künstlichen Intelligenz www.is.cs.uni-fra ankfurt.de Einführung in die Methoden der Künstlichen Intelligenz Vorlesung 8 Entscheidungsbaumlernen 2 19. Mai 2009 Ingo J. Timm, René Schumann Übersicht 1. Einführung 2. Grundlegende

Mehr

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining Gliederung 1. Einführung 2. Grundlagen Data Mining Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining 3. Ausgewählte Methoden des Data

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 12 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Maschinelles Lernen Definition Lernen 2 agnostic -learning Definition

Mehr

Reranking. Parse Reranking. Helmut Schmid. Institut für maschinelle Sprachverarbeitung Universität Stuttgart

Reranking. Parse Reranking. Helmut Schmid. Institut für maschinelle Sprachverarbeitung Universität Stuttgart Institut für maschinelle Sprachverarbeitung Universität Stuttgart schmid@ims.uni-stuttgart.de Die Folien basieren teilweise auf Folien von Mark Johnson. Koordinationen Problem: PCFGs können nicht alle

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Klassifikation Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Einführung Problemstellung Evaluation Overfitting knn Klassifikator Naive-Bayes

Mehr

Praktikum Data Warehousing und Data Mining

Praktikum Data Warehousing und Data Mining Klassifikation I Praktikum Data Warehousing und Data Mining Klassifikationsprobleme Idee Bestimmung eines unbekannten kategorischen Attributwertes (ordinal mit Einschränkung) Unter Benutzung beliebiger

Mehr

ID3 und Apriori im Vergleich

ID3 und Apriori im Vergleich ID3 und Apriori im Vergleich Lassen sich bei der Klassifikation mittels Apriori bessere Ergebnisse als durch ID3 erzielen? Sebastian Boldt, Christian Schulz, Marc Thielbeer KURZFASSUNG Das folgende Dokument

Mehr

Data Mining und maschinelles Lernen

Data Mining und maschinelles Lernen Data Mining und maschinelles Lernen Einführung und Anwendung mit WEKA Caren Brinckmann 16. August 2000 http://www.coli.uni-sb.de/~cabr/vortraege/ml.pdf http://www.cs.waikato.ac.nz/ml/weka/ Inhalt Einführung:

Mehr

Maschinelles Lernen und Data Mining

Maschinelles Lernen und Data Mining Semestralklausur zur Vorlesung Maschinelles Lernen und Data Mining Prof. J. Fürnkranz / Dr. G. Grieser Technische Universität Darmstadt Wintersemester 2004/05 Termin: 14. 2. 2005 Name: Vorname: Matrikelnummer:

Mehr

Vorlesung. Machine Learning - Entscheidungsbäume

Vorlesung. Machine Learning - Entscheidungsbäume Vorlesung Machine Learning - Entscheidungsbäume Vorlesung Machine Learning - Entscheidungsbäume http://de.wikipedia.org/wiki/datei:deu_tutorial_-_hochladen_von_bildern_neu%2bcommons.svg http://www.rulequest.com/personal/

Mehr

Classification and Regression Trees. Markus Müller

Classification and Regression Trees. Markus Müller Classification and Regression Trees Markus Müller Gliederung Lernen Entscheidungsbäume Induktives Lernen von Bäumen ID3 Algorithmus Einfluß der Beispielmenge auf den Baum Möglichkeiten zur Verbesserung

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Einführung in das Maschinelle Lernen I

Einführung in das Maschinelle Lernen I Einführung in das Maschinelle Lernen I Vorlesung Computerlinguistische Techniken Alexander Koller 26. Januar 2015 Maschinelles Lernen Maschinelles Lernen (Machine Learning): äußerst aktiver und für CL

Mehr

Data Mining auf Datenströmen Andreas M. Weiner

Data Mining auf Datenströmen Andreas M. Weiner Technische Universität Kaiserslautern Fachbereich Informatik Lehrgebiet Datenverwaltungssysteme Integriertes Seminar Datenbanken und Informationssysteme Sommersemester 2005 Thema: Data Streams Andreas

Mehr

Ringvorlesung interdisziplinäre, angewandte Mathematik: Maschinelles Lernen

Ringvorlesung interdisziplinäre, angewandte Mathematik: Maschinelles Lernen Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Ringvorlesung interdisziplinäre, angewandte Mathematik: Maschinelles Lernen Niels Landwehr, Paul Prasse, Termine VL Dienstag 12:15-13:45,

Mehr

Modelle, Daten, Lernprobleme

Modelle, Daten, Lernprobleme Universität Potsdam Institut für Informatik Lehrstuhl Modelle, Daten, Lernprobleme Tobias Scheffer Überblick Arten von Lernproblemen: Überwachtes Lernen (Klassifikation, Regression, ordinale Regression,

Mehr

Symbolisches Lernen. Proseminar Kognitive Robotik. Johannes Klein. Technische Universität München. June 22, 2012

Symbolisches Lernen. Proseminar Kognitive Robotik. Johannes Klein. Technische Universität München. June 22, 2012 Symbolisches Lernen Proseminar Kognitive Robotik Johannes Klein Technische Universität München June 22, 2012 1/18 Einleitung Lernverfahren Entscheidungsbaum ID3 Diskussion Inhalt Übersicht Symbolisches

Mehr

Entscheidungsbaum-Lernen. im Proseminar Maschinelles Lernen

Entscheidungsbaum-Lernen. im Proseminar Maschinelles Lernen Entscheidungsbaum-Lernen im Proseminar Maschinelles Lernen Wintersemester 2003/2004 2. Dezember 2003 Gliederung: 1 Einleitung 1.1 Was sind Entscheidungsbäume? 1.2 Was ist Entscheidungsbaumlernen ( Decision

Mehr

Methoden, Chancen und Risiken beim Auswerten großer Datenmengen

Methoden, Chancen und Risiken beim Auswerten großer Datenmengen Methoden, Chancen und Risiken beim Auswerten großer Datenmengen Peter Dauscher Gymnasium am Kaiserdom, Speyer peter dauscher gak speyer de Data-Mining in der Schule - Eine Annäherung

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 22 (20.7.2016) Greedy Algorithmen - Datenkompression Algorithmen und Komplexität Greedy Algorithmen Greedy Algorithmen sind eine Algorithmenmethode,

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen. Tobias Scheffer Michael Brückner

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen. Tobias Scheffer Michael Brückner Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Tobias Scheffer Michael Brückner Organisation Vorlesung/Übung, praktische Informatik. 4 SWS. Übung: Mo 10:00-11:30

Mehr

Data Mining und Maschinelles Lernen Lösungsvorschlag für das 1. Übungsblatt

Data Mining und Maschinelles Lernen Lösungsvorschlag für das 1. Übungsblatt Data Mining und Maschinelles Lernen Lösungsvorschlag für das 1. Übungsblatt Knowledge Engineering Group Data Mining und Maschinelles Lernen Lösungsvorschlag 1. Übungsblatt 1 1. Anwendungsszenario Überlegen

Mehr

Bayessches Lernen Aufgaben

Bayessches Lernen Aufgaben Bayessches Lernen Aufgaben martin.loesch@kit.edu (0721) 608 45944 Aufgabe 1: Autodiebstahl-Beispiel Wie würde man ein NB-Klassifikator für folgenden Datensatz aufstellen? # Color Type Origin Stolen? 1

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Wintersemester 2009/2010 Musterlösung für das 1. Übungsblatt Aufgabe 1: Anwendungsszenario Überlegen Sie sich ein neues Szenario des klassifizierenden Lernens (kein

Mehr

Modelle, Daten, Lernprobleme

Modelle, Daten, Lernprobleme Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Modelle, Daten, Lernprobleme Tobias Scheffer Überblick Arten von Lernproblemen: Überwachtes Lernen (Klassifikation, Regression,

Mehr

Pairwise Naive Bayes Classifier

Pairwise Naive Bayes Classifier Pairwise Naive Bayes Classifier Jan-Nikolas Sulzmann 1 1 nik.sulzmann@gmx.de Fachbereich Knowledge Engineering Technische Universität Darmstadt Gliederung 1 Ziel dieser Arbeit 2 Naive Bayes Klassifizierer

Mehr

Ferien-Übungsblatt 8 Lösungsvorschläge

Ferien-Übungsblatt 8 Lösungsvorschläge Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Ferien-Übungsblatt 8 Lösungsvorschläge Vorlesung Algorithmentechnik im WS 09/10 Problem 1: Probabilistische Komplexitätsklassen [vgl.

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Evaluation & Exploitation von Modellen Überblick Sh Schritte der Datenanalyse: Datenvorverarbeitung Problemanalyse Problemlösung Anwendung der Lösung Aggregation und

Mehr

1.Aufgabe: Minimal aufspannender Baum

1.Aufgabe: Minimal aufspannender Baum 1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Graphische Modelle iels Landwehr Überblick: Graphische Modelle Graphische Modelle: Werkzeug zur Modellierung einer Domäne mit verschiedenen

Mehr

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13)

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) Berlin, 21. Februar 2013 Name:... Matr.-Nr.:... Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) 1 2 3 4 5 6 7 8 9 Σ Bearbeitungszeit: 90 min. max. Punktezahl:

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen INTELLIGENTE DATENANALYSE IN MATLAB Evaluation & Exploitation von Modellen Überblick Schritte der Datenanalyse: Datenvorverarbeitung Problemanalyse Problemlösung Anwendung der Lösung Aggregation und Selektion

Mehr

Hidden-Markov-Modelle

Hidden-Markov-Modelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hidden-Markov-Modelle Tobias Scheffer Thomas Vanck Hidden-Markov-Modelle: Wozu? Spracherkennung: Akustisches Modell. Geschriebene

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 9. Juni 2008 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten Teil

Mehr