Theoretische Informatik 1
|
|
|
- Hannelore Stein
- vor 8 Jahren
- Abrufe
Transkript
1 Theoretische Informatik 1 Teil 12 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007
2 Übersicht 1 Maschinelles Lernen Definition Lernen 2 agnostic -learning
3 Definition Lernen Was ist Lernen? durch Erfahrung besser werden Auswendig lernen vs. Verstehen Wissen sammeln (Datenbank?) Wissen verstehen: Verallgemeinern Modell bilden (Codierung?) Gelerntes Modell sinnvoll einsetzen Modellfehler erkennen und Modell korrigieren Es ist klug, aus den eigenen Fehlern zu lernen. Es ist klüger, aus den Fehlern der anderen zu lernen!
4 Definition Lernen Was kann gelernt werden? krabbeln, radfahren, gehen, artikulieren... Fertigkeiten Gedicht, Vokabeln, Telefonnummern, Gesichter auswendig lernen sich zurechtfinden, Umgebung, Stadt Landkarte lernen jagen, Schach, Go, Diplomatie Strategie lernen Modelle überprüfen, Zusammenhänge erkennen, log. Schließen Verständnis lernen, Erkenntnis gewinnen Gibt es ein Grundkonzept?
5 Definition Lernen Lernen einer Funktion Kontinuierliche Funktionswerte Lineare, nichtlineare regression, u.v.a.m.? Grad der polynomfunktion, Anzahl der Beispiele gut geeignet für kontinuierliche Modelle. Schlecht geeignet für Entscheidungen. Entscheidungsfunktionen sind unstetig. Klassifikation als Grundkonzept sample complexity computational complexity mistake bound Theorie des (masch.) Lernens ist noch nicht so weit wie die Berechenbarkeitstheorie oder Theorie der Algorithmen. (siehe Church-Turing-These)
6 Definition Lernen X: Menge der möglichen Instanzen (Schiffe versenken) x 1,..., x n Menge aller Trainigsbeispiele X: Menge aller Gesichter, Menge aller 3-Klänge X: Codierung? Vektor von Attributen. target concept: c : X {0, 1} : c(x) = { 1 0 (unbekannt) C: set of all possible target concepts, Konzeptklasse x i sind i.i.d. in X, Wahrscheinlichkeitsverteilung D AUFGABE: finde eine Funktion h, sodaß h(x) c(x) H Hypothesenklasse, h H. Beachte: Konzeptklasse C und Hypothesenklasse H müssen nicht gleich sein.
7 Maschinelles Lernen agnostic -learning Ein (supervised) ist ein Algorithmus, der als Eingabe eine Menge von Trainingsbeispielen erhält. Das ist auf eine bestimmte Hyptothesenklasse H beschränkt, aus der er, aufgrund der gesehenen Beispiele, eine Hypothese h auswählt. Die Qualität der Hypothese wird nicht auf den Trainigsbeispielen evaluiert, sondern anhand von neu, also unabhängig, aber basierend auf der gleichen Verteilung, gezogenen Testbeispielen.
8 Fehler einer Hypothese agnostic -learning Definition (error D (h)) Der wahre Fehler einer Hypothese h im Hinblick auf ein bestimmtes target concept und eine bestimmte Verteilung D ist gleich der Wahrscheinlichkeit, daß h ein entsprechend D gezogenes Beispiel falsch klassifizieren wird. error D (h) = Pr x D [c(x) h(x)] Wir wollen also wissen, welche Fehlerrate wir zu erwarten haben. Da sowohl D als auch c(x) NICHT bekannt sind, ist die Ermittlung des wahren Fehlers von h normalerweise gar nicht möglich.
9 agnostic -learning Definition (-lernbar) Sei C eine Konzeptklasse über X und L ein auf der Hypothesenklasse H. C ist -lernbar von L auf H, wenn für alle c C, Verteilungen D über X, ɛ : 0 < ɛ < 1 2, δ : 0 < δ < 1 2, eine notwendige Anzahl n von Beispielen bestimmt werden kann, sodaß L mit Wahrscheinlichkeit > (1 δ)eine Hypothese mit Fehler < ɛ lernt, und außerdem die Laufzeit polynomiell in n, 1 ɛ, 1 δ und size(c) ist.
10 agnostic Learning Maschinelles Lernen agnostic -learning Wir wissen nicht, ob H und C die gleichen Konzepte umfassen. Wir kennen auch D nicht. Wir bestimmen h so, daß der Trainigserror minimal wird. Wir testen h auf einem zufälligen Test-Set D und benützen die Chernoff-Bounds (Hoeffding). Pr[error D (h) > error D (h) + ɛ] e 2mɛ2 m 1 2epsilon 2 (ln H + ln(1 δ ))
11 agnostic -learning conjunktion of boolean literals ist H = 3 n
Teil III. Komplexitätstheorie
Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein
Lernalgorithmen SoSe 2008 in Trier. Henning Fernau Universität Trier
Lernalgorithmen SoSe 2008 in Trier Henning Fernau Universität Trier [email protected] 1 Lernalgorithmen Gesamtübersicht 0. Einführung 1. Identifikation (aus positiven Beispielen) 2. Zur Identifikation
Reinforcement Learning
Reinforcement Learning 1. Allgemein Reinforcement Learning 2. Neuronales Netz als Bewertungsfunktion 3. Neuronales Netz als Reinforcement Learning Nils-Olaf Bösch 1 Allgemein Reinforcement Learning Unterschied
Theoretische Informatik 1
Theoretische Informatik 1 Teil 5 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Problemklassen 2 NTM Nichtdeterministische Algorithmen 3 Problemarten Konstruktionsprobleme
Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell
Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten Teil
Theoretische Informatik 1
Theoretische Informatik 1 Boltzmann Maschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2014 Übersicht Boltzmann Maschine Neuronale Netzwerke Die Boltzmann Maschine Gibbs
Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7.
Semestralklausur zur Vorlesung Web Mining Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. 2004 Name: Vorname: Matrikelnummer: Fachrichtung: Punkte: (1).... (2)....
Übersicht. Allgemeines Modell lernender Agenten. Lernende Agenten (1) Lernende Agenten (2)
Übersicht Allgemeines Modell lernender Agenten I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen VI Lernen 18. Lernen aus Beobachtungen
Konzepte der AI: Maschinelles Lernen
Konzepte der AI: Maschinelles Lernen Nysret Musliu, Wolfgang Slany Abteilung für Datenbanken und Artificial Intelligence Institut für Informationssysteme, TU-Wien Übersicht Was ist Lernen? Wozu maschinelles
Herzlich willkommen!!!
Computational Learning Theory Sommersemester 2017 Prof. Dr. Georg Schnitger AG Theoretische Informatik Goethe-Universität Frankfurt am Main Herzlich willkommen!!! 1 / 159 Einführung Einführung 2 / 159
Methoden zur Cluster - Analyse
Kapitel 4 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität Leipzig Machine learning in bioinformatics
ANalysis Of VAriance (ANOVA) 1/2
ANalysis Of VAriance (ANOVA) 1/2 Markus Kalisch 16.10.2014 1 ANOVA - Idee ANOVA 1: Zwei Medikamente zur Blutdrucksenkung und Placebo (Faktor). Gibt es einen sign. Unterschied in der Wirkung (kontinuierlich)?
Bayes sches Lernen: Übersicht
Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.
Theoretische Informatik 1
Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die
2.7 Der Shannon-Fano-Elias Code
2.7 Der Shannon-Fano-Elias Code Die Huffman-Codierung ist ein asymptotisch optimales Verfahren. Wir haben auch gesehen, dass sich die Huffman-Codierung gut berechnen und dann auch gut decodieren lassen.
Theoretische Informatik 1
Theoretische Informatik 1 Registermaschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Registermaschinen Algorithmusbegriff konkretisiert formale Beschreibung
Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens
Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 19.12.2013 Allgemeine Problemstellung
Moderne Methoden der KI: Maschinelles Lernen
Moderne Methoden der KI: Maschinelles Lernen Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Sommer-Semester 2009 1. Einführung: Definitionen Grundbegriffe Lernsysteme Maschinelles Lernen Lernen: Grundbegriffe
Einsatz von Reinforcement Learning in der Modellfahrzeugnavigation
Einsatz von Reinforcement Learning in der Modellfahrzeugnavigation von Manuel Trittel Informatik HAW Hamburg Vortrag im Rahmen der Veranstaltung AW1 im Masterstudiengang, 02.12.2008 der Anwendung Themeneinordnung
Theoretische Informatik 1
heoretische Informatik 1 eil 2 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung U Graz SS 2009 Übersicht 1 uring Maschinen uring-berechenbarkeit 2 Kostenmaße Komplexität 3 Mehrband-M
Maschinelles Lernen Entscheidungsbäume
Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Entscheidungsbäume Paul Prasse Entscheidungsbäume Eine von vielen Anwendungen: Kreditrisiken Kredit - Sicherheiten
Vorbereitung auf 3. Übungsblatt (Präsenzübungen) - Lösungen
Prof Dr Rainer Dahlhaus Statistik 1 Wintersemester 2016/2017 Vorbereitung auf Übungsblatt (Präsenzübungen) - Lösungen Aufgabe P9 (Prognosen und Konfidenzellipsoide in der linearen Regression) Wir rekapitulieren
Grundlagen des Maschinellen Lernens Kap. 4: Lernmodelle Teil II
1. Motivation 2. Lernmodelle Teil I 2.1. Lernen im Limes 2.2. Fallstudie: Lernen von Patternsprachen 3. Lernverfahren in anderen Domänen 3.1. Automatensynthese 3.2. Entscheidungsbäume 3.3. Entscheidungsbäume
Data Mining und Maschinelles Lernen Wintersemester 2015/2016 Lösungsvorschlag für das 3. Übungsblatt
Data Mining und Maschinelles Lernen Wintersemester 2015/2016 Lösungsvorschlag für das 3. Übungsblatt 18. November 2015 1 Aufgabe 1: Version Space, Generalisierung und Spezialisierung (1) Gegeben sei folgende
Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke
Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Steve Göring 13.07.2012 1/18 Gliederung Einleitung Grundlagen Vertex-Cover-Problem Set-Cover-Problem Lösungsalgorithmen
Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10
Computer Vision: AdaBoost D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Idee Gegeben sei eine Menge schwacher (einfacher, schlechter) Klassifikatoren Man bilde einen guten durch eine geschickte Kombination
Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016
Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber ([email protected]) S. Nguyen ([email protected]) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online
Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator
Überblick Grundlagen Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator
Intelligenz in Datenbanken. Dr. Stefan Freundt Star512 Datenbank GmbH. star512 datenbank gmbh
Intelligenz in Datenbanken Dr. Stefan Freundt Star512 Datenbank GmbH Einleitung Definition von Business! Definition von Intelligenz? Künstliche Intelligenz: Motivation Schach erfordert Intelligenz ==>
Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung
Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes- Entscheidungsfunktionen
Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008
Problemseminar Komplexitätstheorie und Kryptographie Martin Huschenbett Student am Institut für Informatik an der Universität Leipzig 30. Oktober 2008 1 / 33 Gliederung 1 Randomisierte Algorithmen und
Statistische Tests (Signifikanztests)
Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)
ANalysis Of VAriance (ANOVA) 2/2
ANalysis Of VAriance (ANOVA) 2/2 Markus Kalisch 22.10.2014 1 Wdh: ANOVA - Idee ANOVA 1: Zwei Medikamente zur Blutdrucksenkung und Placebo (Faktor X). Gibt es einen sign. Unterschied in der Wirkung (kontinuierlich
Numerische Methoden und Algorithmen in der Physik
Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 15.01.2009 Numerische Methoden und Algorithmen in der Physik Christian Autermann 1/ 47 Methode der kleinsten Quadrate
kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.
kurze Wiederholung der letzten Stunde: Neuronale Netze [email protected] (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer
Übungsblatt Nr. 5. Lösungsvorschlag
Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 5 Aufgabe 1: Eine schöne Bescherung (K)
Einführung in das Maschinelle Lernen I
Einführung in das Maschinelle Lernen I Vorlesung Computerlinguistische Techniken Alexander Koller 26. Januar 2015 Maschinelles Lernen Maschinelles Lernen (Machine Learning): äußerst aktiver und für CL
Theoretische Informatik 1
Theoretische Inforatik 1 Teil 6 Bernhard Nessler Institut für Grundlagen der Inforationsverabeitung TU Graz SS 2008 Übersicht 1 Reduktionen 2 Definition P- NP- 3 Sprachbeziehungen Klassenbeziehungen Turingreduktion
Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis
Optimierungsprobleme Instanz eines Optimierungsproblems zulässiger Bereich (meist implizit definiert) Zielfunktion Optimierungsrichtung opt {max, min} Optimierungsproblem Menge von Instanzen meist implizit
Statistik II. Statistische Tests. Statistik II
Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen
Klassifikation von Daten Einleitung
Klassifikation von Daten Einleitung Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Klassifikation von Daten Einleitung
Mathematische Grundlagen III
Mathematische Grundlagen III Maschinelles Lernen III: Clustering Vera Demberg Universität des Saarlandes 7. Juli 202 Vera Demberg (UdS) Mathe III 7. Juli 202 / 35 Clustering vs. Klassifikation In den letzten
Inferenzstatistik Vortrag: Alpha und Beta Fehler
Inferenzstatistik Vortrag: Alpha und Beta Fehler Dresden, 18.11.08 01 Fehlerquelle Hypothesen Unbekannte Wirklichkeit H0 ist richtig H0 ist falsch Schlussfolgerung aus dem Test unserer Stichprobe Ho annehmen
3 Grundlagen statistischer Tests (Kap. 8 IS)
3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung
Formale Sprachen und Automaten: Tutorium Nr. 8
Formale Sprachen und Automaten: Tutorium Nr. 8 15. Juni 2013 Übersicht 1 Nachtrag 2 Besprechung von Übungsblatt 7 Aufgabe 1 Aufgabe 2 Aufgabe 3 3 CFG PDA Definitionen Ein Beispiel! Aufgabe 4 Der PDA als
Projekt Maschinelles Lernen WS 06/07
Projekt Maschinelles Lernen WS 06/07 1. Auswahl der Daten 2. Evaluierung 3. Noise und Pruning 4. Regel-Lernen 5. ROC-Kurven 6. Pre-Processing 7. Entdecken von Assoziationsregeln 8. Ensemble-Lernen 9. Wettbewerb
Statistik II für Betriebswirte Vorlesung 12
Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 12 11. Januar 2013 7.3. Multiple parameterlineare Regression Im Folgenden soll die
Ideen der Informatik. Maschinelles Lernen. Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik
Ideen der Informatik Maschinelles Lernen Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Lernen: Begriff Beispiele für den Stand der Kunst Spamerkennung Handschriftenerkennung
Vorlesung Maschinelles Lernen
Vorlesung Maschinelles Lernen Additive Modelle Katharina Morik Informatik LS 8 Technische Universität Dortmund 7.1.2014 1 von 34 Gliederung 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung 2 von 34 Ausgangspunkt:
Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie
Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann
Pollards Rho-Methode zur Faktorisierung
C A R L V O N O S S I E T Z K Y Pollards Rho-Methode zur Faktorisierung Abschlusspräsentation Bachelorarbeit Janosch Döcker Carl von Ossietzky Universität Oldenburg Department für Informatik Abteilung
Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation
Neuronale Netze Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2012 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut für
R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r G r e v e n T e l / F a x / e
R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r. 5 4 8 6 2 8 G r e v e n T e l. 0 2 5 7 1 / 9 5 2 6 1 0 F a x. 0 2 5 7 1 / 9 5 2 6 1 2 e - m a i l r a i n e r. n i e u w e n h u i z e n @ c
F r e i t a g, 3. J u n i
F r e i t a g, 3. J u n i 2 0 1 1 L i n u x w i r d 2 0 J a h r e a l t H o l l a, i c h d a c h t e d i e L i n u x - L e u t e s i n d e i n w e n i g v e r n ü n f t i g, a b e r j e t z t g i b t e
3. Das Reinforcement Lernproblem
3. Das Reinforcement Lernproblem 1. Agierender Agent in der Umgebung 2. Discounted Rewards 3. Markov Eigenschaft des Zustandssignals 4. Markov sche Entscheidung 5. Werte-Funktionen und Bellman sche Optimalität
Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,
Berechenbarkeit und Komplexität
Berechenbarkeit und Komplexität Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2010/11 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien und Übungsblätter
Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp
Datenanalyse (PHY31) Herbstsemester 015 Olaf Steinkamp 36-J- [email protected] 044 63 55763 Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung und
Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr.
Übersicht Datenstrukturen und Vorlesung 1: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/ datenstrukturen-und-algorithmen/ Diese Präsentation verwendet
Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20
Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt
Algorithmen II Vorlesung am
Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum
Data Mining - Wiederholung
Data Mining - Wiederholung Norbert Fuhr 9. Juni 2008 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)
Quantenkryptographie
Quantenkryptographie Tobias Mühlbauer Technische Universität München Hauptseminar Kryptographische Protokolle 2009 Outline 1 Motivation Klassische Kryptographie Alternativen zur klassischen Kryptographie
Algorithmen II Vorlesung am 15.11.2012
Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales
Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Entscheidungsbäume
Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Entscheidungsbäume Christoph Sawade/Niels Landwehr Jules Rasetaharison, Tobias Scheffer Entscheidungsbäume Eine von vielen Anwendungen:
Vorlesung 2 KÜRZESTE WEGE
Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!
Künstliche Intelligenz Maschinelles Lernen
Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester
Maschinelles Lernen: Symbolische Ansätze. Wintersemester 2013/2014 Musterlösung für das 7. Übungsblatt
Maschinelles Lernen: Symbolische Ansätze Wintersemester 2013/2014 Musterlösung für das 7. Übungsblatt 1 Aufgabe 1 Nearest Neighbour Gegeben sei folgende Beispielmenge: Day Outlook Temperature Humidity
SCHRIFTLICHE ABITURPRÜFUNG 2011 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten
Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung
Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)
1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,
Stackelberg Scheduling Strategien
Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:
SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten
Mathematik (Grundkursniveau) Arbeitszeit: 10 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Was können lernende Maschinen wissen?
Was können lernende Maschinen wissen? Prof. Dr. Lars Schwabe Adaptive and Regenerative Software Systems http://ars.informatik.uni-rostock.de 2010 UNIVERSITÄT ROSTOCK FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK
Statistik II. Aufgabe 1
Statistik II, SS 2004, Seite 1 von 7 Statistik II Hinweise zur Bearbeitung Hilfsmittel: - Taschenrechner (ohne Datenbank oder die Möglichkeit diesen zu programmieren) - Formelsammlung für Statistik II
Kapitel VIII - Tests zum Niveau α
Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel VIII - Tests zum Niveau α Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh Testsituationen
Theoretische Informatik: Berechenbarkeit und Formale Sprachen
Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto Fachbereich Elektrotechnik/Informatik, Universität Kassel 34109 Kassel, Germany E-mail: [email protected]
Theoretische Informatik SS 03 Übung 3
Theoretische Informatik SS 03 Übung 3 Aufgabe 1 a) Sind die folgenden Funktionen f : partiell oder total: f(x, y) = x + y f(x, y) = x y f(x, y) = x y f(x, y) = x DIV y? Hierbei ist x DIV y = x y der ganzzahlige
sich die Schuhe zubinden können den Weg zum Bahnhof kennen die Quadratwurzel aus 169 kennen
Programm Christian Nimtz www.nimtz.net // [email protected] Grundfragen der Erkenntnistheorie Kapitel 2: Die klassische Analyse des Begriffs des Wissens 1 Varianten des Wissens 2 Was ist das Ziel der Analyse
4 Binäre Regressionsmodelle, Folien 2
4 Binäre Regressionsmodelle, Folien 2 Ludwig Bothmann (basierend auf Unterlagen von Nora Fenske) Statistik III für Nebenfachstudierende WS 2014/2015 4.5 Hypothesentests Lineare Hypothesen Betrachtet werden
Suchen und Sortieren
Ideen und Konzepte der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn (viele Folien von Kostas Panagiotou) Suchen Welche Telefonnummer hat Kurt Mehlhorn? Wie schreibt man das Wort Equivalenz?
Kapitel LF: I. Beispiele für Lernaufgaben. Beispiele für Lernaufgaben. LF: I Introduction c STEIN
Kapitel LF: I I. Einführung in das Maschinelle Lernen Bemerkungen: Dieses Kapitel orientiert sich an dem Buch Machine Learning von Tom Mitchell. http://www.cs.cmu.edu/ tom/mlbook.html 1 Autoeinkaufsberater?
Theoretische Informatik: Berechenbarkeit und Formale Sprachen
Prof. Dr. F. Otto 26.09.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen SS 2011 Name:................................
Online-Algorithmen. Proseminar von Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans im Wintersemester 00/01
Online-Algorithmen Proseminar von Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans im Wintersemester 00/01 Vortrag Bin Packing von Thilo Geertzen 25. Oktober 2000 Online Algorithmen
2 Die Dimension eines Vektorraums
2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1
Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen
Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe
11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P
11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie
Kapitel ML:IV (Fortsetzung)
Kapitel ML:IV (Fortsetzung) IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-18 Statistical Learning c STEIN 2005-2011 Satz 3 (Bayes)
Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen
1 Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Ziele 2 Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:
