Theoretische Informatik 1
|
|
|
- Philipp Kneller
- vor 9 Jahren
- Abrufe
Transkript
1 Theoretische Informatik 1 Boltzmann Maschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2014
2 Übersicht Boltzmann Maschine Neuronale Netzwerke Die Boltzmann Maschine Gibbs Sampling Gibbs Sampling Anwendung Einige Anwendungen Literatur
3 Probabilistische Algorithmen für NP-Vollständige Probleme Direkte Berechnung der Lösung nicht möglich Lösungsraum wird als Wahrscheinlichkeitsverteilung dargestellt Algorithmus macht Random Walk durch den Lösungsraum Lösungszustand sollte möglichst wahrscheinlich sein Möglichst allgemeine Formulierung Boltzmann Maschine
4 Ausflug: Thermodynamik Boltzmann Verteilung Ursprünglich: Verteilung der Teilchenzustände x in einem idealen Gas p(x) = exp ( E(x)) exp ( E(x)) x Wobei E(x) die Energie von x ist. Ludwig Eduard Boltzmann ( ) 1 1 Aus Wikipedia - die freie Enzyklopädie
5 Neuronale Netzwerke Netzwerk von Knoten ( Neuronen ) mit Zustand x i und gewichteten Kanten ( Synapsen ) w ij. x i w ij x i =? x i = 0 x i = 1 Aktivität eines Neurons wird über seine Aktivierungsfunktion durch die Aktivität seiner Nachbarn bestimmt.
6 Neuronale Netzwerke Probabilistische Beschreibung: Potential eines Neurons: u i = j x jw ij + b i x i x i = 0 p(x i = 1 x \i ) = f (u i ), w ij x i =? x i = 1 wobei f ( ) die Aktivierungsfunktion ist. Sigmoide Funktion f (u) = 1 1+e u
7 Boltzmann Maschine Boltzmann Maschine (BM) Eine BM ist ein neuronales Netzwerk mit binären Neuronen (Knoten) x = (x i ) Gewichten w ij und b i. Die Energie eines Zustandes x ist gegeben durch E(x) = i,j x i x j w ij i x i b i Und damit ist die Wahrscheinlichkeit eines bestimmten Zustandes p(x) = exp ( E(x)) exp ( Ex) x Geoffrey Hinton 1 1 Aus Wikipedia - die freie Enzyklopädie
8 Boltzmann Maschine x i = 0 x x i = 1 Jeder Zustand x der BM bildet auf einen Punkt in einer Wahrscheinlichkeitslandschaft ab. Direktes Berechnen des wahrscheinlichsten Zustands ist nicht effizient durchführbar.
9 Boltzmann Maschine zum Lösen von NP-Vollständigen Problemen Die stochastische Dynamik der Boltzmann Maschine wird verwendet um den Lösungsraum möglichst effizient zu durchsuchen. Die Energiefunktion E(x) wird so gewählt, dass gute Lösungen geringer Energie entsprechen. Dies kann durch geeignete Wahl der Gewichte w ij und b i erreicht werden. Lösung eines Suchproblems durch Angabe der Gewichte der BM.
10 Finden einer Lösung Wahrscheinlichste Lösung x lässt sich nicht direkt berechnen Die Wahrscheinlichkeit über den Zustand eines einzelnen Neurons p(x i x \i ) lässt sich aber einfach berechnen Auswerten von p(x) durch Random Walk auf Markov-Kette Gibbs Sampling
11 Gibbs Sampling Starte mit einer beliebigen Belegung x 0 In jedem Schritt n: wähle ein zufälliges Neuron i Ändere den Zustand des Neurons zufällig anhand der Wahrscheinlichkeit p(x i x n 1,\i ) und erzeuge so ein neues Sample x n Die Samples x 0, x 1,... x n folgen der Verteilung p(x)
12 Boltzmann Maschine Gibbs Sampling Anwendung Literatur Gibbs Sampling x xi = 0 xi = 0 xi = 1 xi = 1 x
13 Anwendungen Lösen von CLIQUE Lernalgorithmen existieren für Boltzmann Maschinen Assoziativer Speicher Vorsesung: Neural Networks A
14 Literatur Geoffrey Hinton, Terry Sejnowski, Learning and Relearning in Boltzmann Machines, Geoffrey Hinton, et. al., The wake-sleep algorithm for unsupervised neural networks, Vassilis Zissimopoulos, Vangelis Paschos, Ferhan Pekergin, On the approximation of NP-complete problems by using the Boltzmann Machine method: the cases of some covering and packing problems, 1991.
Theoretische Informatik 1
Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 02.07.2015 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP
Theoretische Informatik 1
Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 10.06.2016 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP
Konzepte der AI Neuronale Netze
Konzepte der AI Neuronale Netze Franz Wotawa Institut für Informationssysteme, Database and Artificial Intelligence Group, Technische Universität Wien Email: [email protected] Was sind Neuronale
Seminar: Data Mining. Referat: Andere Möglichkeiten des Data Mining in verteilten Systemen. Ein Vortrag von Mathias Rohde. 11.
Referat: Andere Möglichkeiten des Data Mining in verteilten Systemen 11. Juni 2009 Gliederung 1 Problemstellung 2 Vektorprodukt Approximationen Samplesammlung 3 Schritte Lokalität und Nachrichtenkomplexität
Neural Networks: Architectures and Applications for NLP
Neural Networks: Architectures and Applications for NLP Session 02 Julia Kreutzer 8. November 2016 Institut für Computerlinguistik, Heidelberg 1 Overview 1. Recap 2. Backpropagation 3. Ausblick 2 Recap
Projektgruppe. Text Labeling mit Sequenzmodellen
Projektgruppe Enes Yigitbas Text Labeling mit Sequenzmodellen 4. Juni 2010 Motivation Möglichkeit der effizienten Verarbeitung von riesigen Datenmengen In vielen Bereichen erwünschte automatisierte Aufgabe:
Theoretische Informatik 1
Theoretische Informatik 1 Die Komplexitätsklasse P David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Äquivalenz von RM und TM Äquivalenz, Sätze Simulation DTM
DisMod-Repetitorium Tag 3
DisMod-Repetitorium Tag 3 Markov-Ketten 21. März 2018 1 Markov-Ketten Was ist eine Markov-Kette? Was gehört alles dazu? Darstellung als Graph und als Matrix Stationäre Verteilung und Grenzverteilung Ergodizität
Latente Dirichlet-Allokation
Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Latente Dirichlet-Allokation Tobias Scheffer Peter Haider Paul Prasse Themenmodellierung Themenmodellierung (Topic modeling) liefert
Grundlagen zu neuronalen Netzen. Kristina Tesch
Grundlagen zu neuronalen Netzen Kristina Tesch 03.05.2018 Gliederung 1. Funktionsprinzip von neuronalen Netzen 2. Das XOR-Beispiel 3. Training des neuronalen Netzes 4. Weitere Aspekte Kristina Tesch Grundlagen
Ideen und Konzepte der Informatik. Maschinelles Lernen. Kurt Mehlhorn
Ideen und Konzepte der Informatik Maschinelles Lernen Kurt Mehlhorn Übersicht Lernen: Begriff Beispiele für den Stand der Kunst Spamerkennung Handschriftenerkennung mit und ohne Trainingsdaten Gesichts-
Seminar über Neuronale Netze und Maschinelles Lernen WS 06/07
Universität Regensburg Naturwissenschaftliche Informatik Seminar über Neuronale Netze und Maschinelles Lernen WS 06/07 Cluster-Algorithmen II: Neural Gas Vortragender: Matthias Klein Gliederung Motivation:
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
Künstliche Neuronale Netze
Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Künstliche Neuronale Netze Hauptseminar Martin Knöfel Dresden, 16.11.2017 Gliederung
Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation
Neuronale Netze Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2012 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut für
Reranking. Parse Reranking. Helmut Schmid. Institut für maschinelle Sprachverarbeitung Universität Stuttgart
Institut für maschinelle Sprachverarbeitung Universität Stuttgart [email protected] Die Folien basieren teilweise auf Folien von Mark Johnson. Koordinationen Problem: PCFGs können nicht alle
Neuronale Netze. Anna Wallner. 15. Mai 2007
5. Mai 2007 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente
2. Beispiel: n-armiger Bandit
2. Beispiel: n-armiger Bandit 1. Das Problem des n-armigen Banditen 2. Methoden zur Berechung von Wert-Funktionen 3. Softmax-Auswahl von Aktionen 4. Inkrementelle Schätzverfahren 5. Nichtstationärer n-armiger
Schriftlicher Test Teilklausur 2
Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2012 / 2013 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher
Theoretische Informatik 1
Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die
Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung , Dr.-Ing. Steffen Herbort, A.R.T. GmbH
Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung 26.10.2016, TP 2: Arbeiten von A.R.T. TP2: Tracking und Umfelderkennung Markerloses Tracking texturierte Objekte Umfelderkennung
Randomisierte Algorithmen und probabilistische Analyse
Randomisierte Algorithmen und probabilistische Analyse S.Seidl, M.Nening, T.Niederleuthner S.Seidl, M.Nening, T.Niederleuthner 1 / 29 Inhalt 1 Randomisierte Algorithmen 2 Probabilistische Analyse S.Seidl,
Maschinelles Lernen: Neuronale Netze. Ideen der Informatik
Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn Adrian Neumann 16. Januar 2014 Übersicht Biologische Inspiration Stand der Kunst in Objekterkennung auf Bildern Künstliche Neuronale
ADS: Algorithmen und Datenstrukturen 2
ADS: Algorithmen und Datenstrukturen 2 Teil 3 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität
Schriftlicher Test Teilklausur 2
Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2014 / 2015 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher
Perzeptronen. Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004
Perzeptronen Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004 1/25 Gliederung Vorbilder Neuron McCulloch-Pitts-Netze Perzeptron
Gibbs sampling. Sebastian Pado. October 30, Seien X die Trainingdaten, y ein Testdatenpunkt, π die Parameter des Modells
Gibbs sampling Sebastian Pado October 30, 2012 1 Bayessche Vorhersage Seien X die Trainingdaten, y ein Testdatenpunkt, π die Parameter des Modells Uns interessiert P (y X), wobei wir über das Modell marginalisieren
Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs)
6. Neuronale Netze Motivation Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) Abstrakt betrachtet sind alle diese
5 Suchmaschinen Page Rank. Page Rank. Information Retrieval und Text Mining FH Bonn-Rhein-Sieg, SS Suchmaschinen Page Rank
Page Rank Google versucht die Bedeutung von Seiten durch den sogenannten Page Rank zu ermitteln. A C Page Rank basiert auf der Verweisstruktur des Webs. Das Web wird als großer gerichteter Graph betrachtet.
Wissensentdeckung in Datenbanken
Wissensentdeckung in Datenbanken Deep Learning Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 20.07.2017 1 von 11 Überblick Künstliche Neuronale Netze Motivation Formales Modell Aktivierungsfunktionen
Survival of the Fittest Optimierung mittels Genetischer Algorithmen
Übung zu Organic Computing Survival of the Fittest Optimierung mittels Genetischer Algorithmen Sabine Helwig Lehrstuhl für Informatik 12 (Hardware-Software-Co-Design) Universität Erlangen-Nürnberg [email protected]
Neuronale Netze. Seminar aus Algorithmik Stefan Craß,
Neuronale Netze Seminar aus Algorithmik Stefan Craß, 325656 Inhalt Theoretisches Modell Grundlagen Lernansätze Hopfield-Netze Kohonen-Netze Zusammenfassung 2 Inhalt Theoretisches Modell Grundlagen Lernansätze
Randomisierte Algorithmen am Beispiel Quicksort
Randomisierte Algorithmen am Beispiel Quicksort Mathias Katzer Universität 28. Juli 2003 Mathias Katzer 0 Überblick Motivation: Begriff Randomisierung Quicksort Stochastik-Ausflug Effizienzanalyse Allgemeineres
2.1 Importance sampling: Metropolis-Algorithmus
Kapitel 2 Simulationstechniken 2.1 Importance sampling: Metropolis-Algorithmus Eine zentrale Fragestellung in der statistischen Physik ist die Bestimmung von Erwartungswerten einer Observablen O in einem
Wissensentdeckung in Datenbanken
Wissensentdeckung in Datenbanken Deep Learning (II) Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 25.07.2017 1 von 14 Überblick Faltungsnetze Dropout Autoencoder Generative Adversarial
Lernmodul 7 Algorithmus von Dijkstra
Folie 1 von 30 Lernmodul 7 Algorithmus von Dijkstra Quelle: http://www.map24.de Folie 2 von 30 Algorithmus von Dijkstra Übersicht Kürzester Weg von A nach B in einem Graphen Problemstellung: Suche einer
Graphentheorie. Zufallsgraphen. Zufallsgraphen. Zufallsgraphen. Rainer Schrader. 23. Januar 2008
Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 3. Januar 008 1 / 45 / 45 Gliederung man könnte vermuten, dass ein Graph mit großer chromatischer Zahl einen dichten Teilgraphen enthalten
Künstliche Neuronale Netze
Inhalt (Biologische) Neuronale Netze Schwellenwertelemente Allgemein Neuronale Netze Mehrschichtiges Perzeptron Weitere Arten Neuronaler Netze 2 Neuronale Netze Bestehend aus vielen Neuronen(menschliches
Theoretische Informatik 1
Theoretische Informatik 1 Teil 12 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Maschinelles Lernen Definition Lernen 2 agnostic -learning Definition
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08
6.2 Feed-Forward Netze
6.2 Feed-Forward Netze Wir haben gesehen, dass wir mit neuronalen Netzen bestehend aus einer oder mehreren Schichten von Perzeptren beispielsweise logische Funktionen darstellen können Nun betrachten wir
Neuronale Netze. Christian Böhm.
Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch
Routing A lgorithmen Algorithmen Begriffe, Definitionen Wegewahl Verkehrslenkung
Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über
Stochastik Praktikum Markov Chain Monte Carlo Methoden
Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem
Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1
Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze 2.04.2006 Reinhard Eck Was reizt Informatiker an neuronalen Netzen? Wie funktionieren Gehirne höherer Lebewesen?
Genetische Algorithmen. Uwe Reichel IPS, LMU München 8. Juli 2008
Genetische Algorithmen Uwe Reichel IPS, LMU München [email protected] 8. Juli 2008 Inhalt Einführung Algorithmus Erweiterungen alternative Evolutions- und Lernmodelle Inhalt 1 Einführung
(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform.
(hoffentlich kurze) Einführung: [email protected] (0721) 608 45944 Überblick Einführung Perzeptron Multi-layer Feedforward Neural Network MLNN in der Anwendung 2 EINFÜHRUNG 3 Gehirn des Menschen Vorbild
kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.
kurze Wiederholung der letzten Stunde: Neuronale Netze [email protected] (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer
Theoretische Informatik 1
Theoretische Informatik 1 Registermaschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Registermaschinen Algorithmusbegriff konkretisiert formale Beschreibung
DEEP LEARNING MACHINE LEARNING WITH DEEP NEURAL NETWORKS 8. NOVEMBER 2016, SEBASTIAN LEMBCKE
DEEP LEARNING MACHINE LEARNING WITH DEEP NEURAL NETWORKS 8. NOVEMBER 2016, SEBASTIAN LEMBCKE INHALT Einführung Künstliche neuronale Netze Die Natur als Vorbild Mathematisches Modell Optimierung Deep Learning
7. Vorlesung. Bipartite Kerne Das kopierende Modell Bow-tie Struktur des Web Random Sampling von Web Seiten
7. Vorlesung Bipartite Kerne Das kopierende Modell Bow-tie Struktur des Web Random Sampling von Web Seiten Seite 179 Web als ein Soziales Netzwerk Small-world Netzwerk: Niedriger (Durchschnitts) Durchmesser
Evidenzpropagation in Bayes-Netzen und Markov-Netzen
Einleitung in Bayes-Netzen und Markov-Netzen Thomas Thüm 20. Juni 2006 1/26 Thomas Thüm in Bayes-Netzen und Markov-Netzen Übersicht Einleitung Motivation Einordnung der Begriffe 1 Einleitung Motivation
Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik. 8. Aufgabenblatt
Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Albayrak, Fricke (AOT) Oer, Thiel (KI) Wintersemester 2014 / 2015 8. Aufgabenblatt
Intelligente Algorithmen Einführung in die Technologie
Intelligente Algorithmen Einführung in die Technologie Dr. KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Natürlich sprachliche
Reinforcement Learning
Reinforcement Learning 1. Allgemein Reinforcement Learning 2. Neuronales Netz als Bewertungsfunktion 3. Neuronales Netz als Reinforcement Learning Nils-Olaf Bösch 1 Allgemein Reinforcement Learning Unterschied
Vorlesung HM2 - Master KI Melanie Kaspar, Prof. Dr. B. Grabowski 1
Melanie Kaspar, Prof. Dr. B. Grabowski 1 Melanie Kaspar, Prof. Dr. B. Grabowski 2 Melanie Kaspar, Prof. Dr. B. Grabowski 3 Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung
ADS: Algorithmen und Datenstrukturen 2
ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität
Methoden der Statistik Markov Chain Monte Carlo Methoden
Methoden der Statistik Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 08.02.2013 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem
6. Übung zur Linearen Optimierung SS08
6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl
Routing Algorithmen. Begriffe, Definitionen
Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über
Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK
Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 29.05.2011 Das Postamt-Problem b(p, q) = {x R 2 : xp = xq } p q h(p, q) h(q, p) = {x :
Schriftlicher Test Teilklausur 2
Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2010 / 2011 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher
SCHNITTERHALTUNG (SPEKTRALE APPROXIMATION)
Vorlesung 12 AUSDÜNNUNG VON GRAPHEN SCHNITTERHALTUNG (SPEKTRALE APPROXIMATION) 387 Wiederholung: Approximative Schnitterhaltung Ziel: Approximationsalgorithmus: A(S(G)) Ziele bei Eingabe eines dichten
Theorie der Informatik Übersicht. Theorie der Informatik SAT Graphenprobleme Routing-Probleme. 21.
Theorie der Informatik 19. Mai 2014 21. einige NP-vollständige Probleme Theorie der Informatik 21. einige NP-vollständige Probleme 21.1 Übersicht 21.2 Malte Helmert Gabriele Röger 21.3 Graphenprobleme
W-Rechnung und Statistik für Ingenieure Übung 11
W-Rechnung und Statistik für Ingenieure Übung 11 Aufgabe 1 Ein Fahrzeugpark enthält 6 Fahrzeuge. Jedes Fahrzeug hat die Wahrscheinlichkeit p = 0.1 (bzw. p = 0.3), dass es kaputt geht. Pro Tag kann nur
Schriftlicher Test Teilklausur 2
Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2009 / 2010 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher
Konzept diskreter Zufallsvariablen
Statistik 1 für SoziologInnen Konzept diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Beispiel: Zufallsvariable 3 Münzen werden unabhängig voneinander geworfen. Jede Münze kann entweder Kopf oder
Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK
Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über
Analyse komplexer Szenen mit Hilfe von Convolutional Neural Networks
Analyse komplexer Szenen mit Hilfe von Convolutional Anwendungen 1 Vitalij Stepanov HAW-Hamburg 24 November 2011 2 Inhalt Motivation Alternativen Problemstellung Anforderungen Lösungsansätze Zielsetzung
Hannah Wester Juan Jose Gonzalez
Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron
Der Metropolis-Hastings Algorithmus
Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Markov-Chain Monte-Carlo Verfahren Übersicht 1 Einführung
