Der Metropolis-Hastings Algorithmus
|
|
|
- Heinrich Holtzer
- vor 8 Jahren
- Abrufe
Transkript
1 Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006
2 Markov-Chain Monte-Carlo Verfahren Übersicht 1 Einführung in Markov-Chain Monte-Carlo Verfahren 2 Kurze Wiederholung von Markov-Ketten 3 Der Algorithmus im diskreten Fall 4 Der generelle Algorithmus
3 Markov-Kette (I) Sei X = (X 0, X 1, X 2,...) eine Folge von diskreten Zufallsvariablen, die alle Ausprägungen in einer abzählbaren Menge S haben S heißt Zustandsraum und s S ein Zustand. Definition einer Markov-Kette X heißt Markov-Kette, falls P(X t = s X 0 = x 0, X 1 = x 1,..., X t 1 = x t 1 ) = für alle t 1 und s, x 0, x 1, x 2,..., x t 1 S. P(X t = s X t 1 = x t 1 ) Hinweis: Die Theorie wird nur für diskrete Zustandsräume betrachtet.
4 Markov-Kette (II) = P(X t+1 = j X t = i) nennt man auch die ein-schritt Übergangswahrscheinlichkeit p (t) ij Falls keine der ein-schritt Übergangswahrscheinlichkeiten sich mit t ändert, nennt man X homogen und p (t) ij = p ij Die S S Matrix P = [p ij ] wird auch die Übergangsmatrix (oder Transitionsmatrix) genannt
5 Klassifikation von Zuständen (I) Betrachtet wird die sogenannte Rekurrenzzeit (Rückkehrzeit) eines i S T ii = min(t 1 : X t = i X 0 = i) Ein Zustand i heißt rekurrent, falls die Kette mit Wahrscheinlichkeit 1 wieder in den Zustand zurückkehrt, d.h. P(T ii < ) = 1 Falls die erwartete Rekurrenzzeit endlich ist, E(T ii ) < nennt man den Zustand nicht-leer (sonst leer).
6 Klassifikation von Zuständen (III) Eine Markov-Kette heißt irreduzibel, falls i, j : m : 1 m < : P(X m = i X 0 = j) > 0 Die Periode eines Zustandes i ist d(i) = g. c. d.{n 1 : P(X n = i X 0 = i) > 0}. Eine Markov-Kette X heißt aperiodisch, falls jeder Zustand von X die Periode 1 hat.
7 Stationäre Verteilung Jede diskrete Verteilung π = (π 1,..., π S ), sodass πp = π heißt stationäre Verteilung für P. Theorem: Eine irreduzible Markov-Kette X hat eine stationäre Verteilung alle Zustände sind nicht-leer rekurrent Hat eine irreduzible Markov-Kette X eine stationäre Verteilung ist π eindeutig und π i = 1 E(T ii ), i S.
8 Detailed Balance (I) Es ist oft leichter stationarität einer Dichte mit der sogenannten detailed-balance Bedingung zu zeigen. Angenommen X = {X n : 0 n N} ist eine irreduzible Markov-Kette, sodass X n die stationäre Verteilung π für alle n hat. X heißt reversibel, falls die Übergangsmatrix von X und der Rückwärtskette Y n = X N n gleich sind, d.h. π i p ij = π j p ji, i, j S. Dies nennt man auch die detailed-balance Bedingung.
9 Detailed Balance (II) Theorem Sei X irreduzibel und angenommen es existiert ein π, dass die detailed-balance Bedingung erfüllt. Dann ist π die stationäre Verteilung der Kette. Beweis:
10 Das Grenzwerttheorem (I) Eine irreduzible und aperiodische Markov-Kette konvergiert gegen ihre stationäre Verteilung π lim P(X (t+n) = j X (t) = i) = lim P ij(n) = π j n n für alle i, j S. Daher gilt µ (0) P n π für alle µ (0).
11 Das Grenzwerttheorem (II) Beispiel: P = Folgende Formel kann zur Berechnung von π benutzt werden: π = 1 (I P + Q) 1, wobei 1 ein Vektor aus Einsen ist, I die Identitätsmatrix und Q = [1]. Somit π = (0.4375, , ). Sei µ (0) = (1, 0, 0). Z.B. ist µ (10) = (0.4409, , ).
12 Die Idee von MCMC (grob gesehen) Ziel: Erzeugung von Zufallszahlen aus der diskreten Verteilung π. Voraussetzung: Irreduzible und aperiodische Markov-Kette mit Übergangsmatrix P dessen stationäre Verteilung π ist. Wähle beliebigen Startwert x 0 = i, i S. Simuliere eine Realisationen der Länge n aus der Markov-Kette X mit Übergangsmatrix P, d.h. x 1, x 2,..., x n. Approximativ gilt, dass X i π, für i = m,..., n, wobei m < n der sogenannte Burn-In ist. Achtung: Die Samples sind jetzt abhängig!
13 Der Algorithmus im diskreten Fall Didaktisches Beispiel Details in der Vorlesung Siehe auch discrete-mh.r.
14 (I) Eine generelle Formulierung des Algorithmus, die auch stetige und mehrdimensionale Parameterräume abdeckt Man möchte eine Markov-Kette konstruieren, die die (mehrdimensionalen) Dichte/Wahrscheinlichkeitsfunktion π(x) als stationäre Verteilung hat und gegen π konvergiert. Der Algorithmus ist in der Bayes-Inferenz interessant, denn es ist nur notwendig die gewünschte Zieldichte bis hin zur Proportionalität zu kennen.
15 Notation Angenommen der Zustand zum Zeitpunkt t ist ein m-dimensionaler Vektor X t = x = (x 1,..., x m ) Die Notation x i wird für den Vektor benutzt, der aus allen Komponenten außer i besteht, d.h x i = (x 1,..., x i 1, x i+1,..., x m ). Gegeben x sei q i (y i x) eine bedingte Dichte, die so genannte Proposal-Verteilung für den i ten Komponenten Abkürzung q(y x) = q i (y i x)
16 (II) Algorithmus 1 : Update-Schritt Input : Markov-Kette mit aktuellem Zustand X t = x = (x 1,..., x m ) und i {1,..., m} die Komponente, in x, die aufdatiert werden soll. 1 (Proposal-Schritt) Vorschlag für den i ten Komponenten: y i q i ( x) Vorschlag für den neuen Zustand: y = (y i, y i ), mit y i = x i. 2 (Akzeptanzschritt) X t+1 = y mit Wahrscheinlichkeit { α(x, y) = min 1, π(y)q(x y) } { = min 1, π(y } i y i )q i (x i y) π(x)q(y x) π(x i x i )q i (y i x) anderenfalls X t+1 = x.
17 (III) Man unterscheidet insbesondere zwei wichtige Klassen bei der Wahl von q i (y i x): 1 Falls q(y x) nicht von x abhängt. d.h. q(y x) = q(y), nennt man y ein independence proposal. 2 Falls q i (y x) = q i ( x y ) und q i eine Dichte ist, die symmetrisch um 0 ist, dann, nennt man y ein random walk proposal. Hier vereinfacht sich die Akzeptanzw keit zu { α = min 1, π(y) } π(x) Beispiele, wenn x = x ein Skalar: y N (x, σ 2 ), y U(x d, x + d)
18 (IV) Ein trivialer Spezialfall ergibt sich, wenn q(y x) = π(x), d.h. man schlägt Zufallszahlen aus der Ziel-Verteilung vor. Dann ergibt sich α = 1 und tatsächlich werden alle Zufallszahlen auch akzeptiert. Für multivariate X wird x typisch komponentenweise in einer festen Reihenfolge aufdatiert, z.b. wird zuerst ein Schritt für die 1. Komponente vorgenommen. Dieser Zustand wird dann benutzt um einen MH-Schritt für die 2. Komponente vorzunehmen, usw. Eine Alternative ist es auch i U{1,..., m} zufällig zu wählen. Anstelle von einem x i kann auch eine ganze Gruppe von Komponenten x A = {x i : i A} simultan aufdatiert werden.
Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die
Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Rückwärtsgleichung P (t) = QP (t), P (0) = E eine minimale nicht negative Lösung (P (t) : t 0). Die Lösung bildet eine Matrix Halbgruppe, d.h. P (s)p
Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie
Fakultät für Mathematik Prof. Dr. Barbara Gentz SS 2013 Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie Mittwoch, 10.7.2013 13. Markoffketten 13.1 Beispiele 1. Irrfahrt auf dem zweidimensionalen
Q4. Markov-Prozesse in diskreter Zeit
Q4. Markov-Prozesse in diskreter Zeit Gliederung 1.Stochastische Prozesse Ein Überblick 2.Zeitdiskrete Markov-Prozesse 3.Vom Modell zum Markov-Prozess 4.Klassifikation von Zuständen 5.Stationäre und transiente
Markov-Ketten-Monte-Carlo-Verfahren
Markov-Ketten-Monte-Carlo-Verfahren Anton Klimovsky 21. Juli 2014 Strichprobenerzeugung aus einer Verteilung (das Samplen). Markov- Ketten-Monte-Carlo-Verfahren. Metropolis-Hastings-Algorithmus. Gibbs-Sampler.
LANGZEITVERHALTEN VON MARKOW-KETTEN
LANGZEITVERHALTEN VON MARKOW-KETTEN NORA LOOSE. Buchstabensalat und Definition Andrei Andreewitsch Markow berechnete Anfang des 20. Jahrhunderts die Buchstabensequenzen in russischer Literatur. 93 untersuchte
3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer
3.4 Asymptotische Evaluierung von Schätzer 3.4.1 Konsistenz Bis jetzt haben wir Kriterien basierend auf endlichen Stichproben betrachtet. Konsistenz ist ein asymptotisches Kriterium (n ) und bezieht sich
Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp
Datenanalyse (PHY31) Herbstsemester 015 Olaf Steinkamp 36-J- [email protected] 044 63 55763 Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung und
Simulation von Zufallsvariablen und Punktprozessen
Simulation von Zufallsvariablen und Punktprozessen 09.11.2009 Inhaltsverzeichnis 1 Einleitung 2 Pseudozufallszahlen 3 Punktprozesse Zufallszahlen Definition (Duden): Eine Zufallszahl ist eine Zahl, die
Proseminarvortrag. Markov-Ketten in der Biologie (Anwendungen)
Proseminarvortrag Markov-Ketten in der Biologie (Anwendungen) von Peter Drössler 20.01.2010 2 Markov-Ketten in der Biologie (Peter Drössler, KIT 2010) Inhalt 1. Das Wright-Fisher Modell... 3 1.1. Notwendige
Kapitel 6 Martingale
Kapitel 6 Martingale Martingale spielen eine große Rolle in der Finanzmathematik, und sind zudem ein wichtiges Hilfsmittel für die statistische Inferenz stochastischer Prozesse, insbesondere auch für Zählprozesse
Einführung in die Bayes-Statistik. Helga Wagner. Ludwig-Maximilians-Universität München WS 2010/11. Helga Wagner Bayes Statistik WS 2010/11 1
Einführung in die Bayes-Statistik Helga Wagner Ludwig-Maximilians-Universität München WS 2010/11 Helga Wagner Bayes Statistik WS 2010/11 1 Organisatorisches Termine: Montag: 16.00-18.00 AU115 Dienstag:
ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)
ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels
Einführung in die Bayessche Bildanalyse
Seminar: Bayessche Ansätze in der Bildanalyse Fakultät für Mathematik und Wirtschaftswissenschaften Universität Ulm 8.Mai 2006 1 Motivation Beispielbilder 2 Computergrafiken Bildarten 3 Bayes sches Paradigma
2 Euklidische Vektorräume
Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,
Stochastische Prozesse. Woche 5
FS 2016 Stochastische Prozesse Woche 5 Aufgabe 1 PageRank-Algorithmus von Google Das Herz der Google-Suchmaschine ist ein Algorithmus, der alle Dokumente des WWW nach ihrer Wichtigkeit anordnet. Die Auflistung
Werner Sandmann: Modellierung und Analyse 4 1. Kapitel 4. Markovketten
Werner Sandmann: Modellierung und Analyse 4 1 Kapitel 4 Markovketten Werner Sandmann: Modellierung und Analyse Kapitel 4 Markovketten 4.1 Grundlagen 4 2 Abschnitt 4.1 Grundlagen Werner Sandmann: Modellierung
4. Vektorräume und Gleichungssysteme
technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume
Bayessche Netzwerke und ihre Anwendungen
Bayessche Netzwerke und ihre Anwendungen 1. Kapitel: Grundlagen Zweiter Schwerpunktanteil einer Vorlesung im Rahmen des Moduls Systemplanung und Netzwerktheorie (Modul-Nr.: 1863) Fakultät für Informatik
Kapitel 2 Wahrscheinlichkeitsrechnung
Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt
Diskrete Verteilungen
KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder
Signalverarbeitung 2. Volker Stahl - 1 -
- 1 - Hidden Markov Modelle - 2 - Idee Zu klassifizierende Merkmalvektorfolge wurde von einem (unbekannten) System erzeugt. Nutze Referenzmerkmalvektorfolgen um ein Modell Des erzeugenden Systems zu bauen
ε δ Definition der Stetigkeit.
ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x
Grundlagen der Monte Carlo Simulation
Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte
Algorithmen mit konstantem Platzbedarf: Die Klasse REG
Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August
Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11
Mathematik für Wirtschaftswissenschaftler, WS / Musterlösungen zu Aufgabenblatt Aufgabe 76: Bestimmen Sie mittels Gauß-Elimination die allgemeine Lösung der folgenden linearen Gleichungssysteme Ax b: a)
Begriffe aus der Informatik Nachrichten
Begriffe aus der Informatik Nachrichten Gerhard Goos definiert in Vorlesungen über Informatik, Band 1, 1995 Springer-Verlag Berlin Heidelberg: Die Darstellung einer Mitteilung durch die zeitliche Veränderung
Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung
Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes- Entscheidungsfunktionen
Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.
Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.
Simulationsmethoden in der Bayes-Statistik
Simulationsmethoden in der Bayes-Statistik Hansruedi Künsch Seminar für Statistik, ETH Zürich 6. Juni 2012 Inhalt Warum Simulation? Modellspezifikation Markovketten Monte Carlo Simulation im Raum der Sprungfunktionen
Chi-Quadrat-Verteilung
Chi-Quadrat-Verteilung Die Verteilung einer Summe X +X +...+X n, wobei X,..., X n unabhängige standardnormalverteilte Zufallsvariablen sind, heißt χ -Verteilung mit n Freiheitsgraden. Eine N(, )-verteilte
9 Die Normalverteilung
9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,
Spezielle stetige Verteilungen
Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für
1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...
Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Übungen zur Vorlesung MATHEMATIK II
Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom
Kapitel VI. Euklidische Geometrie
Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und
Lösungsvorschläge zum 14. Übungsblatt.
Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine
Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie
Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie Johannes Leitner Inhalt I Modellierung von Unschärfe Unscharfe Mengen Unscharfe
Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015
Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet
Diskrete Wahrscheinlichkeitstheorie - Probeklausur
Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten
Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten
Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests
Klausur zur Vorlesung,,Algorithmische Mathematik II
Institut für angewandte Mathematik, Institut für numerische Simulation Sommersemester 2015 Prof. Dr. Anton Bovier, Prof. Dr. Martin Rumpf Klausur zur Vorlesung,,Algorithmische Mathematik II Bitte diese
8. Stetige Zufallsvariablen
8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse
Kapitel VI - Lage- und Streuungsparameter
Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie
5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21
5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11
STOCHASTISCHE PROZESSE. Vorlesungsskript
STOCHASTISCHE PROZESSE I: Markovketten in diskreter und stetiger Zeit Wolfgang König Vorlesungsskript Universität Leipzig Sommersemester 2005 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Einleitung........................................
Zufallsvariablen: Die allgemeine Definition
KAPITEL 8 Zufallsvariablen: Die allgemeine Definition 8.1. Zufallsvariablen Bis zu diesem Zeitpunkt haben wir ausschließlich Zufallsvariablen mit endlich oder abzählbar vielen Werten (also diskrete Zufallsvariablen)
Gewöhnliche Dierentialgleichungen
Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat
Formale Methoden 1. Gerhard Jäger 16. Januar Uni Bielefeld, WS 2007/2008 1/19
1/19 Formale Methoden 1 Gerhard Jäger [email protected] Uni Bielefeld, WS 2007/2008 16. Januar 2008 2/19 Reguläre Ausdrücke vierte Art (neben Typ-3-Grammatiken, deterministischen und nicht-deterministischen
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen
Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff
Adaptive Systeme Sommersemester 2015 Prof. Dr. -Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff 1 Adaptive Systeme Adaptives System: ein System, das
Matrizen, Determinanten, lineare Gleichungssysteme
Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n
+ 2 F2 (u) X 1 F1 (u)) Der Koeffizient der unteren Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert:
Tail Abhängigkeit Definition 12 Sei (X 1,X 2 ) T ein Zufallsvektor mit Randverteilungen F 1 und F 2. Der Koeffizient der oberen Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert: λ U (X
(Lineare) stochastische Optimierung
(Lineare) stochastische Optimierung Bsp: Aus zwei Sorten Rohöl wird Benzin und Heizöl erzeugt. Die Produktivität sowie der Mindestbedarf (pro Woche) und die Kosten sind in folgender Tabelle angegeben:
Bedingte Wahrscheinlichkeiten und Unabhängigkeit
Kapitel 5 Bedingte Wahrscheinlichkeiten und Unabhängigkeit Mitunter erhält man über das Ergebnis eines zufälligen Versuches Vorinformationen. Dann entsteht die Frage, wie sich für den Betrachter, den man
Die Varianz (Streuung) Definition
Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ
Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion
Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig
Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln
Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November 2009 1 Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt
Bestimmung einer ersten
Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,
Erzeugung von Pseudozufallszahlen mit Computern
Erzeugung von Pseudozufallszahlen mit Computern Basisgeneratoren und deren Einfluss auf die Qualität der Ergebnisse Lorenz Hauswald IKTP, TU Dresden 7 Dezember 2011 1 / 26 Gliederung Grundlagen 1 Grundlagen
entspricht der Länge des Vektorpfeils. Im R 2 : x =
Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.
Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn
Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum
Punktprozesse. Andreas Frommknecht Seminar Zufällige Felder Universität Ulm
Einführung in Beispiele für Andreas Seminar Zufällige Felder Universität Ulm 20.01.2009 Inhalt Einführung in Beispiele für Definition Markierte 1 Einführung in Definition Markierte 2 Beispiele für Homogener
Würfelspiele und Zufall
Würfelspiele und Zufall Patrik L. Ferrari 29. August 2010 1 Random horse die Irrfahrt des Pferdchens Betrachte ein Schachbrett mit einem Pferd (Springer), welches sich nach den üblichen Springer-Regeln
Caputo fraktionale Differentialgleichungen. 1 Riemann Liouville fraktionale Differentialgleichungen
Seminar Fraktionale Differentialgleichungen Prof. Dr. P.E. Kloeden, WS1000/2001 Caputo fraktionale Differentialgleichungen Lars Grüne, 25.1.2001 Basierend auf Fractional Differential Equations, Theory
(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)
3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten
Analysis I - Stetige Funktionen
Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt
Signifikanz von Alignment Scores und BLAST
Westfälische Wilhelms Universität Münster Fachbereich 10 - Mathematik und Informatik Signifikanz von Alignment Scores und BLAST Seminarvortrag von Leonie Zeune 10. Mai 2012 Veranstaltung: Seminar zur mathematischen
Die Lineare Algebra-Methode. Mahir Kilic
Die Lineare Algebra-Methode Mahir Kilic 23. Juni 2004 1 Einführung 1.1 Überblick Im Allgemein benutzt man die Lineare Algebra-Methode in der Kombinatorik wie folgt: Für die Bestimmung einer Obergrenze
Lösungsvorschläge Blatt Z1
Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt Z1 Zürich, 2. Dezember 2016 Lösung zu Aufgabe Z1 Wir zeigen L qi /
Extremwertverteilungen
Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen
Google s PageRank. Eine Anwendung von Matrizen und Markovketten. Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23.
Google s PageRank Eine Anwendung von Matrizen und Markovketten Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23. September 2009 Dr. Werner Sandmann Institut für Mathematik Technische Universität
Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin
Mathematik des Hybriden Monte-Carlo Marcus Weber Zuse Institute Berlin Statistische Thermodynamik Ziel: Am Computer ein Ensemble samplen. Messung im Gleichgewicht (zeitunabhängige Verteilung π der Systemzustände
Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure
Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Von Prof. Hubert Weber Fachhochschule Regensburg 3., überarbeitete und erweiterte Auflage Mit zahlreichen Bildern, Tabellen sowie
Lineare Gleichungssysteme
Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare
Lineare Gleichungssysteme (Teschl/Teschl 11.1)
Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...
Übungsblatt 9. f(x) = e x, für 0 x
Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable
Zusatztutorium, 25.01.2013
Zusatztutorium, 25.01.2013 David Müßig muessig[at]mi.fu-berlin.de http://page.mi.fu-berlin.de/def/tutorium/ WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu
Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 1_Fallstudie)
(Die Thesen zur Vorlesung 1_Fallstudie) das Thema der Vorlesung Grundlagen der Methode der linearen Optimierung (Lineares Optimierungsmodell der Wahl der Produktionsstrategie des ) Prof. Dr. Michal Fendek
8. Konfidenzintervalle und Hypothesentests
8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars
Übungsrunde 9, Gruppe 2 LVA 107.369, Übungsrunde 8, Gruppe 2, 12.12. Markus Nemetz, TU Wien, 12/2006
3.75. Angabe Übungsrunde 9, Gruppe 2 LVA 07.369, Übungsrunde 8, Gruppe 2, 2.2. Markus Nemetz, [email protected], TU Wien, 2/2006 X sei eine stetige sg mit Dichte f(x), x R. Ermitteln Sie einen
Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme
Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh ([email protected]) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es
Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass
Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel Zuerst wollen wir die Gamma-Funktion definieren, die eine Verallgemeinerung von n! ist. Dazu benötigen wir einige Resultate. Lemma.
27 Taylor-Formel und Taylor-Entwicklungen
136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen
Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen
Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit
1 Elemente der Wahrscheinlichkeitstheorie
H.-J. Starkloff Unendlichdimensionale Stochastik Kap. 01 11. Oktober 2010 1 1 Elemente der Wahrscheinlichkeitstheorie 1.1 Messbare Räume Gegeben seien eine nichtleere Menge Ω und eine Menge A von Teilmengen
BONUS MALUS SYSTEME UND MARKOV KETTEN
Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,
Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie
Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann
Lineare Abhängigkeit
Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x
2. Stetige lineare Funktionale
-21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn
3.3 Eigenwerte und Eigenräume, Diagonalisierung
3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.
Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen
Kapitel 11 Stichprobenfunktionen Um eine Aussage über den Wert eines unbekannten Parameters θ zu machen, zieht man eine Zufallsstichprobe vom Umfang n aus der Grundgesamtheit. Das Merkmal wird in diesem
Lösungsvorschlag zu den Hausaufgaben der 8. Übung
FAKULTÄT FÜR MATHEMATIK Prof Dr Patrizio Ne Frank Osterbrink Johannes Lankeit 9503 Lösungsvorschlag zu den Hausaufgaben der 8 Übung Hausaufgabe : Beweise den Satz über die Parallelogrammgleichung Sei H
Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem
Mathematik für Wirtschaftswissenschaftler gehalten von Claus Diem Übungen Die Seminare / Übungsgruppen / Tutorien finden wöchentlich statt. Alle zwei Wochen am Montag wird ein Übungsblatt ausgegeben. Dies
Ebene algebraische Kurven
Ebene algebraische Kurven Tangenten und Singularitäten Meyrer Claudine 4. November 010 Inhaltsverzeichnis 1 Lokale Eigenschaften an-algebraischer Kurven (in C ) 1.1 Denitionen..............................
Beispiel: Evolution infizierter Individuen
Differentialgleichungen sind sehr nützlich in der Modellierung biologischer Prozesse, denn: damit kann man auch sehr komplizierte Systeme beschreiben die Mathematik liefert mit der gut entwickelten Theorie
