Zusatztutorium,

Größe: px
Ab Seite anzeigen:

Download "Zusatztutorium, 25.01.2013"

Transkript

1 Zusatztutorium, David Müßig muessig[at]mi.fu-berlin.de WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu sein. Allerdings sollte der gar keine Angst machen, da er sehr hilfreich sein kann, wie wir im Folgenden sehen werden. 1.1 Theorie Satz 1 (Homomorphiesatz für Gruppen). Es seien G, H Gruppen, ψ : G H ein Gruppenhomomorphismus. Dann existiert ein eindeutiger Gruppenhomomorphismus ϕ : G/ ker ψ H, so dass ϕ π = ψ gilt. Und hier die Version für Ringe: Satz 2 (Homomorphiesatz für Ringe). Es seien R, A Ringe, ψ : R A ein Ringhomomorphismus. Dann existiert ein eindeutiger Ringhomomorphismus ϕ : R/ ker ψ A, so dass ϕ π = ψ gilt. Der einzige Unterschied ist also, dass wir die Worte Gruppe und Ring gegeneinander ausgetauscht haben. Dadurch verändern sich die Voraussetzungen an den Homomorphismus: Während ein Gruppenhomomorphismus nur eine Verknüpfung erhalten muss, muss ein Ringhomomorphismus zwei Verknüpfungen (+, ) erhalten. Da wir aber meistens einen Gruppen - oder Ringhomomorphismus gegeben haben, wenn wir einen der Sätze benutzen, muss uns das nicht weiter kümmern. Was sagen diese Sätze nun aus? Sie sagen uns, dass wir (ohne groß nachdenken zu müssen) die linke Seite des Homomorphismus nach dem Kern austeilen können, ohne, dass sich an der Abbildung etwas ändert. Das kann hilfreich sein, wenn...

2 1....die / der ursprüngliche Gruppe G / Ring R ziemlich unschön (also z.b. extrem groß ist oder Nullteiler oder sonstewas hat) ist - der Faktor G/ ker ψ / R/ ker ψ hingegen vielleicht ganz einfach gestrickt ist wir einen injektiven Homomorphismus brauchen. Wenn wir nach dem Kern austeilen, ist der neue Homomorphismus anschließend injektiv, da hier dann ker ϕ = 0 gilt. Außerdem können wir noch einen Schritt weitergehen und zu den Isomorphiesätzen übergehen: Satz 3 (Isomorphiesatz für Gruppen). Es seien G, H Gruppen, ψ : G H ein Gruppenhomomorphismus. Dann ist ϕ : G/ ker ψ Im ψ ein Isomorphismus von Gruppen. Satz 4 (Isomorphiesatz für Ringe). Es seien R, A Ringe, ψ : R A ein Ringhomomorphismus. Dann ist ϕ : G/ ker ψ Im ψ ein Isomorphismus von Ringen. Während wir bei den Homomorphiesätzen alle Elemente, die sowieso auf die Null abgebildet werden, schon im Urbild zur Null gemacht haben, schränken wir bei den Isomorphiesätzen nun auch noch das Bild auf den Bereich ein, den wir überhaupt erreichen können. Wir schneiden somit auf beiden Seiten das Unwichtige weg. 1.2 Praxis Hier nun noch Beispiele für Aufgaben, in denen der Homomorphiesatz zum Einsatz kommt: Aufgabe (4.1). b) Für eine normale Untergruppe U von G mit (G : U) = 2 konstruiere man einen Gruppenhomomorphismus f : G Z/nZ (für geeignetes n) mit ker (f) = U. Welche der n = 1, 2, 3, 4 sind hier möglich? Lösung. Der Gesuchte Homomorphismus ist mit f : G G/U = {U, (G \ U)} = {±1} = Z/2Z, f(g) = 0, falls g U und f(g) = 1, falls g U Nun ist die Frage, für welche n = 1, 2, 3, 4 so eine Abbildung existiert. Angenommen es existiert ein Homomorphismus ψ : G Z/nZ. Dann wissen wir nach dem Homomorphiesatz für Gruppen, dass dann auch ein (injektiver) Homomorphismus ϕ : G/ ker ψ = G/U = Z/2Z Z/nZ existieren muss. Das geht jedoch nur für gerades n, da ein Element ϕ(2) = x Z/nZ existieren muss, mit x + x = 0. Dies gibt es allerdings nur für gerades n. 2

3 Aufgabe (12.3). a) Man bestimme eine Isotropiegruppe der Konjugationswirkung von S 4 auf X := V \ {id} = {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} S 4. b) Wegen #X = 3 gibt diese Wirkung einen Gruppenhomomorphismus S 4 S 3. Was sind Kern und Bild? c) Aus der Einfachheit von A 5 folgere man, dass A 5 die einzige nichttriviale normale Untergruppe von S 5 ist. d) Man zeige, dass es keinen surjektiven Gruppenhomomorphismus S 5 S 4 gibt. Lösung. Zu d) Angenommen es existiert ein surjektiver Gruppenhomomorphismus ϕ : S 5 S 4. Dann gilt nach dem Homomorphiesatz S 5 / ker ϕ = S 4 und somit #(ker ϕ) = 5. Da der Kern einer Abbildung zudem eine normale Untergruppe ist, müssten wir also einen Normalteiler von S 5 mit Ordnung 5 finden, was nach Teil c) nicht geht (einzige normale Untergruppen von S 5 sind {id}, A 5, S 5 und keine davon hat Ordnung 5). 2 Primelemente / irreduzible Elemente Diese Elemente sind von besonderem Interesse, da wir so ziemlich alle anderen Elemente eines Rings aus ihnen konstruieren können. Wenn man sich allgemeine Ringe als Verallgemeinerung der ganze Zahlen Z vorstellt, so nehmen die Primelemente und die irreduziblen Elemente die Rolle der Primzahlen ein. Allerdings ist nicht jeder Ring so schön wie Z, so dass es also auch durchaus sein kann, dass die beiden Begriffe nicht gleich sind. 2.1 Theorie Definition 5. Es sei R ein (kommutativer) Ring (mit 1). Wir nennen r R irreduzibel, wenn aus r = a b folgt, dass a R oder b R gilt. Einfach gesagt sind die irreduziblen Elemente all diese Elemente, die nicht wirklich zerlegt werden können. Das entspricht der Tatsache, dass wir eine Primzahl p P höchstens in p = p ( 1) zerlegen können, nicht aber in zwei echte Teiler. Definition 6. Es sei R ein (kommutativer) Ring (mit 1). Wir nennen p R Primelement, falls aus p a b folgt, dass p a oder p b gilt. 3

4 Primelemente sind also die Grundbausteine des Ringes. Auch in Z gilt, dass, wenn eine Primzahl p ein Produkt teilt, sie schon einen der Faktoren teilen muss (z.b. gilt 3 24 = 6 4 und 3 6). Wie hängen die beiden Begriffe nun zusammen? Eine wichtige Tatsache, die man sich unbedingt merken sollte, ist die folgende: Satz 7. Es sei R ein Integritätsbereich und p R. Dann gilt: p prim p irreduzibel. Noch viel wichtiger ist allerdings die folgende Tatsache: Die Umkehrung gilt im Allgemeinen nicht! Es sollte im Hinterkopf sein, dass die Tatsache {P rimelemente} = {irreduzibleelemente} etwas ganz besonderes ist, über das man sich unter Umständen sogar freuen kann. Ringe, in denen so etwas gilt, sind die s.g. faktoriellen Ringe, in denen jedes Element eindeutig (bis auf Einheiten) als das Produkt von Primelementen darstellbar ist. Und da gilt, dass {euklidische Ringe} {Hauptidealringe} {f aktorielle Ringe}, gilt auch in den euklidischen und den Hauptidealringen Gleichheit. Das sind aber sozusagen die schönen Ausnahmen. 2.2 Praxis Auch hier einige Beispielaufgaben: Aufgabe (7.1). a) Ist das Element x in den Ringen R[x] und C[x] irreduzibel? Ist es prim? b) Welche Polynome sind in C[x] irreduzibel? c) Man zeige, dass Polynome f(x) R[x] immer reduzibel sind. d) Welche Polynome in R[x] sind irreduzibel? Lösung. Da wir wissen, dass Polynomringe über faktoriellen Ringen wieder faktoriell sind, sind alle hier betrachteten Ringe faktoriell (sowohl R als auch C sind Körper und damit sozusagen hochgradig faktoriell). Zu a) In C[x] gilt natürlich x 2 + = (x 1)(x + 1) und daher ist x hier nicht irreduzibel. In R[x] hat x keine Nullstelle und ist daher irreduzibel. Denn wenn es reduzibel wäre, würde es in zwei Polynome vom Grad 1 zerfallen, wobei diese dann die Form (x + a) mit a R hätten und dann wäre a eine Nullstelle in R. Zu b) - d) Siehe Ausarbeitung zu Blatt 7. 4

5 Aufgabe (7.5). b) Aufgabe (10.3). a), b), c) Aufgabe (9.1). Aufgabe (). Man zeige, dass die 2 in Z[ 5] zwar irreduzibel, jedoch nicht prim ist. Lösung. Es gilt 2 6 = (1 + 5)(1 5) aber auch 2 (1 ± 5), daher ist die 2 nicht prim. Allerdings ist die 2 irreduzibel: Angenommen nicht. Dann existieren a, b Z[ 5] \ ( Z[ 5] ) mit 2 = a b. Damit muss auch 4 = N(2) = N(a) N(b) gelten, wobei N die bekannte Norm-Abbildung ist. Da N(x) = 1 x R gilt, muss N(a) = N(b) = 2 gelten. Mit a = x + y 5 folgt damit 2 = x 2 + 5y 2, was keine ganzzahlige Lösung hat. Also ist die 2 in Z[ 5] irreduzibel. 3 Moduln, Algebren, Ideale etc. 3.1 Moduln Moduln sind die Verallgemeinerung von Vektorräumen. Wobei letztere immer einen Körper K zugrunde liegen haben, bilden bei Moduln Ringe die Basis. Da liegt auch schon der große Unterschied: bei der Multiplikation mit Skalaren müssen wir aufpassen, da wir im Allgemeinen nicht dividieren können. Definition 8. Es sei R ein (kommutativer) Ring (mit 1), (M, +) eine abelsche Gruppe. Mit der Abbildung R M M, (r, m) r m wird M zu einem R-Modul, wenn die Abbildung die folgenden Eigenschaften erfüllt: 1. (r + s) m = r m + sm für alle r, s R, m M 2. r (m + n) = r m + r n für alle r R, m, n M 3. r (s m) = (r s) m für alle r, s R, m M 5

6 3.2 Algebren Definition 9. Es sei R ein (kommutativer) Ring (mit 1), A ein R-Modul. Mit der Abbildung A A A, (a, b) a b wird A zu einer R-Algebra, wenn folgende Bedingungen erfüllt sind: 1. (a + b) c = a c + b c für alle a, b, c A 2. a (b + c) = a b + a c für alle a, b, c A 3. r (a b) = (r a) b = a (r b) für alle a, b A, r R Das Besondere an Algebren ist also, dass wir einen Modul haben, in dem wir auch multiplizieren können (was nicht selbstverständlich ist). Beispiel 1. Ein besonders interessantes Beispiel ist der Polynomring R[x], wobei R ein (kommutativer) Ring (mit 1) ist. Als Modul ist R[x] nicht endlich erzeugt, da wir x, x 2, x 3, x 4,... in die R-Basis aufnehmen müssen. Als Algebra hingegen ist R[x] sehr wohl endlich erzeugt: die R-Basis ist B = {1, x}. Da wir in einer Algebra multiplizieren dürfen, müssen wir x 2, x 3 etc. nicht in die Basis mit aufnehmen, sondern können es aus B konstruieren. 3.3 Ideale Ideale sind schön! Das sollte im Gedächtnis bleiben (sie heißen schließlich nicht umsonst Ideal ). Definition 10. Es sei R ein (kommutativer) Ring (mit 1). Eine Menge I R heißt Ideal, wenn sie folgende Eigenschaften erfüllt: 1. 0 I 2. a, b I (a + b) I 3. r R, a I r a I Was Ideale von Moduln unterscheidet ist die Tatsache, dass Ideale innerhalb des Ringes leben. Allerdings sind Ideale ganz spezielle Moduln: Ideale sind die Untermoduln des Ringes R (also die Moduln, die innerhalb von R liegen). Ideale können auf folgende Arten verknüpft werden (I, J seien Ideale in R): 1. I J ist ein Ideal in R 2. I + J := { a + b a I, b J } ist ein Ideal in R 3. I J := { c c I oder c J } ist i.a. kein Ideal (häufig wird aber I J := I + J gesetzt) 6

7 Definition 11. Ein Ideal I R heißt Primideal, falls R/I nullteilerfrei ist. Ein Ideal J R heißt Maximalideal, falls R/J ein Körper ist. Bemerkung. Es gilt: I Maximalideal I Primideal. Das ist klar, da natürlich alle Körper nullteilerfrei sind. Auch hier gilt mal wieder: Die Umkehrung ist im Allgemeinen falsch! Definition 12. Hauptideal Beispiel 2. In Z haben alle Ideale die Form (a) := a Z, mit a Z. Aufgabe (5.2). Aufgabe (5.3). c), e) Aufgabe (5.4). a) Aufgabe (6.4). Aufgabe (8.1). a) + b) 4 Der Chinesische Restsatz Vielleicht der Satz der Vorlesung. Auf jeden Fall ein ganz wichtiger. Satz 13 (Chinesischer Restsatz, Version für Z/nZ). Es seien n 1,..., n k N paarweise teilerfremd und N := k i=1 n i. Dann gilt Z/NZ Z/n 1 Z Z/n k Z. Es gibt noch eine allgemeine Version für beliebige Ringe und Ideale, diese ist für uns aber nicht so wichtig. 7

8 Satz 14 (Chinesischer Restsatz, allgemeine Version). Es sei R ein (kommutativer) Ring (mit 1), I 1,..., I k R seien Ideale mit I i + I j = R für i j. Es sei außerdem I := k i=1 I i. Dann gilt R/I R/I 1 R/I k. Jetzt stellt sich die Frage, wozu der Chinesische Restatz gut ist. Eine der häufigsten Anwendungen ist die der simultanen Kongruenzen. Das sieht dann wie folgt aus: Gegeben ein System von Kongruenzen x a 1 (mod n 1 ) x a 2 (mod n 2 ). x a k (mod n k ) mit ggt(n i, n j ) = 1 für i j. Dann existiert nach dem Chinesischen Restsatz eine Lösung x 0, die eindeutig modulo n := k i=1 n i ist. Beispiel 1. Gesucht ist ein x Z/60Z, mit x 3 (mod 5) und x 6 (mod 12). Um das zu lösen, lassen wir zunächst den erweiterten Euklidischen Algorithmus laufen und erhalten = 1. Damit ist (mod 5) (mod 12) (mod 5) (mod 12) Damit erhalten wir für den Isomorphismus im Chinesischen Restsat Z/60Z Z/5Z Z/12Z 25 (0, 1) 24 (1, 0) Wir suchen nun das Urbild des Elements (3, 6) Z/5Z Z/12Z, d.h. gesucht ist das Urbild von (3, 6) = 3 (1, 0) + 6 (0, 1), welches wir bestimmen können, indem wir die Urbilder von (1, 0), bzw. (0, 1) einsetzen: Und Tatsache, es gilt 3 ( 24) = (mod 60) 18 3 (mod 5) 18 6 (mod 12) 8

9 wie gewünscht! Dieses Vorgehen lässt sich auch auf drei und mehr teilerfremde Zahlen ausweiten. Wollen wir z.b. das System x 3 (mod 5) x 1 (mod 3) x 3 (mod 4) lösen, so müssen wir insgesamt drei ggt s berechnen: Damit ergibt sich als Lösung r s 1 (3 4) = 1 r s 2 (5 4) = 1 r s 3 (5 3) = 1 r 1 = 5, s 1 = 2 r 2 = 7, s 2 = 1 r 3 = 4, s 3 = 1 Analog zum ersten Teil des Beispiels ist dann Damit ist die Lösung Oh Wunder, es gilt Z/60Z Z/5Z Z/3Z Z/4Z 24 (1, 0, 0) 20 (0, 1, 0) 15 (0, 0, 1) 3 ( 24) + 1 ( 20) + 3 ( 15) = (mod 60) 43 3 (mod 5) 43 1 (mod 3) 43 3 (mod 4). Aufgabe (10.4). 9

10 5 Konjugiertheit bei Permutationen Bei Permutationen ist es of interessant herauszufinden, ob sie zueinander konjugiert sind oder nicht. Es gibt eine ganz einfach Möglichkeit dies zu testen und sogar zu berechnen, mithilfe welcher weiteren Permutation sie ineinander überführbar sind. Satz 15. Zwei Permutationen α, β S n sind genau dann konjugiert zueinander, wenn sie den gleichen Zykeltyp haben. Das ist doch mal was! Wie berechnen wir nun das Element, welches α in β überführt? Wir zeigen das anhand eines Beispiels: Beispiel 1. Seien α = (1 3 5)(2 4) und β = (1 3)(2 4 6). Zunächst schreiben wir in die obere Zeile einer zweizeilige Matrix die Elemente von α und zwar in ihrer Auftrittsreihenfolge: ( ) Dann schreiben wir darunter (auch in Auftrittsreihenfolge, aber Achtung: die gleichlangen Zykel müssen untereinander stehen!) die Elemente aus β: ( ) Jetzt sortieren wir die obere Zeile in aufsteigender Reihenfolge und nehmen die Einträge, die darunter stehen, mit: ( ) Und was da jetzt steht, ist die gesuchte Permutaion σ mit σ α σ 1 = β. 10

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

Algebra. Patrik Hubschmid. 8. Oktober 2013

Algebra. Patrik Hubschmid. 8. Oktober 2013 Algebra Patrik Hubschmid 8. Oktober 2013 Inhaltsverzeichnis 1 Fortführung der Gruppentheorie 7 1.1 Sylowsätze.................................... 7 3 Vorwort Dieses Skript zur Vorlesung Algebra im Wintersemester

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27 DLP Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de Fachbereich Mathematik und Informatik ALZAGK SEMINAR Bremen, den 18. Januar 2011 1 / 27 Inhaltsverzeichnis 1 Der diskrete Logarithmus Definition

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Info zum Zusammenhang von Auflösung und Genauigkeit

Info zum Zusammenhang von Auflösung und Genauigkeit Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Kap. 8: Speziell gewählte Kurven

Kap. 8: Speziell gewählte Kurven Stefan Lucks 8: Spezielle Kurven 82 Verschl. mit Elliptischen Kurven Kap. 8: Speziell gewählte Kurven Zur Erinnerung: Für beliebige El. Kurven kann man den Algorithmus von Schoof benutzen, um die Anzahl

Mehr

Was ist das Budget für Arbeit?

Was ist das Budget für Arbeit? 1 Was ist das Budget für Arbeit? Das Budget für Arbeit ist ein Persönliches Geld für Arbeit wenn Sie arbeiten möchten aber nicht mehr in einer Werkstatt. Das gibt es bisher nur in Nieder-Sachsen. Und in

Mehr

Lineare Differentialgleichungen erster Ordnung erkennen

Lineare Differentialgleichungen erster Ordnung erkennen Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Kulturelle Evolution 12

Kulturelle Evolution 12 3.3 Kulturelle Evolution Kulturelle Evolution Kulturelle Evolution 12 Seit die Menschen Erfindungen machen wie z.b. das Rad oder den Pflug, haben sie sich im Körperbau kaum mehr verändert. Dafür war einfach

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Persönliche Zukunftsplanung mit Menschen, denen nicht zugetraut wird, dass sie für sich selbst sprechen können Von Susanne Göbel und Josef Ströbl

Persönliche Zukunftsplanung mit Menschen, denen nicht zugetraut wird, dass sie für sich selbst sprechen können Von Susanne Göbel und Josef Ströbl Persönliche Zukunftsplanung mit Menschen, denen nicht zugetraut Von Susanne Göbel und Josef Ströbl Die Ideen der Persönlichen Zukunftsplanung stammen aus Nordamerika. Dort werden Zukunftsplanungen schon

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Wir machen neue Politik für Baden-Württemberg

Wir machen neue Politik für Baden-Württemberg Wir machen neue Politik für Baden-Württemberg Am 27. März 2011 haben die Menschen in Baden-Württemberg gewählt. Sie wollten eine andere Politik als vorher. Die Menschen haben die GRÜNEN und die SPD in

Mehr

Papa - was ist American Dream?

Papa - was ist American Dream? Papa - was ist American Dream? Das heißt Amerikanischer Traum. Ja, das weiß ich, aber was heißt das? Der [wpseo]amerikanische Traum[/wpseo] heißt, dass jeder Mensch allein durch harte Arbeit und Willenskraft

Mehr

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. hristian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 5.1: In einer Implementierung

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Erstellen von x-y-diagrammen in OpenOffice.calc

Erstellen von x-y-diagrammen in OpenOffice.calc Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

ONLINE-AKADEMIE. "Diplomierter NLP Anwender für Schule und Unterricht" Ziele

ONLINE-AKADEMIE. Diplomierter NLP Anwender für Schule und Unterricht Ziele ONLINE-AKADEMIE Ziele Wenn man von Menschen hört, die etwas Großartiges in ihrem Leben geleistet haben, erfahren wir oft, dass diese ihr Ziel über Jahre verfolgt haben oder diesen Wunsch schon bereits

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

Zwischenablage (Bilder, Texte,...)

Zwischenablage (Bilder, Texte,...) Zwischenablage was ist das? Informationen über. die Bedeutung der Windows-Zwischenablage Kopieren und Einfügen mit der Zwischenablage Vermeiden von Fehlern beim Arbeiten mit der Zwischenablage Bei diesen

Mehr

Beweisbar sichere Verschlüsselung

Beweisbar sichere Verschlüsselung Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit bmoeller@crypto.rub.de 6

Mehr

Simulation LIF5000. Abbildung 1

Simulation LIF5000. Abbildung 1 Simulation LIF5000 Abbildung 1 Zur Simulation von analogen Schaltungen verwende ich Ltspice/SwitcherCAD III. Dieses Programm ist sehr leistungsfähig und wenn man weis wie, dann kann man damit fast alles

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang sysplus.ch outlook - mail-grundlagen Seite 1/8 Outlook Mail-Grundlagen Posteingang Es gibt verschiedene Möglichkeiten, um zum Posteingang zu gelangen. Man kann links im Outlook-Fenster auf die Schaltfläche

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. M. Hinze Dr. P. Kiani Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 2 Aufgabe 1: (12 Punkte) a) Beweisen

Mehr

Nicht kopieren. Der neue Report von: Stefan Ploberger. 1. Ausgabe 2003

Nicht kopieren. Der neue Report von: Stefan Ploberger. 1. Ausgabe 2003 Nicht kopieren Der neue Report von: Stefan Ploberger 1. Ausgabe 2003 Herausgeber: Verlag Ploberger & Partner 2003 by: Stefan Ploberger Verlag Ploberger & Partner, Postfach 11 46, D-82065 Baierbrunn Tel.

Mehr

Bewertung des Blattes

Bewertung des Blattes Bewertung des Blattes Es besteht immer die Schwierigkeit, sein Blatt richtig einzuschätzen. Im folgenden werden einige Anhaltspunkte gegeben. Man unterscheidet: Figurenpunkte Verteilungspunkte Längenpunkte

Mehr

2.1 Präsentieren wozu eigentlich?

2.1 Präsentieren wozu eigentlich? 2.1 Präsentieren wozu eigentlich? Gute Ideen verkaufen sich in den seltensten Fällen von allein. Es ist heute mehr denn je notwendig, sich und seine Leistungen, Produkte etc. gut zu präsentieren, d. h.

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Was meinen die Leute eigentlich mit: Grexit?

Was meinen die Leute eigentlich mit: Grexit? Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?

Mehr

Informatik Kurs Simulation. Hilfe für den Consideo Modeler

Informatik Kurs Simulation. Hilfe für den Consideo Modeler Hilfe für den Consideo Modeler Consideo stellt Schulen den Modeler kostenlos zur Verfügung. Wenden Sie sich an: http://consideo-modeler.de/ Der Modeler ist ein Werkzeug, das nicht für schulische Zwecke

Mehr

11. Das RSA Verfahren und andere Verfahren

11. Das RSA Verfahren und andere Verfahren Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert

Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert Beamen in EEP Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert Zuerst musst du dir 2 Programme besorgen und zwar: Albert, das

Mehr

Satzhilfen Publisher Seite Einrichten

Satzhilfen Publisher Seite Einrichten Satzhilfen Publisher Seite Einrichten Es gibt verschiedene Möglichkeiten die Seite einzurichten, wir fangen mit der normalen Version an, Seite einrichten auf Format A5 Wählen Sie zunächst Datei Seite einrichten,

Mehr

Geld Verdienen im Internet leicht gemacht

Geld Verdienen im Internet leicht gemacht Geld Verdienen im Internet leicht gemacht Hallo, Sie haben sich dieses E-book wahrscheinlich herunter geladen, weil Sie gerne lernen würden wie sie im Internet Geld verdienen können, oder? Denn genau das

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1 Zahlenwinkel: Forscherkarte 1 alleine Tipp 1 Lege die Ziffern von 1 bis 9 so in den Zahlenwinkel, dass jeder Arm des Zahlenwinkels zusammengezählt das gleiche Ergebnis ergibt! Finde möglichst viele verschiedene

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

1. Standortbestimmung

1. Standortbestimmung 1. Standortbestimmung Wer ein Ziel erreichen will, muss dieses kennen. Dazu kommen wir noch. Er muss aber auch wissen, wo er sich befindet, wie weit er schon ist und welche Strecke bereits hinter ihm liegt.

Mehr

Mehr Geld verdienen! Lesen Sie... Peter von Karst. Ihre Leseprobe. der schlüssel zum leben. So gehen Sie konkret vor!

Mehr Geld verdienen! Lesen Sie... Peter von Karst. Ihre Leseprobe. der schlüssel zum leben. So gehen Sie konkret vor! Peter von Karst Mehr Geld verdienen! So gehen Sie konkret vor! Ihre Leseprobe Lesen Sie...... wie Sie mit wenigen, aber effektiven Schritten Ihre gesteckten Ziele erreichen.... wie Sie die richtigen Entscheidungen

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.) Lösungsmethoden gewöhnlicher Dierentialgleichungen Dgl) Allgemeine und partikuläre Lösung einer gewöhnlichen Dierentialgleichung Eine Dierentialgleichung ist eine Gleichung! Zum Unterschied von den gewöhnlichen

Mehr

RSA-Verschlüsselung. Verfahren zur Erzeugung der beiden Schlüssel:

RSA-Verschlüsselung. Verfahren zur Erzeugung der beiden Schlüssel: RSA-Verschlüsselung Das RSA-Verfahren ist ein asymmetrisches Verschlüsselungsverfahren, das nach seinen Erfindern Ronald Linn Rivest, Adi Shamir und Leonard Adlemann benannt ist. RSA verwendet ein Schlüsselpaar

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b AGROPLUS Buchhaltung Daten-Server und Sicherheitskopie Version vom 21.10.2013b 3a) Der Daten-Server Modus und der Tresor Der Daten-Server ist eine Betriebsart welche dem Nutzer eine grosse Flexibilität

Mehr

Statuten in leichter Sprache

Statuten in leichter Sprache Statuten in leichter Sprache Zweck vom Verein Artikel 1: Zivil-Gesetz-Buch Es gibt einen Verein der selbstbestimmung.ch heisst. Der Verein ist so aufgebaut, wie es im Zivil-Gesetz-Buch steht. Im Zivil-Gesetz-Buch

Mehr

DAVID: und David vom Deutschlandlabor. Wir beantworten Fragen zu Deutschland und den Deutschen.

DAVID: und David vom Deutschlandlabor. Wir beantworten Fragen zu Deutschland und den Deutschen. Manuskript Die Deutschen sind bekannt dafür, dass sie ihre Autos lieben. Doch wie sehr lieben sie ihre Autos wirklich, und hat wirklich jeder in Deutschland ein eigenes Auto? David und Nina fragen nach.

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe 7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe und Homomorfismen Wir verallgemeinern den Übergang von Z zu Z/m. Sei im folgenden G eine (additiv geschriebene) abelsche Gruppe, H eine Untergruppe.

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Definition und Begriffe

Definition und Begriffe Merkblatt: Das Dreieck Definition und Begriffe Das Dreieck ist ein Vieleck. In der Ebene ist es die einfachste Figur, die von geraden Linien begrenzt wird. Ecken: Jedes Dreieck hat drei Ecken, die meist

Mehr

Kurzanleitung fu r Clubbeauftragte zur Pflege der Mitgliederdaten im Mitgliederbereich

Kurzanleitung fu r Clubbeauftragte zur Pflege der Mitgliederdaten im Mitgliederbereich Kurzanleitung fu r Clubbeauftragte zur Pflege der Mitgliederdaten im Mitgliederbereich Mitgliederbereich (Version 1.0) Bitte loggen Sie sich in den Mitgliederbereich mit den Ihnen bekannten Zugangsdaten

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Anleitung über den Umgang mit Schildern

Anleitung über den Umgang mit Schildern Anleitung über den Umgang mit Schildern -Vorwort -Wo bekommt man Schilder? -Wo und wie speichert man die Schilder? -Wie füge ich die Schilder in meinen Track ein? -Welche Bauteile kann man noch für Schilder

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

TESTEN SIE IHR KÖNNEN UND GEWINNEN SIE!

TESTEN SIE IHR KÖNNEN UND GEWINNEN SIE! 9 TESTEN SIE IHR KÖNNEN UND GEWINNEN SIE! An den SeniorNETclub 50+ Währinger Str. 57/7 1090 Wien Und zwar gleich in doppelter Hinsicht:!"Beantworten Sie die folgenden Fragen und vertiefen Sie damit Ihr

Mehr

Physik 4, Übung 11, Prof. Förster

Physik 4, Übung 11, Prof. Förster Physik 4, Übung 11, Prof. Förster Christoph Hansen Emailkontakt ieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Windows. Workshop Internet-Explorer: Arbeiten mit Favoriten, Teil 1

Windows. Workshop Internet-Explorer: Arbeiten mit Favoriten, Teil 1 Workshop Internet-Explorer: Arbeiten mit Favoriten, Teil 1 Wenn der Name nicht gerade www.buch.de oder www.bmw.de heißt, sind Internetadressen oft schwer zu merken Deshalb ist es sinnvoll, die Adressen

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

sondern alle Werte gleich behandelt. Wir dürfen aber nicht vergessen, dass Ergebnisse, je länger sie in der Vergangenheit

sondern alle Werte gleich behandelt. Wir dürfen aber nicht vergessen, dass Ergebnisse, je länger sie in der Vergangenheit sondern alle Werte gleich behandelt. Wir dürfen aber nicht vergessen, dass Ergebnisse, je länger sie in der Vergangenheit liegen, an Bedeutung verlieren. Die Mannschaften haben sich verändert. Spieler

Mehr

Das Leitbild vom Verein WIR

Das Leitbild vom Verein WIR Das Leitbild vom Verein WIR Dieses Zeichen ist ein Gütesiegel. Texte mit diesem Gütesiegel sind leicht verständlich. Leicht Lesen gibt es in drei Stufen. B1: leicht verständlich A2: noch leichter verständlich

Mehr