Signalverarbeitung 2. Volker Stahl - 1 -

Größe: px
Ab Seite anzeigen:

Download "Signalverarbeitung 2. Volker Stahl - 1 -"

Transkript

1 - 1 -

2 Hidden Markov Modelle - 2 -

3 Idee Zu klassifizierende Merkmalvektorfolge wurde von einem (unbekannten) System erzeugt. Nutze Referenzmerkmalvektorfolgen um ein Modell Des erzeugenden Systems zu bauen (Hidden Markov Modell). Nutze das Modell bei der Klassifikation einer unbekannten Merkmalvektorfolge

4 Beispiel Spracherkennung Konstruiere zu jedem Wort des Vokabulars ein Modell des Sprechers, der das Wort spricht. Klassifikation einer Merkmalvektorfolge x: Berechne von jedem Modell die Wahrscheinlichkeit, dass es x erzeugt. Wähle das Wort als Klassifikationsergebnis, für dessen Modell die Wahrscheinlichkeit maximal ist

5 Beispiel Wettervorhersage Gestützt auf Merkmalvektoren: z.b. Luftdruck, Temperatur, Windgeschwindigkeit, Gestützt auf Modell: Wetter morgen wird wahrscheinlich gleich sein wie das Wetter heute. Praxis: Kombination aus beidem (Hidden Markov Modelle)

6 Überblick Markov Modelle Hidden Markov Modelle Verknüpfung von Hidden Markov Modellen - 6 -

7 Gibt es Zufall? Was ist ein Modell? - 7 -

8 Modell Beschreibung eines realen Systems Vereinfachende Annahmen, Abstraktion von Unwichtigem Zufall Gott würfelt nicht (Einstein 1929) Deterministisches Weltbild, Laplacescher Dämon, freier Wille? Zufall und Wahrscheinlichkeit als einfaches Modell für fehlendes Wissen stochastische Modelle - 8 -

9 Markov Modelle System, das zu diskreten Zeitpunkten t = 1,2,3, betrachtet wird. System befindet sich zu jedem Zeitpunkt t in einem von n möglichen Zuständen j = 1,,n Gesucht: Wahrscheinlichkeit, dass sich das System z.z. t im Zustand j befindet. Gegeben: Anfangswahrscheinlichkeiten: Übergangswahrscheinlichkeiten: - 9 -

10 Beispiel Wettermodell mit 2 Zuständen: schön, schlecht Zeitpunkt t-1 = gestern, t = heute. Übergangswahrscheinlichkeiten Gestern war das Wetter schön, d.h. P(Wetter heute schön) = 0.7 P(Wetter heute schlecht) = 0.3 Allgemein: S 1, S 2, S 3, ist Folge von Zufallsvariablen, deren Verteilung gesucht ist (stochastischer Prozess)

11 Vereinfachende Annahmen bei Markov Modellen Wahrscheinlichkeitsverteilung von S t hängt nur vom Zustand des Systems zum Zeitpunkt t-1 ab, nicht aber von früheren Zeitpunkten. (Markov Eigenschaft) Bsp.: Wenn man das Wetter von mehreren Tagen der Vergangenheit betrachten würde, könnte man das Wetter von heute genauer vorhersagen als wenn man nur das Wetter von gestern betrachtet (z.b. Extrapolation). Dies würde das Modell jedoch komplizierter machen! Übergangswahrscheinlichkeiten hängen nicht vom Zeitpunkt t ab. Bsp.: Übergangswahrscheinlichkeiten sind im Winter anders als im Sommer, was im Modell nicht berücksichtigt wird. Bei Modellen von technischen Systemen werden z.b. Alterungserscheinungen nicht berücksichtigt

12 Zusammenfassung: Markov Modell gegeben durch Übergangswahrscheinlichkeiten Wahrscheinlichkeit, dass das System zum Zeitpunkt t in Zustand j ist falls es zum Zeitpunkt t-1 in Zustand i war. Unabhängig von t! Anfangswahrscheinlichkeiten

13 Randbedingungen Summe der Anfangswahrscheinlichkeiten muss 1 sein. Summe der Übergangswahrscheinlichkeiten aus einem Zustand muss 1 sein

14 Schätzung der Übergangswahrscheinlichkeiten aus einer Stichprobe Beispiel System mit 3 Zuständen Beobachtete Zustandsfolge: 1,3,3,2,2,3,1,3,3,2,2,1,3,1,2,1,1,2,3,2 Gesucht: Übergangswahrscheinlichkeit

15 Schätzung der Übergangswahrscheinlichkeiten aus einer Stichprobe Beispiel System mit 3 Zuständen Beobachtete Zustandsfolge: 1,3,3,2,2,3,1,3,3,2,2,1,3,1,2,1,1,2,3,2 Gesucht: Übergangswahrscheinlichkeit 7 Fälle wo S t-1 = 3 eintrat: 1,3,3,2,2,3,1,3,3,2,2,1,3,1,2,1,1,2,3,2 3 Fälle wo S t-1 = 3 und S t = 2 eintrat: 1,3,3,2,2,3,1,3,3,2,2,1,3,1,2,1,1,2,3,2 Schätzwert:

16 Gesetz von Bayes über bedingte Wahrscheinlichkeiten A, B Ereignisse mit Wahrscheinlichkeit P(A), P(B). z.b. Würfel A: Augenzahl gerade B: Augenzahl größer 3 A = { 2,4,6 } B = { 4,5,6 } P(A) = 3/6 = 1/2 P(B) = 3/6 = 1/2 P(A B): Wahrscheinlichkeit, dass A und B eintritt. z.b. Würfel A B = {4,6} P(A B) = 2/6 = 1/3 P(A) P(B)! P(A B): Wahrscheinlichkeit, dass A eintritt unter der Annahme, dass B der Fall ist. z.b. Würfel Zahl gerade unter der Annahme, dass sie größer 3 ist Fälle, in denen Augenzahl größer 3 ist: {4,5,6} In zwei dieser Fälle ist die Augenzahl gerade: {4,6} P(A B) = 2/3-16 -

17 Def.: A und B heißen unabhängig wenn gilt z.b. zweimal würfeln, 36 Möglichkeiten A: Zahl beim ersten Wurf gerade, B: Zahl beim zweiten Wurf größer 3. Gesetz von Bayes Sind A und B unabhängig, dann gilt

18 n = 10 mögliche Elementarereignisse mit gleicher Wahrscheinlichkeit. A und B sind abhängig!

19 Anwendung auf Markov Modelle Übergangswahrscheinlichkeiten Wahrscheinlichkeit dass System z.z. t in Zustand j und z.z. t-1 in Zustand i ist: Wahrscheinlichkeit dass System zur Zeit t in Zustand j ist:

20 Beispiel Wettermodell Anfangswahrscheinlichkeiten Verteilung von S 2 Vektorielle Schreibweise Verteilung von S t

21 Denksportaufgabe Wie ist die Wahrscheinlichkeitsverteilung von S t für t?

22 Berechnung der Wahrscheinlichkeitsverteilung von S t zu jedem Zeitpunkt t

23 Beispiel für Systeme, die sich mit Markov Modellen beschreiben lassen Herz, das im Lauf eines Zyklus typische Zustände annimmt Zustände: Systole, Diastole, Klappenbewegung, Blutströmung, Diffussionsprozesse durch einen Membran Zustände: Molekül links bzw. rechts der Membran Mensch, der ein bestimmtes Wort spricht Stimmbandaktivität, Öffnung Mund, Lippenform, loop, next, skip Übergänge Exkurs: Zeitkontinuierliche Markov Modelle

24 Hidden Markov Modelle Erweiterung von Markov Modellen Markov Modell gibt zu jedem Zeitpunkt t einen Zufallsvektor aus. Wahrscheinlichkeitsverteilung des ausgegebenen Vektors hängt vom Zustand ab, in dem sich das System gerade befindet. Ein Beobachter sieht nur die ausgegebenen Zufallsvektoren, kennt aber nicht den Zustand des Systems. Hidden Markov Modell System zur Erzeugung von Merkmalvektorfolgen Vergleich: Warnlampen am Auto, Maschinengeräusche, Diagnostik,

25 Beispiel: Wahrscheinlichkeitsdichte des Zufallsvektors, der im Zustand i ausgegeben wird: Emissionsdichte Beobachtete Folge von Zufallsvektoren (Merkmalvektorfolge) Fragen: Wie groß ist die Wahrscheinlichkeit (Dichte), dass das HMM die Folge x erzeugt? Welche Zustände wurden dabei durchlaufen? Wie konstruiert man ein HMM aus einer Trainingsstichprobe?

26 Anwendung von HMMs zur Klassifikation von Merkmalvektorfolgen Modellannahme: Zu klassifizierende Merkmalvektorfolgen werden von HMMs erzeugt. Zu jeder Klasse ein HMM: Klassifikation einer Merkmalvektorfolge Berechne für jedes HMM, wie wahrscheinlich es ist, dass es x erzeugt hat. Klassifikationsergebnis: Das HMM, für das die Wahrscheinlichkeit am größten ist

27 Theorie: Klassifikation mit HMMs Elementarereignisse: i-tes HMM ist aktiv: (a priori Wahrscheinlichkeit) Merkmalvektorfolge x wird beobachtet: Ereignisse sind voneinander abhängig, sonst wäre Klassifikation nicht möglich! Zusammenhang: Wahrscheinlichkeit, dass x erzeugt wird, wenn i-tes HMM aktiv ist: Emissionswahrscheinlichkeit Wahrscheinlichkeit, dass i-tes HMM aktiv war, wenn x beobachtet wird: Klassifikationswahrscheinlichkeit Bayes Bayes

28 Theorie: Klassifikation mit HMMs Wahrscheinlichkeit, dass beobachtete Folge x vom i-ten HMM erzeugt wurde: Klassifikationsergebnis: Wahrscheinlichstes HMM Aufgabe: Berechne die Wahrscheinlichkeit, dass ein gegebenes HMM λ die beobachtete Merkmalvektorfolge erzeugt: bzw. falls λ fest

29 Beobachtete Merkmalvektorfolge: Dabei durchlaufene Zustandsfolge: Wahrscheinlichkeitsdichte des Zufallsvektors, der im Zustand i ausgegeben wird (Emissionswahrscheinlichkeit): Wahrscheinlichkeit, dass x ausgegeben wird, wenn s durchlaufen wird: Wahrscheinlichkeit, dass s durchlaufen wird: Wahrscheinlichkeit, dass x ausgegeben wird und s durchlaufen wird: Übergangswahrscheinlichkeiten des Markov Modells Bayes Wahrscheinlichkeit, dass x ausgegeben wird: Problem: Summe über alle möglichen Zustandsfolgen der Länge T!

30 Effizienterer Weg Iterative Berechnung

31 - 31 -

32 Maximum Approximation Ersetze durch Grund: α s werden sehr klein Logarithmieren sonst underflow! Logarithmus einer Summe aufwändig ln(a+b) ln(a) + ln(b) Berechnung der wahrscheinlichsten Zustandsfolge

33 Maximum Approximation, wahrscheinlichste Zustandsfolge Rückwärtszeiger

34 Spezialfall: HMM für Spracherkennung Zustandsübergänge nur in Zeitrichtung loop, next, skip

35 Spezialfall: HMM für Spracherkennung

36 Vermeidung sehr kleiner Zahlen: Abstand = Negativer Logarithmus der Wahrscheinlichkeiten

37 Viterbi Training von HMMs (Normalverteilung in Zuständen, Übergangswahrscheinlichkeiten) HMM Zustände HMM Zustände

38 Neuschätzung der Emissionswahrscheinlichkeiten in den Zuständen Neuschätzung der Übergangswahrscheinlichkeiten z.b.: Iteriere: Matching mit neuem HMM (Viterbi Algorithmus) Emissions- und Übergangswahrscheinlichkeiten schätzen aus neuer Zuordnung

39 Verkettung von Hidden Markov Modellen Beispiele Spracherkennung: Ein HMM für jedes Wort des Vokabulars (Ganzwortmodelle) Erkennung beliebiger Wortfolgen EEG Klassifikation ( Gedankenlesen ) Langzeit EKG Ein HMM für gesunden Herzzyklus Ein HMM für jedes Krankheitsbild Maschinengeräusche Ein HMM für Zyklus in Normalbetrieb Ein HMM für Störung

40 Beispiel Spracherkennung HMM für Wort 1 HMM für Wort 2 HMM für beliebig lange Folgen von Wort 1 und Wort 2 Wahrscheinlichkeiten an Wortübergangskanten: Sprachmodell z.b. p großer,baum > p großer,blume

41 Hidden Markov Modell Viterbi Algorithmus HMM für Wort 1 HMM für Wort 2 HMM für Wort 1 HMM für Wort

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Überblick Bessere Modelle, die nicht nur den Mittelwert von Referenzvektoren sondern auch deren Varianz berücksichtigen Weniger Fehlklassifikationen Mahalanobis Abstand Besseres Abstandsmaß basierend

Mehr

Hidden-Markov-Modelle

Hidden-Markov-Modelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hidden-Markov-Modelle Tobias Scheffer Thomas Vanck Hidden-Markov-Modelle: Wozu? Spracherkennung: Akustisches Modell. Geschriebene

Mehr

In einem mathematischen Modell wird dies beschrieben durch einen funktionalen Zusammenhang: x = f (t).

In einem mathematischen Modell wird dies beschrieben durch einen funktionalen Zusammenhang: x = f (t). Aktueller Überblick 0 Einführende Worte ( ) 1 Geschichtlicher Überblick ( ) 2 Zufall 3 Perfekte Sicherheit und ihre Grenzen 4 Angriffsszenarien 5 Der komplexitätstheoretische Ansatz 6 Pseudozufallsgeneratoren

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie. Karin Haenelt

Grundbegriffe der Wahrscheinlichkeitstheorie. Karin Haenelt Grundbegriffe der Wahrscheinlichkeitstheorie Karin Haenelt 1 Inhalt Wahrscheinlichkeitsraum Bedingte Wahrscheinlichkeit Abhängige und unabhängige Ereignisse Stochastischer Prozess Markow-Kette 2 Wahrscheinlichkeitsraum

Mehr

Hidden Markov Modelle

Hidden Markov Modelle Hidden Markov Modelle in der Sprachverarbeitung Paul Gabriel paul@pogo.franken.de Seminar Sprachdialogsysteme: Hidden Markov Modelle p.1/3 Überblick Merkmalsvektoren Stochastischer Prozess Markov-Ketten

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

6: Diskrete Wahrscheinlichkeit

6: Diskrete Wahrscheinlichkeit Stefan Lucks Diskrete Strukturen (WS 2009/10) 219 6: Diskrete Wahrscheinlichkeit 6: Diskrete Wahrscheinlichkeit Stefan Lucks Diskrete Strukturen (WS 2009/10) 220 Wahrscheinlichkeitsrechnung Eines der wichtigsten

Mehr

Schriftlicher Test Teilklausur 2

Schriftlicher Test Teilklausur 2 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2014 / 2015 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher

Mehr

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein.

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein. Lösungsvorschläge zu den Aufgaben von Blatt 6: 43) 7 Telefonzellen ( 7 Kugeln in der Urne); 3 davon sind von je einem Benutzer besetzt ( 3 Kugeln in die Stichprobe). Die Telefonzellen werden nicht mehrfach

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

Stochastik und Markovketten

Stochastik und Markovketten 1 Zentrum für Bioinformatik der Universität des Saarlandes WS 22/23 2 Warum Stochastik? Viele Fragestellungen der Bioinformatik lassen sich auch heutzutage gar nicht oder nicht schnell genug exakt beantworten

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Kapitel 2 Wahrscheinlichkeitstheorie Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 1 / 24 Lernziele Experimente, Ereignisse und Ereignisraum Wahrscheinlichkeit Rechnen mit Wahrscheinlichkeiten

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 stheorie: Grundbegriffe Prof. Dr. Achim Klenke http://www.aklenke.de 5. Vorlesung: 25.11.2011 1/33 Inhalt 1 Zufallsvariablen 2 Ereignisse 3 2/33 Zufallsvariablen Eine Zufallsvariable

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Kursfolien Karin Haenelt 09.05002 1 Letzte Änderung 18.07002 Hidden Markov Models Besondere Form eines probabilistischen endlichen Automaten Weit verbreitet in der statistischen Sprachverarbeitung

Mehr

Aufgabe 1 Probabilistische Inferenz

Aufgabe 1 Probabilistische Inferenz Seite 1 von 11 Aufgabe 1 Probabilistische Inferenz (28 Punkte) Es existieren zwei Krankheiten, die das gleiche Symptom hervorrufen. Folgende Erkenntnisse konnten in wissenschaftlichen Studien festgestellt

Mehr

Zeitreihenanalyse mit Hidden Markov Modellen

Zeitreihenanalyse mit Hidden Markov Modellen Elektrotechnik und Informationstechnik Institut für Automatisierungstechnik, Professur Prozessleittechnik Zeitreihenanalyse mit Hidden Markov Modellen (nach http://www.cs.cmu.edu/~awm/tutorials VL PLT2

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. April 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 2 Version: 9. April

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 5: Markov-Chain-Monte-Carlo-Verfahren Randolf Altmeyer February 1, 2017 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Nichtparametrische Methoden

Mehr

3 Wahrscheinlichkeitstheorie

3 Wahrscheinlichkeitstheorie Einige mathematische Konzepte 3 Wahrscheinlichkeitstheorie 3.1 Wahrscheinlichkeit Die Wahrscheinlichkeitstheorie modelliert Situationen, in denen Unsicherheit über bestimmte Aspekte der Umwelt vorherrscht.

Mehr

Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments

Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Strukturelle Modelle Conditional Random Fields Katharina Morik LS 8 Informatik Technische Universität Dortmund 17.12. 2013 1 von 27 Gliederung 1 Einführung 2 HMM 3 CRF Strukturen

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Zusammenfassung Stochastik

Zusammenfassung Stochastik Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl

Mehr

Roman Firstein. Maximum Entropy Markov Models for Information Extraction and Segmentation

Roman Firstein. Maximum Entropy Markov Models for Information Extraction and Segmentation Maximum Entropy Markov Models (MEMM) for Information Extraction and Segmentation Roman Firstein 09.10.07 Maximum Entropy Markov Models for Information Extraction and Segmentation Vortrag - Vorwort - Modell

Mehr

Elementare Begriffe der Wahrscheinlichkeitstheorie für die Sprachverarbeitung

Elementare Begriffe der Wahrscheinlichkeitstheorie für die Sprachverarbeitung Elementare Begriffe der Wahrscheinlichkeitstheorie für die Sprachverarbeitung Kursfolien Karin Haenelt 1 Übersicht Wahrscheinlichkeitsfunktion P Wahrscheinlichkeit und bedingte Wahrscheinlichkeit Bayes-Formeln

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 7. Konfidenzintervalle

Wahrscheinlichkeitsrechnung und Statistik für Biologen 7. Konfidenzintervalle Wahrscheinlichkeitsrechnung und Statistik für Biologen 7. Konfidenzintervalle Matthias Birkner & Dirk Metzler http://www.zi.biologie.uni-muenchen.de/evol/statgen.html 9. Juni 2009 1 Wiederholung: Bedingte

Mehr

Statistik Einführung // Wahrscheinlichkeitstheorie 3 p.2/58

Statistik Einführung // Wahrscheinlichkeitstheorie 3 p.2/58 Statistik Einführung Wahrscheinlichkeitstheorie Kapitel 3 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Wahrscheinlichkeitstheorie

Mehr

Hidden Markov Modelle

Hidden Markov Modelle Hidden Markov Modelle (Vorabversion begleitend zur Vorlesung Spracherkennung und integrierte Dialogsysteme am Lehrstuhl Medieninformatik am Inst. f. Informatik der LMU München, Sommer 2005) Prof. Marcus

Mehr

Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza)

Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza) SS 2013 Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ss/dwt/uebung/ 10. Mai 2013

Mehr

Bayes sche Klassifikatoren. Uwe Reichel IPS, LMU München 16. Juli 2008

Bayes sche Klassifikatoren. Uwe Reichel IPS, LMU München 16. Juli 2008 Bayes sche Klassifikatoren Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 16. Juli 2008 Inhalt Einleitung Grundlagen der Wahrscheinlichkeitsrechnung Noisy-Channel-Modell Bayes sche Klassifikation

Mehr

Kapitel N. Wahrscheinlichkeitsrechnung

Kapitel N. Wahrscheinlichkeitsrechnung Kapitel N Wahrscheinlichkeitsrechnung Inhalt dieses Kapitels N000 1 Diskrete Wahrscheinlichkeitsräume 2 Bedingte Wahrscheinlichkeit und Unabhängigkeit 1 Produktexperimente 2 Kombinatorik und Urnenmodelle

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Marcel Thoms Mathematik Online Herbst 211 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge

Mehr

Ausgewählte spezielle Verteilungen

Ausgewählte spezielle Verteilungen Ausgewählte spezielle Verteilungen In Anwendungen werden oft Zufallsvariablen betrachtet, deren Verteilung einem Standardmodell entspricht. Zu den wichtigsten dieser Modelle gehören: diskrete Verteilungen:

Mehr

Hidden Markov Models (HMM)

Hidden Markov Models (HMM) Hidden Markov Models (HMM) Kursfolien Karin Haenelt 1 Themen Definitionen Stochastischer Prozess Markow Kette (Visible) Markov Model Hidden Markov Model Aufgaben, die mit HMMs bearbeitet werden Algorithmen

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/52 Biostatistik, Sommer 2017 Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 02.06.2017 2/52 Inhalt 1 Wahrscheinlichkeit Bayes sche Formel 2 Diskrete Stetige 3/52 Wahrscheinlichkeit Bayes

Mehr

Elementare Wahrscheinlichkeitslehre

Elementare Wahrscheinlichkeitslehre Elementare Wahrscheinlichkeitslehre Vorlesung Computerlinguistische Techniken Alexander Koller 13. November 2015 CL-Techniken: Ziele Ziel 1: Wie kann man die Struktur sprachlicher Ausdrücke berechnen?

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung Zusammenfassung: diskrete und stetige Verteilungen Woche 4: Verteilungen Patric Müller diskret Wahrscheinlichkeitsverteilung p() stetig Wahrscheinlichkeitsdichte f ()

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Grundbegriffe: Experiment: ein Vorgang, den man unter gleichen Voraussatzungen beliebig oft wiederholen kann. Ergebnis ω : Ausgang eines Experiments Ergebnismenge Ω : Menge

Mehr

Projektgruppe. Text Labeling mit Sequenzmodellen

Projektgruppe. Text Labeling mit Sequenzmodellen Projektgruppe Enes Yigitbas Text Labeling mit Sequenzmodellen 4. Juni 2010 Motivation Möglichkeit der effizienten Verarbeitung von riesigen Datenmengen In vielen Bereichen erwünschte automatisierte Aufgabe:

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Unabhängigkeit Prof. Dr. Achim Klenke http://www.aklenke.de 6. Vorlesung: 02.12.2011 1/30 Inhalt 1 Wahrscheinlichkeit 2 2/30 Wahrscheinlichkeit

Mehr

Übungen mit dem Applet Zentraler Grenzwertsatz

Übungen mit dem Applet Zentraler Grenzwertsatz Zentraler Grenzwertsatz 1 Übungen mit dem Applet Zentraler Grenzwertsatz 1 Statistischer Hintergrund... 1.1 Zentraler Grenzwertsatz... 1. Beispiel Würfeln... 1.3 Wahrscheinlichkeit und relative Häufigkeit...3

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Wahrscheinlichkeit Axiome nach Kolmogorov Gegeben sei ein Zufallsexperiment mit Ergebnisraum

Mehr

Vorlesung Statistik, WING, ASW Wahrscheinlichkeit in Laplace Versuchen. Kombinatorische Formeln. Bedingte Wahrscheinlichkeit

Vorlesung Statistik, WING, ASW Wahrscheinlichkeit in Laplace Versuchen. Kombinatorische Formeln. Bedingte Wahrscheinlichkeit Wahrscheinlichkeit in Laplace Versuchen Kombinatorische Formeln Bedingte Wahrscheinlichkeit Multiplikationssatz Unabhängigkeit Melanie Kaspar 1 Formel der totalen Wahrscheinlichkeit Satz von Bayes Melanie

Mehr

Vorlesung HM2 - Master KI Melanie Kaspar, Prof. Dr. B. Grabowski 1

Vorlesung HM2 - Master KI Melanie Kaspar, Prof. Dr. B. Grabowski 1 Melanie Kaspar, Prof. Dr. B. Grabowski 1 Melanie Kaspar, Prof. Dr. B. Grabowski 2 Melanie Kaspar, Prof. Dr. B. Grabowski 3 Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 20. April 2017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 18.

Mehr

1.5.4 Quantile und Modi. Bem [Quantil, Modus]

1.5.4 Quantile und Modi. Bem [Quantil, Modus] 1.5.4 Quantile und Modi 1.5 Erwartungswert und Varianz Bem. 1.73. [Quantil, Modus] und Vertei- Analog zu Statistik I kann man auch Quantile und Modi definieren. Gegeben sei eine Zufallsvariable X mit Wahrscheinlichkeitsverteilung

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression Übungsklausur Wahrscheinlichkeit und Regression 1. Welche der folgenden Aussagen treffen auf ein Zufallsexperiment zu? a) Ein Zufallsexperiment ist ein empirisches Phänomen, das in stochastischen Modellen

Mehr

Sprechstunde zur Klausurvorbereitung

Sprechstunde zur Klausurvorbereitung htw saar 1 Sprechstunde zur Klausurvorbereitung Mittwoch, 15.02., 10 12 + 13.30 16.30 Uhr, Raum 2413 Bei Interesse in Liste eintragen: Max. 20 Minuten Einzeln oder Kleingruppen (z. B. bei gemeinsamer Klausurvorbereitung)

Mehr

Folien zu Data Mining von I. H. Witten und E. Frank. übersetzt von N. Fuhr

Folien zu Data Mining von I. H. Witten und E. Frank. übersetzt von N. Fuhr Folien zu Data Mining von I. H. Witten und E. Frank übersetzt von N. Fuhr Von Naivem Bayes zu Bayes'schen Netzwerken Naiver Bayes Annahme: Attribute bedingt unabhängig bei gegebener Klasse Stimmt in der

Mehr

Bayes-Netze (2) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Bayes-Netze (2) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Bayes-Netze (2) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl KI) Bayes-Netze (2) 1 / 23 Gliederung 1 Zusammenhang zwischen Graphenstruktur

Mehr

Lösungen zu Übungsblatt 10 Höhere Mathematik Master KI Diskrete Zufallsgrößen/Markov-Ketten

Lösungen zu Übungsblatt 10 Höhere Mathematik Master KI Diskrete Zufallsgrößen/Markov-Ketten Lösungen zu Übungsblatt 0 Höhere Mathematik Master KI Hinweise: Die Aufgaben - beziehen sich auf das Thema Diskrete Zufallsgrößen, Ihre Verteilungen und Erwartungswerte. Siehe dazu auch das auf der Homepage

Mehr

Definition: Ein endlicher Ergebnisraum ist eine nichtleere Menge, deren. wird als Ereignis, jede einelementige Teilmenge als Elementarereignis

Definition: Ein endlicher Ergebnisraum ist eine nichtleere Menge, deren. wird als Ereignis, jede einelementige Teilmenge als Elementarereignis Stochastische Prozesse: Grundlegende Begriffe bei zufälligen Prozessen In diesem Abschnitt beschäftigen wir uns mit den grundlegenden Begriffen und Definitionen von Zufallsexperimenten, also Prozessen,

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Unabhängigkeit von Ereignissen A, B unabhängig:

Mehr

HMMs und der Viterbi-Algorithmus

HMMs und der Viterbi-Algorithmus July 8, 2015 Das Problem Wir haben gesehen: wir können P( w q)p( q) ohne große Probleme ausrechnen ( w = b 1...b i, q = q 1...q i. P( w q)p( q) = π(q 1 )τ(b 1, q 1 )δ(q 1, q 2 )τ(b 2, q 2 )...δ(q i 1,

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Spracherkennung gestern und morgen - 2 - Ziel Klassifikation von Signalen, Mustererkennung z.b. Sprache, Gestik, Handschrift, EKG, Verkehrssituationen, Sensor Signal Klasse 1 Klasse 2 Klasse n Vorverarbeitung:

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen Ü b u n g 1 Aufgabe 1 Die Ereignisse A, B und C erfüllen die Bedingungen P(A) = 0. 7, P(B) = 0. 6, P(C) = 0. 5 P(A B) = 0. 4, P(A C) = 0. 3, P(B C) = 0. 2, P(A B C) = 0. 1 Bestimmen Sie P(A B), P(A C),

Mehr

Kapitel 5 Erneuerungs- und Semi-Markov-Prozesse

Kapitel 5 Erneuerungs- und Semi-Markov-Prozesse Kapitel 5 Erneuerungs- und Semi-Markov-Prozesse Definition: Erneuerungsprozess Sei {T n, n N} eine Folge unabhängiger, nichtnegativer Zufallsvariablen mit Verteilungsfunktion F, mit F () < 1. Dann heißt

Mehr

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3.

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3. 2 Wahrscheinlichkeitstheorie Beispiel. Wie wahrscheinlich ist es, eine Zwei oder eine Drei gewürfelt zu haben, wenn wir schon wissen, dass wir eine ungerade Zahl gewürfelt haben? Dann ist Ereignis A das

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Stochastik Praktikum Markov Chain Monte Carlo Methoden

Stochastik Praktikum Markov Chain Monte Carlo Methoden Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/39 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Gesetz der großen Zahl, Zentraler Grenzwertsatz Schließende Statistik: Grundlagen Prof. Dr. Achim Klenke http://www.aklenke.de 9. Vorlesung: 16.06.2017

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit

Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit Dozentin: Wiebke Petersen 8. Foliensatz Wiebke Petersen math. Grundlagen 1 Motivation Bsp.: In vielen Bereichen der CL kommt Wahrscheinlichkeitstheorie

Mehr

Mathe-Camp 2017 Stochastik: Geometrische Wahrscheinlichkeiten

Mathe-Camp 2017 Stochastik: Geometrische Wahrscheinlichkeiten Mathe-Camp 2017 Stochastik: Geometrische Wahrscheinlichkeiten Jo rn Saß, sass@mathematik.uni-kl.de Fachbereich Mathematik, TU Kaiserslautern Arbeitsgruppe Stochastische Steuerung und Finanzmathematik Kaiserslautern

Mehr

Interaktives Skriptum: Elementare Wahrscheinlichkeitsrechnung

Interaktives Skriptum: Elementare Wahrscheinlichkeitsrechnung Interaktives Skriptum: Elementare Wahrscheinlichkeitsrechnung 1. Grundbegriffe Würfeln, Werfen einer Münze, Messen der Lebensdauer einer Glühbirne Ausfall/Ausgang: Würfeln: Augenzahlen 1, 2, 3, 4, 5, 6

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

Statistik für Bachelorund Masterstudenten

Statistik für Bachelorund Masterstudenten Walter Zucchini Andreas Schlegel Oleg Nenadic Stefan Sperlich Statistik für Bachelorund Masterstudenten Eine Einführung für Wirtschaftsund Sozialwissenschaftler 4y Springer 1 Der Zufall in unserer Welt

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k

Mehr

Stochastik Wiederholung von Teil 1

Stochastik Wiederholung von Teil 1 Stochastik Wiederholung von Teil 1 Andrej Depperschmidt Sommersemester 2016 Wahrscheinlichkeitsraum Definition Das Tripple (Ω, A, P) heißt Wahrscheinlichkeitsraum, falls gilt: (i) A ist eine σ-algebra,

Mehr

Hidden Markov Modellen

Hidden Markov Modellen Elektrotechnik und Informationstechnik Institut für Automatisierungstechnik, Professur Prozessleittechnik Zeitreihenanalyse mit Hidden Markov Modellen (nach http://www.cs.cmu.edu/~awm/tutorials) VL PLT2

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Spracherkennung und Hidden Markov Modelle Dozentin: Wiebke Petersen WS 2004/2005 Wiebke Petersen Einführung in die Computerlinguistik WS 04/05 Spracherkennung Merkmalsextraktion

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 19/21, 29.04.2019 Wahrscheinlichkeit und Statistik Patric Müller WBL 2019 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Überblick. Linguistische Anwendungen: æ Spracherkennung æ Textretrival æ probabilistische Grammatiken: z.b. Disambiguierung. Problem: woher Daten?

Überblick. Linguistische Anwendungen: æ Spracherkennung æ Textretrival æ probabilistische Grammatiken: z.b. Disambiguierung. Problem: woher Daten? 1 Überblick æ Beschreibende Statistik: Auswertung von Experimenten und Stichproben æ Wahrscheinlichkeitsrechnung: Schlüsse aus gegebenen Wahrscheinlichkeiten, Hilfsmittel: Kombinatorik æ Beurteilende Statistik:

Mehr

WAHRSCHEINLICHKEITSRECHNUNG

WAHRSCHEINLICHKEITSRECHNUNG WAHRSCHEINLICHKEITSRECHNUNG Mathematischer Teil In der Wahrscheinlichkeitsrechnung haben wir es mit Zufallsexperimenten zu tun, d.h. Ausgang nicht vorhersagbar. Grundbegriffe Zufallsexperiment und Ergebnisse

Mehr

Methoden der Statistik Markov Chain Monte Carlo Methoden

Methoden der Statistik Markov Chain Monte Carlo Methoden Methoden der Statistik Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 08.02.2013 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Einführung in die Wahrscheinlichkeitsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Wahrscheinlichkeitsrechnung

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 10. November 2010 1 Bedingte Wahrscheinlichkeit Satz von der totalen Wahrscheinlichkeit Bayessche Formel 2 Grundprinzipien

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Sachrechnen/Größen WS 14/15-

Sachrechnen/Größen WS 14/15- Kapitel Daten & Wahrscheinlichkeit 3.1 Kombinatorische Grundlagen 3.2 Kombinatorik & Wahrscheinlichkeit in der Grundschule 3.3 Daten Darstellen 3.1 Kombinatorische Grundlagen Verschiedene Bereiche der

Mehr