Hidden-Markov-Modelle
|
|
|
- Jutta Abel
- vor 7 Jahren
- Abrufe
Transkript
1 Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hidden-Markov-Modelle Tobias Scheffer Thomas Vanck
2 Hidden-Markov-Modelle: Wozu? Spracherkennung: Akustisches Modell. Geschriebene Sprache: Part-of-Speech-Tagging, Informationsextraktion. Biologie: Finden von Genen in der DNA. 2
3 Markov-Prozesse X 1,..., X n : Zufallsvariablen. Allgemein gilt: Zufallsvariablen bilden eine Markovkette, gdw: Jede Variable X i nur von Vorgänger X i-1 abhängig. Markov-Modell: Probabilistischer endlicher Automat, Folge der Zustände ist Markov-Kette. (Andrei Markov, ) 3
4 Markov-Modell Zustände 1,..., N (Folge der Zustände ist Markov-Kette), Transitionswahrscheinlichkeiten a ij ; Startwahrscheinlichkeiten π i. Zustand zur Zeit t: q t. Z.B. Wortartenerkennung ( Part-of-Speech Tagging ) P(Artikel, Nomen, Nomen, Verb)? 4
5 Hidden-Markov-Modell Folge der Zustände ist nicht sichtbar. Statt dessen: Zustände emittieren Beobachtungen O t (mit Wahrscheinlichkeit b i (O t )). 5
6 Hidden-Markov-Modell, Definitionen Zustände q t : Zustand zur Zeit t. Übergangswahrscheinlichkeiten Startwahrscheinlichkeiten Beobachtungswahrscheinlichkeiten HMM definiert durch Parameter 6
7 Markov-Annahmen Markov-Annahme für Zustandsfolgen: Markov-Annahme für Beobachtungen: 7
8 Drei Basisprobleme Problem 1: Likelihood einer Beobachtungsfolge: Wie gut passt ein Modell zu einer Beobachtungsfolge? Berechne Problem 2: Optimale Zustandskette finden: Welche Zustandskette hat die Beobachtung am wahrscheinlichsten erzeugt? Berechne P(q 1,...,q T O 1,...,O T,λ) Problem 3: Lernproblem Gegeben viele Beobachtungsfolgen, finde die Parameter des HMMs! Berechne argmax λ P({(O 1,...,O T ),...} λ) 8
9 Wie gut passt ein Modell zur Beobachtungsfolge? # Summanden = N T. Auswertung exponentiell in der Länge der Eingabe. Bei Auswertung werden dieselben Wahrscheinlichkeiten wiederholt berechnet Gesucht: polynomieller Algorithmus. Dynamische Programmierung: Zwischenergebnisse speichern. 9
10 Trellis Trellis: Array über Zustände x Zeit. Rekursive Hilfsvariablen 10
11 Forward Wahrscheinlichkeit einer initialen Beboachtungsfolge und eines Zustands: Theorem: Nach Theorem kann α durch dynamische Programmierung berechnet werden: Initialisiere α 1 (i). Für t von 2 bis T: berechne α t (i) unter Verwendung der schon bestimmten α t-1 (i). 11
12 Forward : Beweis Induktionsverankerung: Induktionsschritt t t+1 12
13 Forward : Termination Beweis: 13
14 Problem 1 gelöst Problem 1 ist gelöst, nämlich das Lösen von P(O 1,...,O T λ) kann nun effizient durchgeführt werden. Nächste Folien beschreiben Erweiterungen, die für Problem 3 benötigt werden. 14
15 Backward Theorem: Nach dem Theorem kann β durch dynamische Programmierung bestimmt werden: Initialisiere β T (i)=1. Für t von T-1 bis 1: bestimme β t (i) unter Verwendung der β t+1 (j). 15
16 Backward : Beweis Induktionsverankerung: 16
17 Backward : Beweis Induktionsschritt t+1 t 17
18 Forward Backward : Wahrscheinlichkeit eines Zustandes P(Zustand i zur Zeit t Beobachtungssequenz) 18
19 Forward-Backward-Algorithmus (Forward) Initialisiere (alle Zustände i) Für t von 1 bis T-1 Berechne (für alle j) Berechne (Backward) Initialisiere Für t von T-1 bis 1 Berechne (für alle i) Berechne (für alle i) N β i (t) = a ij b j (O t +1 )β t +1 ( j) j=1 19
20 Forward-Backward-Algorithmus Läuft mit quatratischem Aufwand Berechnet und 20
21 Welches Modell passt am besten? Bsp: Worterkennung. Ein HMM für jedes Wort, das erkannt werden soll. Gegeben: Sprachsignal (Beobachtungssequenz), gesucht: Welches der Wörter wurde gesagt? Likelihood durch Forward-Algorithmus, A-Priori- Wahrscheinlichkeit durch Abzählen der Worthäufigkeit in der Trainingsmenge. 21
22 Problem 2: Was ist die optimale Zustandskette? Beispiele: Part-of-Speech-Tagging, ein Zustand pro Part-of- Speech, Gensequenzanalyse, Zustände entsprechen Tags, mit denen das Genom annotiert werden soll. Möglichkeit 1: Welcher einzelne Zustand zur Zeit t passt am besten zur Beobachtungsfolge? Bestimmung durch Forward-Backward-Algorithmus Möglichkeit 2: Welche komplette Zustandsfolge passt am besten zur Beobachtungsfolge? Bestimmen mit Viterbi-Algorithmus 22
23 Viterbi-Algorithmus, Theorem Theorem: Beweis: Zustand zur Zeit t auf wahrscheinlichstem Pfad: 23
24 Viterbi-Algorithmus Initialisierung: Initialisierung: Für t von 1 bis T-1 und j von 1 bis N: Termination Für t von T-1 bis 1 Ausgabe der Zustandsfolge 24
25 Problem 3: Lernproblem Gegeben: Sammlung von Beobachtungsfolgen. Gesucht HMM-Parameter λ. Sichtbare Zustände Z.B. Part-of-Speech-Tagging: Jede Beobachtung ist mit dem zugehörigen Zustand markiert. Schätzen der Parameter durch Zählen der Starthäufigkeiten, Transitionen, Beobachtungen. Unsichtbare Zustände Z.B. Worterkennung: Nur Sprachsignal gegeben, Zustandsfolgen sind unbekannt. Lernen der Parameter durch Baum-Welch- Algorithmus. 25
26 Sichtbare Zustände Trainingsmenge Schätze = (#Beispielsequenzen k mit )/m Schätze a ij = (#Stellen mit ) / (#Stellen (k mit q ) t = i ) (k Schätze b i (O) = (#Stellen mit q ) t = i,o (k) t = O ) / (k (#Stellen mit q ) 1 = i ) 26
27 Unsichtbare Zustände Trainingsmenge Zustände unbekannt Forward-Backward kann Zustandswahrscheinlichkeiten berechnen, braucht dafür aber Modell, Können Modell schätzen (letzte Folie), brauchen dafür aber Zustandswahrscheinlichkeiten. 27
28 Baum-Welch-Algorithmus Wenn die Zustände der Beobachtungen bekannt wären, könnte man die Parameter durch Abzählen der Häufigkeiten in Trainingsmenge schätzen. Instanz des EM-Algorithmus. Beginne mit zufälligen Parametern und iteriere zwei Schritte bis zur Konvergenz Berechne die Zustände durch Forward-Backward- Algorithmus auf Grundlage des aktuellen Modells Schätze die Parameter des Modells auf Grundlage berechneter Zustände. 28
29 Baum-Welch-Algorithmus Hilfsvariable: Berechnung: 29
30 Baum-Welch-Algorithmus Trainingsmenge Zustände unbekannt 1. Initialisiere λ zufällig. 2. Wiederhole bis Konvergenz: Für alle k von 1 bis m Berechne die α, β, γ durch Forward-Backward Für i und j von 1 bis N, berechne ξ t (i,j) Schätze Schätze Schätze π i (k ) = γ 1 (i) a ij (k ) = ξ t (i, j) b i (k ) (O) = t t:o t =O γ t (i) γ t (i) 3. Mittle Schätzer für λ über m Beispiele und Wiederhole ab Schritt 2. t t γ t (i) 30
31 Problem 3 ist gelöst Problem 3 wird vom Baum-Welch Algorithmus gelöst. 31
32 Skalierung Forward-Backward und Viterbi multiplizieren viele Wahrscheinlichkeiten auf, numerisch kommt dabei schnell 0 heraus. Mit negativen Log-Wahrscheinlichkeiten arbeiten, statt mit Wahrscheinlichkeiten. Forward-Backward- und Viterbi lassen sich entsprechend umformulieren. 32
Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck
Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Tobias Scheffer Thomas Vanck Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer
Signalverarbeitung 2. Volker Stahl - 1 -
- 1 - Hidden Markov Modelle - 2 - Idee Zu klassifizierende Merkmalvektorfolge wurde von einem (unbekannten) System erzeugt. Nutze Referenzmerkmalvektorfolgen um ein Modell Des erzeugenden Systems zu bauen
Friedrich-Alexander-Universität Professur für Computerlinguistik. Nguyen Ai Huong
Part-of-Speech Tagging Friedrich-Alexander-Universität Professur für Computerlinguistik Nguyen Ai Huong 15.12.2011 Part-of-speech tagging Bestimmung von Wortform (part of speech) für jedes Wort in einem
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester
Clusteranalyse: Gauß sche Mischmodelle
Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse: Gauß sche Mischmodelle iels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer
Aufabe 7: Baum-Welch Algorithmus
Effiziente Algorithmen VU Ausarbeitung Aufabe 7: Baum-Welch Algorithmus Florian Fest, Matr. Nr.0125496 [email protected] Claudia Hermann, Matr. Nr.0125532 [email protected] Matteo Savio,
3. Das Reinforcement Lernproblem
3. Das Reinforcement Lernproblem 1. Agierender Agent in der Umgebung 2. Discounted Rewards 3. Markov Eigenschaft des Zustandssignals 4. Markov sche Entscheidung 5. Werte-Funktionen und Bellman sche Optimalität
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Dynamische Programmierung Einführung Ablaufkoordination von Montagebändern Längste gemeinsame Teilsequenz Optimale
Bayes sche Klassifikatoren. Uwe Reichel IPS, LMU München 16. Juli 2008
Bayes sche Klassifikatoren Uwe Reichel IPS, LMU München [email protected] 16. Juli 2008 Inhalt Einleitung Grundlagen der Wahrscheinlichkeitsrechnung Noisy-Channel-Modell Bayes sche Klassifikation
Dynamisches Programmieren - Problemstruktur
Dynamisches Programmieren - Problemstruktur Optimale Substruktur: Optimale Lösung enthält optimale Lösungen von Teilproblemen. Bsp.: Kürzester Weg im Graphen, LCS (s. etwa Folie 42 der letzten Vorlesung)
Der Viterbi-Algorithmus.
Der Viterbi-Algorithmus. Eine Erläuterung der formalen Spezifikation am Beispiel des Part-of-Speech Tagging. Kursskript Karin Haenelt, 9..7 (.5.) Einleitung In diesem Skript wird der Viterbi-Algorithmus
Signalverarbeitung 2. Volker Stahl - 1 -
- 1 - Überblick Bessere Modelle, die nicht nur den Mittelwert von Referenzvektoren sondern auch deren Varianz berücksichtigen Weniger Fehlklassifikationen Mahalanobis Abstand Besseres Abstandsmaß basierend
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir
Latente Dirichlet-Allokation
Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Latente Dirichlet-Allokation Tobias Scheffer Peter Haider Paul Prasse Themenmodellierung Themenmodellierung (Topic modeling) liefert
11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P
11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie
Part-Of-Speech-Tagging mit Viterbi Algorithmus
Part-Of-Speech-Tagging mit Viterbi Algorithmus HS Endliche Automaten Inna Nickel, Julia Konstantinova 19.07.2010 1 / 21 Gliederung 1 Motivation 2 Theoretische Grundlagen Hidden Markov Model Viterbi Algorithmus
Bayes sches Lernen: Übersicht
Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.
4.4.1 Statisches perfektes Hashing. des Bildbereichs {0, 1,..., n 1} der Hashfunktionen und S U, S = m n, eine Menge von Schlüsseln.
4.4 Perfektes Hashing Das Ziel des perfekten Hashings ist es, für eine Schlüsselmenge eine Hashfunktion zu finden, so dass keine Kollisionen auftreten. Die Größe der Hashtabelle soll dabei natürlich möglichst
Reguläre Sprachen Endliche Automaten
Endliche Automaten (Folie 54, Seite 16 im Skript) Einige Vorteile endlicher deterministischer Automaten: durch Computer schnell simulierbar wenig Speicher benötigt: Tabelle für δ (read-only), aktueller
Elementare Begriffe der Wahrscheinlichkeitstheorie für die Sprachverarbeitung
Elementare Begriffe der Wahrscheinlichkeitstheorie für die Sprachverarbeitung Kursfolien Karin Haenelt 1 Übersicht Wahrscheinlichkeitsfunktion P Wahrscheinlichkeit und bedingte Wahrscheinlichkeit Bayes-Formeln
Aufgabe 1 Probabilistische Inferenz
Seite 1 von 9 Aufgabe 1 Probabilistische Inferenz (30 Punkte) In einer medizinischen Studie wurden die Auswirkungen von Metastasen bildenden Karzinomen untersucht. Dabei wurde folgendes festgestellt: Bei
16. All Pairs Shortest Path (ASPS)
. All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e
ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)
ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels
Mächtigkeit von WHILE-Programmen
Mächtigkeit von WHILE-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 26. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit
Schriftlicher Test Teilklausur 2
Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2009 / 2010 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher
Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20.
Übersicht Datenstrukturen und Algorithmen Vorlesung 5: (K4) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.informatik.rwth-aachen.de/i2/dsal12/ 20.
Theoretische Informatik 1
Theoretische Informatik 1 Registermaschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Registermaschinen Algorithmusbegriff konkretisiert formale Beschreibung
kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung
Theoretische Informatik Rainer Schrader Zentrum für Angewandte Informatik Köln 14. Juli 2009 1 / 40 2 / 40 Beispiele: Aus den bisher gemachten Überlegungen ergibt sich: aus der Chomsky-Hierarchie bleiben
13. Der diskrete Logarithmus
13. Der diskrete Logarithmus 13.1. Definition. Sei p eine Primzahl. Wie wir in 9 bewiesen haben, ist die multiplikative Gruppe F p des Körpers F p = Z/p zyklisch. Sei g ein erzeugendes Element von F p
Klausur zur Vorlesung,,Algorithmische Mathematik II
Institut für angewandte Mathematik, Institut für numerische Simulation Sommersemester 2015 Prof. Dr. Anton Bovier, Prof. Dr. Martin Rumpf Klausur zur Vorlesung,,Algorithmische Mathematik II Bitte diese
4 Statistik der Extremwertverteilungen
In diesem Kapitel beschäftigen wir uns mit statistischen Anwendungen der Extremwerttheorie. Wir werden zwei verschiedene Zugänge zur Modellierung von Extremwerten betrachten. Der erste Zugang basiert auf
Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK
Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über
Simulation von Zufallsvariablen und Punktprozessen
Simulation von Zufallsvariablen und Punktprozessen 09.11.2009 Inhaltsverzeichnis 1 Einleitung 2 Pseudozufallszahlen 3 Punktprozesse Zufallszahlen Definition (Duden): Eine Zufallszahl ist eine Zahl, die
Programmierung 2. Dynamische Programmierung. Sebastian Hack. Klaas Boesche. Sommersemester 2012. [email protected]. [email protected].
1 Programmierung 2 Dynamische Programmierung Sebastian Hack [email protected] Klaas Boesche [email protected] Sommersemester 2012 2 Übersicht Stammt aus den Zeiten als mit Programmierung
23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108
23. November 2011 Betweenness Centrality Closeness Centrality H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 Betweenness Centrality Grundlegende Idee: Ein Knoten ist wichtig, wenn er auf
Reinforcement Learning
Reinforcement Learning 1. Allgemein Reinforcement Learning 2. Neuronales Netz als Bewertungsfunktion 3. Neuronales Netz als Reinforcement Learning Nils-Olaf Bösch 1 Allgemein Reinforcement Learning Unterschied
Public-Key-Verschlüsselung und Diskrete Logarithmen
Public-Key-Verschlüsselung und Diskrete Logarithmen Carsten Baum Institut für Informatik Universität Potsdam 10. Juni 2009 1 / 30 Inhaltsverzeichnis 1 Mathematische Grundlagen Gruppen, Ordnung, Primitivwurzeln
Kapitel 9. Hidden Markov Modelle (HMMs)
Kapitel 9 Hidden Markov Modelle (HMMs) p. 1/24 Kapitel 9 Hidden Markov Modelle (HMMs) Markov-Ketten Von der Markov-Kette zum HMM HMM Topologien Drei klassische Algorithmen für HMMs HMMs in der Praxis und
Formale Methoden 1. Gerhard Jäger 12. Dezember Uni Bielefeld, WS 2007/2008 1/22
1/22 Formale Methoden 1 Gerhard Jäger [email protected] Uni Bielefeld, WS 2007/2008 12. Dezember 2007 2/22 Bäume Baumdiagramme Ein Baumdiagramm eines Satzes stellt drei Arten von Information
Proseminarvortrag. Markov-Ketten in der Biologie (Anwendungen)
Proseminarvortrag Markov-Ketten in der Biologie (Anwendungen) von Peter Drössler 20.01.2010 2 Markov-Ketten in der Biologie (Peter Drössler, KIT 2010) Inhalt 1. Das Wright-Fisher Modell... 3 1.1. Notwendige
Algorithmen und Datenstrukturen 1 Kapitel 3
Algorithmen und Datenstrukturen 1 Kapitel 3 Technische Fakultät [email protected] Vorlesung, U. Bielefeld, Winter 2005/2006 3.6 Dynamische Programmierung Die rekursive Problemzerlegung kann
Dynamische Programmierung. Problemlösungsstrategie der Informatik
als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung
Ü b u n g s b l a t t 13
Einführung in die Stochastik Sommersemester 06 Dr. Walter Oevel 5. 6. 006 Ü b u n g s b l a t t 3 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben
Programmierkurs Python II
Programmierkurs Python II Michaela Regneri & tefan Thater FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des aarlandes ommersemester 2010 (Charniak, 1997) the dog biscuits N V N V the dog
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Stefan Werner (Übungen) sowie viele Tutoren Teilnehmerkreis und Voraussetzungen Studiengänge
Vorlesung Maschinelles Lernen
Vorlesung Maschinelles Lernen Strukturelle Modelle SVMstruct Katharina Morik LS 8 Künstliche Intelligenz Fakultät für Informatik 16.12.2008 1 von 35 Gliederung LS 8 Künstliche Intelligenz Fakultät für
Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten
Vorlesung 9b Bedingte Verteilungen und bedingte Wahrscheinlichkeiten 1 Voriges Mal: Aufbau der gemeinsamen Verteilung von X 1 und X 2 aus der Verteilung ρ von X 1 und Übergangswahrscheinlichkeiten P(a
3: Zahlentheorie / Primzahlen
Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,
Einführung: Bayessches Lernen. Dipl.-Inform. Martin Lösch. [email protected] (0721) 608 45944. Dipl.-Inform. Martin Lösch
Einführung: [email protected] (0721) 608 45944 Übersicht Motivation & Hintergrund Naiver Bayes-Klassifikator Bayessche Netze EM-Algorithmus 2 Was ist eigentlich? MOTIVATION & HINTERGRUND 3 Warum Lernen
Theorie und Praxis geometrischer Algorithmen
0/36 Theorie und Praxis geometrischer Algorithmen Isolierende Intervalle: Sturmsche Ketten Rico Philipp Motivation 1/36 Was ist eine Sturmsche Kette? Wie berechnet man diese? Durch welche Eigenschaften
1 Part-of-Speech Tagging
2. Übung zur Vorlesung NLP Analyse des Wissensrohstoes Text im Sommersemester 2008 Dr. Andreas Hotho, Dipl.-Inform. Dominik Benz, Wi.-Inf. Beate Krause 28. Mai 2008 1 Part-of-Speech Tagging 1.1 Grundlagen
NLP Eigenschaften von Text
NLP Eigenschaften von Text Dr. Andreas Hotho Dominik Benz Beate Krause Sommersemester 2008 Folie: 1 Übersicht Einführung Eigenschaften von Text Words I: Satzgrenzenerkennung, Tokenization, Kollokationen
Part-of-Speech Tagging. Stephanie Schuldes
Part-of-Speech Tagging Stephanie Schuldes 05.06.2003 PS Erschließen von großen Textmengen Geißler/Holler SoSe 2003 Motivation Ziel: vollständiges Parsing und Verstehen natürlicher Sprache Herantasten durch
Übung zu Grundbegriffe der Informatik. Simon Wacker. 15. November 2013
Übung zu Grundbegriffe der Informatik Simon Wacker 15. November 2013 Vollständige Induktion über die Wortlänge Es sei B ein Alphabet. Dann ist B = n N 0 B n. Für jedes Wort w B sei A w eine Aussage, die
f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}
9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen
Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6
1 Lösungen ausgewählter Übungsaufgaben zum Buch Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 Aufgaben zu Kapitel 5 Zu Abschnitt 5.1 Ü5.1.1 Finden Sie eine maximum-likelihood-schätzung
Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell
Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten Teil
Simulationsmethoden in der Bayes-Statistik
Simulationsmethoden in der Bayes-Statistik Hansruedi Künsch Seminar für Statistik, ETH Zürich 6. Juni 2012 Inhalt Warum Simulation? Modellspezifikation Markovketten Monte Carlo Simulation im Raum der Sprungfunktionen
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge
Algorithmische Bioinformatik 1
Algorithmische Bioinformatik 1 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Paarweises
Theoretische Informatik. Alphabete, Worte, Sprachen
Theoretische Informatik Alphabete, Worte, Sprachen Alphabete, Worte, Sprachen 1. Alphabete und Worte Definitionen, Beispiele Operationen mit Worten Induktionsbeweise 2. Sprachen Definition und Beispiele
Javakurs für Anfänger
Javakurs für Anfänger Einheit 07: Mehr zu Arrays Lorenz Schauer Lehrstuhl für Mobile und Verteilte Systeme Heutige Agenda 1. Teil: Weitere Übungen zu Arrays Arrays und Objekte (Wetterstation) 2-Dimensionale
2 Die Dimension eines Vektorraums
2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1
Einführung in die (induktive) Statistik
Einführung in die (induktive) Statistik Typische Fragestellung der Statistik: Auf Grund einer Problemmodellierung sind wir interessiert an: Zufallsexperiment beschrieben durch ZV X. Problem: Verteilung
Algorithmen II Vorlesung am 15.11.2012
Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales
Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man
Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man x / M. Man sagt, M ist Teilmenge von N und schreibt M N, wenn für jedes x M auch x N gilt.
5.4 Das Rucksackproblem
Problemstellung: 5.4 Das Rucksackproblem Eingabe: Ganzzahlige Volumina a 1,..., a n > 0, Nutzenwerte c 1,..., c n > 0, ganzzahlige Volumenschranke b. Aufgabe: Packe die Objekte in einen Rucksack von Volumen
Resolutionsalgorithmus
112 Resolutionskalkül Mit dem Begriff Kalkül bezeichnet man eine Menge von syntaktischen Umformungsregeln, mit denen man semantische Eigenschaften der Eingabeformel herleiten kann. Für den Resolutionskalkül:
Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de
rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent
Spracherkennung. Gliederung:
Spracherkennung Gliederung: - Einführung - Geschichte - Spracherkennung - Einteilungen - Aufbau und Funktion - Hidden Markov Modelle (HMM) - HMM bei der Spracherkennung - Probleme - Einsatzgebiete und
Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?
Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum
Künstliche Intelligenz Maschinelles Lernen
Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen
Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April
Minimal spannende Bäume
http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen
Sicherer MAC für Nachrichten beliebiger Länge
Sicherer MAC für Nachrichten beliebiger Länge Korollar Sicherer MAC für Nachrichten beliebiger Länge Sei F eine Pseudozufallsfunktion. Dann ist Π MAC2 für Π = Π MAC sicher. Nachteile: Für m ({0, 1} n 4
Algorithmentheorie Randomisierung. Robert Elsässer
Algorithmentheorie 03 - Randomisierung Robert Elsässer Randomisierung Klassen von randomisierten Algorithmen Randomisierter Quicksort Randomisierter Primzahltest Kryptographie 2 1. Klassen von randomisierten
Kapitel 6 Martingale
Kapitel 6 Martingale Martingale spielen eine große Rolle in der Finanzmathematik, und sind zudem ein wichtiges Hilfsmittel für die statistische Inferenz stochastischer Prozesse, insbesondere auch für Zählprozesse
3. Übungsblatt Aufgaben mit Lösungen
. Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen
Komplexität von Algorithmen
Komplexität von Algorithmen Prof. Dr. Christian Böhm WS 07/08 in Zusammenarbeit mit Gefei Zhang http://www.dbs.informatik.uni-muenchen.de/lehre/nfinfosw Ressourcenbedarf - Größenordnungen Prozesse verbrauchen
Logik für Informatiker
Vorlesung Logik für Informatiker 7. Aussagenlogik Analytische Tableaus Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Tableaukalkül
1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,
Theorie der Informatik 8. März 25 8. Reguläre Sprachen I Theorie der Informatik 8. Reguläre Sprachen I 8. Reguläre Grammatiken Malte Helmert Gabriele Röger 8.2 DFAs Universität Basel 8. März 25 8.3 NFAs
κ(k) k K S Algorithmus zur Bestimmung eines spannenden Baumes mit minimalen Kosten (Kruskal, 1965).
5. Graphenprobleme Im folgenden bezeichnen G = (E, K) einen endlichen Graphen mit der Eckenmenge E und der Kantenmenge K. G kann ungerichtet, gerichtet, schlicht oder nicht schlicht sein. 5.1 Spannende
Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14
Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen
Simulation. Lineare Regression Methode der kleinsten Quadrate (Excel-Matrix-Formel) Verknüpfung des Euler- und Newton-Verfahrens. Das Euler-Verfahren
Simulation Lineare Regression Methode der kleinsten Quadrate (Excel-Matrix-Formel) Verknüpfung des Euler- und Newton-Verfahrens Dynamische Prozesse: Prozesse, bei denen sich das zeitliche und örtliche
Pollards Rho-Methode zur Faktorisierung
C A R L V O N O S S I E T Z K Y Pollards Rho-Methode zur Faktorisierung Abschlusspräsentation Bachelorarbeit Janosch Döcker Carl von Ossietzky Universität Oldenburg Department für Informatik Abteilung
Kapitel 5: Einfaktorielle Varianzanalyse
Rasch, Friese, Hofmann & Naumann (006). Quantitative Methoden. Band (. Auflage). Heidelberg: Springer. Kapitel 5: Einfaktorielle Varianzanalyse Berechnen der Teststärke a priori bzw. Stichprobenumfangsplanung
Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs)
ank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert iese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen
Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben
Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekt mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten
4 Diskrete Wahrscheinlichkeitsverteilungen
4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder
Informatik I WS 07/08 Tutorium 24
Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 31.01.08 Bastian Molkenthin E-Mail: [email protected] Web: http://infotut.sunshine2k.de Organisatorisches Anmeldung Hauptklausur : allerspätestens
LL(k)-Analyse. (y) folgt α = β. (x) = start k. (=l> ist ein Linksableitungsschritt)
LL(k)-Analyse Eine KFG G = (N,T,P,S) heisst LL(k)-Grammatik, wenn für alle w,x,y T*, α,β,σ (N U T)* und A N mit 1. S =l>* waσ =l> wασ =l>* wx, 2. S =l>* waσ = > wβσ =l>* wy, 3. start k (x) = start k (y)
Vorlesung 4 BETWEENNESS CENTRALITY
Vorlesung 4 BETWEENNESS CENTRALITY 101 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [http://www.fahrschule-vatterodt.de/
Übung zu Drahtlose Kommunikation. 9. Übung
Übung zu Drahtlose Kommunikation 9. Übung 07.01.2012 (n,k,k) k -> Eingangsbit (Informationszeichen ist 1 Bit lang) K -> Begrenzungsfaktor (Länge des Schieberegisters ist k*k) n -> Ausgangsbit (für jedes
Maschinelles Lernen Entscheidungsbäume
Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Entscheidungsbäume Paul Prasse Entscheidungsbäume Eine von vielen Anwendungen: Kreditrisiken Kredit - Sicherheiten
Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr.
Übersicht Datenstrukturen und Vorlesung 1: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/ datenstrukturen-und-algorithmen/ Diese Präsentation verwendet
Probabilistische Primzahltests
23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl
