Simulation von Zufallsvariablen und Punktprozessen

Größe: px
Ab Seite anzeigen:

Download "Simulation von Zufallsvariablen und Punktprozessen"

Transkript

1 Simulation von Zufallsvariablen und Punktprozessen

2 Inhaltsverzeichnis 1 Einleitung 2 Pseudozufallszahlen 3 Punktprozesse

3 Zufallszahlen Definition (Duden): Eine Zufallszahl ist eine Zahl, die rein statistisch ( zufällig ) aus einer Menge von Zahlen herausgegriffen wird. Eine (unendliche) Folge von Zahlen ohne (algorithmisches) Bildungsgesetz heißt Zufallszahlenfolge. echte Zufallszahlen: physikalische Experimente (Münzwurf, Würfel werfen, kosmisches Rauschen, etc.). Pseudozufallszahlen

4 Zufallszahlen Anwendung in den unterschiedlichsten Gebieten (Physik, Biologie, Meteorologie, Informatik) Verfahren, die auf computergenerierten Daten basieren haben wesentliche Vorteile: schnell und kostengünstig beliebig oft wiederholbar (Beobachtungsobjekt beliebig oft vorhanden) numerische Lösung komplexer analytischer Probleme

5 Berechnung von π E:=Einheitskreis im ersten Quadranten A:=[0,1]x[0,1] u 1, u 2 U([0, 1]). Dann gilt: P((u 1, u 2 ) E) = P(u u 2 2 1) = Fläche von E Fläche von A = π 4 π Punkten. 4 Anzahl der Punkte in E Anzahl der Punkte in A für eine große Anzahl an simulierten

6 Berechnung von π Abbildung: Simulation für 100 Punkte, Ergebnis π 3.12

7 Pseudozufallszahlen Pseudozufallszahlen sind Zahlen, die durch einen deterministischen Algorithmus berechnet werden, aber dennoch zufällig erscheinen. Gängige Möglichkeiten, Pseudozufallszahlen zu erzeugen sind unter anderem Bitfolgen linearer/nichtlinearer Kongruenzgenerator Inversionsgenerator

8 Güteeigenschaften von Pseudozufallszahlen Eine Folge von auf [0, 1] gleichverteilten Pseudozufallszahlen sollte folgende Eigenschaften erfüllen: Für jeden Startwert x 0 gleichmäßige Streuung der Folgenglieder auf [0, 1] Für jeden Startwert x 0 lange Periode der Folge der Pseudozufallszahlen Für jeden Startwert x 0 effiziente Berechenbarkeit der Folgenglieder x i, i N

9 Der lineare Kongruenzgenerator Sei m N, a, c, x 0 {0, 1,..., m 1}. Dann nennt man x n = (ax n 1 + c)mod(m) n N einen linearen Kongruenzgenerator. Offenbar gilt x n {0, 1,..., m 1}, und somit bildet x n, n N, eine periodische Folge.

10 Der lineare Kongruenzgenerator Die Normierung u n = x n m n N erzeugt die Folge u n, deren Elemente alle in [0, 1) liegen.

11 χ 2 -goodness of fit test für gleichverteilte Zufallsvariablen Dieser Test dient zur Feststellung, ob {u i } i {1,...,n} auf [0,1] gleichverteilt sind. Zerlege [0, 1) in r gleichlange Teilintervalle [0, 1 r ), [1 r, 2 r ),...,[r 1 r, 1) Definiere p := (p 1,..., p r ), mit p j = #{i : u i [ j 1 r, j r )}, j {1,..., r} n T n (u 1,..., u n ) = r j=1 (Z j (u 1,..., u n ) n r )2 n r wobei Z j (u 1,..., u n ) = #(i : 1 j n, j 1 < ru i j)

12 Wir lehnen die Hypothese H 0 : p = p o = ( 1 r, 1 r,..., 1 r ) also ab, falls T n > χ 2 r 1,1 α

13 Inversionsmethode Sei U U([0, 1]). Für jede umkehrbare Verteilungsfunktion F besitzt die Zufallsvariable die Verteilungsfunktion F, wobei X = F 1 (U) F 1 (u) := inf {x : F(x) u}

14 Beispiel Sei X Exp(λ), λ > 0, F die Verteilungsfunktion von X mit { 1 e λx, x 0 F(x) = 0, x < 0 und u eine Realisierung von U U([0,1]).

15 Beispiel Um eine Realisierung x von X zu erhalten, setzen wir u in obiges Lemma ein: x = F 1 (u) u = F(x) u = 1 e λx x = 1 log(1 u) λ x = 1 λ log(u)

16 Motivation c*g(x) 0.6 B C A f(x)

17 Die Verwerfungsmethode (acceptance-rejection-method) y: gesuchte Zufallszahl die der Verteilungsfunktion F genügt (f Dichte von F) g: berechenbare Dichte mit f (x) g(x) c, c R

18 Die Verwerfungsmethode (acceptance-rejection-method) y: gesuchte Zufallszahl die der Verteilungsfunktion F genügt (f Dichte von F) g: berechenbare Dichte mit f (x) g(x) c, c R Schritt 1: Generiere eine Zufallszahl x gemäß Dichte g

19 Die Verwerfungsmethode (acceptance-rejection-method) y: gesuchte Zufallszahl die der Verteilungsfunktion F genügt (f Dichte von F) g: berechenbare Dichte mit f (x) g(x) c, c R Schritt 1: Generiere eine Zufallszahl x gemäß Dichte g Schritt 2: Generiere eine auf [0,1] gleichverteilte Zufallszahl u

20 Die Verwerfungsmethode (acceptance-rejection-method) y: gesuchte Zufallszahl die der Verteilungsfunktion F genügt (f Dichte von F) g: berechenbare Dichte mit f (x) g(x) c, c R Schritt 1: Generiere eine Zufallszahl x gemäß Dichte g Schritt 2: Generiere eine auf [0,1] gleichverteilte Zufallszahl u Schritt 3: Falls u f (x) cg(x), setze y=x, andernfalls gehe wieder zu Schritt 1

21 Die Verwerfungsmethode (acceptance-rejection-method) y: gesuchte Zufallszahl die der Verteilungsfunktion F genügt (f Dichte von F) g: berechenbare Dichte mit f (x) g(x) c, c R Schritt 1: Generiere eine Zufallszahl x gemäß Dichte g Schritt 2: Generiere eine auf [0,1] gleichverteilte Zufallszahl u Schritt 3: Falls u f (x) cg(x), setze y=x, andernfalls gehe wieder zu Schritt 1

22 Die Verwerfungsmethode (acceptance-rejection-method) y: gesuchte Zufallszahl die der Verteilungsfunktion F genügt (f Dichte von F) g: berechenbare Dichte mit f (x) g(x) c, c R Schritt 1: Generiere eine Zufallszahl x gemäß Dichte g Schritt 2: Generiere eine auf [0,1] gleichverteilte Zufallszahl u Schritt 3: Falls u f (x) cg(x), setze y=x, andernfalls gehe wieder zu Schritt 1 Die so generierte Zufallszahl y genügt der Verteilung von F.

23 Der Poissonprozess {N B, B B 0 (R n )} heißt ein Poissonprozess mit lokal endlichem Intensitätsmaß µ, wenn N B1, N B2,... unabhängige Zufallsvariablen sind für disjunkte B 1, B 2,... B 0 (R n ) N B Poi(µ(B)), B B 0 (R n )

24 Existiert ein λ (0, ), sodass µ(b) = λυ n (B), B B 0 (R n ) dann heißt {N B } homogener Poissonprozess mit Intensität λ Wenn µ absolutstetig bzgl. υ n, d.h. eine Borel-messbare Funktion λ : R n [0, ) mit µ(b) = λ(x)dx, B B 0 (R n ) B dann heißt {N B } inhomogener Poissonprozess mit Intensitätsfunktion λ(x) {S i B} bezeichnen wir als messbare Indizierung der (zufälligen) Atome von N B in B.

25 Der Poissonprozess in R Abbildung: 10 Erneuerungszeitpunkte eines homogenen Poissonprozesses mit Intensität λ=3

26 Die bedingte Gleichverteilungseigenschaft Theorem: Sei {N C } ein homogener Poissonprozess auf C := [a 1, b 1 )x[a 2, b 2 )x...x[a n, b n ) Dann ist der Zufallsvektor S i = (S i1,..., S in ) gleichverteilt in C, d.h. die unabhängigen Komponenten S ij U([a j, b j ))

27 Erzeugung eines Poissonprozesses auf einem Quader Schritt 1: Generiere eine Realisierung N C Poi(λυ n( C)) Schritt 2: Falls N C = k, generiere S 1,..., S k mit S i = (S i1,..., S in ), wobei S ij U([a j, b j )) Die Menge {S i } sind eine Realisierung des Poissonprozesses N C auf dem Quader C

28 Akzeptanz- und Verwerfungsmethode C B(R n ): eine beliebige, beschränkte Borelmenge. µ : B(R n ) [0, ]: ein beliebiges, lokal endliches Maß mit 0 < µ(c) <. C = (a 1, b 1 ]x...x(a n, b n ]: ein n-dimensionaler Quader mit C C und µ( C) <

29 Algorithmus Schritt 1: Generiere eine Realisierung N C Poi(λυ n ) Schritt 2: Falls N C =k, dann generiere solange eine Realisierung s 1, s 2,... der unabhängigen Zufallsvektoren S i C, bis k der s 1, s 2,... in C liegen. Dann ist die Menge {s i : s i C} eine Realisierung des Poissonprozesses {N B } in C.

30 Theoreme Sei {N B, B B(E)} ein Poissonprozess in E mit lokal endlichem Intensitätsmaß µ und T : E Ẽ Borel-messbar, wobei die Urbilder von beschränkten Borel-Mengen beschränkt seien. Dann gilt: Theorem 1: {Ñ B, B B 0 (Ẽ)} mit Ñ B = N T 1 ( B) ist ein Poissonprozess in Ẽ mit Intensitätsmaß µ( B) = µ(t 1 (B)).

31 Theoreme Sei {N B, B B(E)} ein Poissonprozess in E mit lokal endlichem Intensitätsmaß µ und T : E Ẽ Borel-messbar, wobei die Urbilder von beschränkten Borel-Mengen beschränkt seien. Dann gilt: Theorem 1: {Ñ B, B B 0 (Ẽ)} mit Ñ B = N T 1 ( B) ist ein Poissonprozess in Ẽ mit Intensitätsmaß µ( B) = µ(t 1 (B)). Theorem 2: Seien {S i } die Atome eines Poissonprozesses N B, B B 0 (E). {U i } eine Folge iid Zufallsvektoren in R m, die von {S i } unabhängig sind, dann gilt: N BxC = #{i : (S i, U i ) BxC}, B B(E), C B(R m ) ist ein Poissonprozess.

32 Radiale Simulation (eines hom. Poissonprozesses im R 2 ) Sei T 1, T 2,... : Ω [0, ) eine Folge von iid Zufallsvariablen, mit T i Exp(1) i. Sei λ > 0 beliebig, dann folgt mit Theorem 1, dass N B = #{i : i k=1 ein Poissonprozess in B ist. T k πλ B} B B([0, ))

33 Insbesondere ist {s i } = von {N B }. i k=1 t k πλ eine Realisierung der Atome Seien nun u 1, u 2,... eine Folge von auf [0, 2π) gleichverteilter Zufallszahlen, die unabhängig von den T i sind. Mit Theorem 2 folgt: {(s i, u i )} sind Realisierung eines Poissonprozesses. Ebenso folgt mit Theorem 1: {F(s i, u i )}, F : [0, )x[0, 2π) R 2 mit F(s,u) := (s cos(u), s sin(u)) sind Realisierung eines Poissonprozesses im R 2.

34 Verdünnung von Poissonprozessen λ 1, λ 2 : R n [0, ): Borel-messbare, lokal integrierbare Funktionen mit λ 1 (x) λ 2 (x) x R n {S i }: Atome eines Poissonprozesses mit Intensitätsfunktion λ 1. U 1, U 2,... mit U i U([0, 1]) Dann gilt: {Ñ B, B B(R n )} mit Ñ B = #{d : S d B, U d λ 2(S d ) λ 1 (S d ) } B B 0(R n ) ist ein Poissonprozess mit Intensitätsfunktion λ 2.

35 Inhomogener Poissonprozess (Simulationsalgorithmus) Schritt 1: Generiere die Realisierung s 1,..., s k C eines homogenen Poissonprozesses in C, mit Intensität λ = sup x C λ(x) < Schritt 2: Generiere eine Realisierung u 1,..., u k von auf [0, 1] gleichverteilten Zufallszahlen Schritt 3: Eliminiere diejenigen Punkte s i, für die u i > λ(s i) λ Die verbleibenden Punkte bilden einen inhomogenen Poissonprozess in C mit Intensitätsfunktion λ : C [0, )

36 Quellen & Literatur Schmidt, V. (2007), Vorlesungsskript Räumliche Statistik für Punktprozesse und weitere Modelle der stochastischen Geometrie. Ulm: Institut für Stochastik. Schmidt, V. (2006), Lecture Note Markov Chains and Monte-Carlo Simulation. Ulm: Department of Stochastics Ross, S. M. (1996), Simulation 2nd. ed., Berkeley: Department of Industrial Engineering and Operations Research

37 Vielen Dank für Eure Aufmerksamkeit!

Allgemeine Punktprozesse

Allgemeine Punktprozesse Allgemeine Punktprozesse Michael Auchter 17. Mai 2010 Seite 2 Allgemeine Punktprozesse 17. Mai 2010 Inhaltsverzeichnis Definitionen Definition von Punktprozessen Das Intensitätsmaß Stationarität, Isotropie

Mehr

Jurij-Andrei Reichenecker 21. Juni Tessellationen

Jurij-Andrei Reichenecker 21. Juni Tessellationen Jurij-Andrei Reichenecker 21. Juni 2010 Tessellationen Seite 2 Tessellationen 21. Juni 2010 Jurij-Andrei Reichenecker Inhalt Einführung Voronoi Tessellation Algorithmus zur Erstellung von Voronoi Tessellationen

Mehr

Grundlagen der Monte-Carlo-Simulation

Grundlagen der Monte-Carlo-Simulation Grundlagen der Monte-Carlo-Simulation Prof. Dr. V. Schmidt und S. Luck j 8. November 2007 page 2 Contents Motivation Erzeugung von SPZZ Software Transformation von SPZZ page 3 Motivation Motivation fur

Mehr

7 Zufallszahlen, Simulation

7 Zufallszahlen, Simulation 7 Zufallszahlen, Simulation Es ist nützlich, Folgen von i.i.d. R[0, 1]-verteilten Zufallszahlen auf einem Rechner erzeugen zu können vgl. Simulation, Monte-Carlo-Verfahren). Letztere sind i.a. keine echten

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 8. Vorlesung Pseudozufallszahlen sind, wie der Name schon sagt, keine echten Zufallszahlen, sondern werden durch Generatoren erzeugt. Als Pseudozufallszahlen bezeichnet man Zahlenfolgen die durch einen

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 6. Vorlesung - 2018 Diskrete ZG eine diskrete ZG X wird vollständig durch ihre Wahrscheinlichkeitsverteilung beschrieben ( ) x1 x X 2... x i... = p 1 p 2... p i... P(X (a, b]) = und die Verteilungsfunktion

Mehr

Punktprozesse. Andreas Frommknecht Seminar Zufällige Felder Universität Ulm

Punktprozesse. Andreas Frommknecht Seminar Zufällige Felder Universität Ulm Einführung in Beispiele für Andreas Seminar Zufällige Felder Universität Ulm 20.01.2009 Inhalt Einführung in Beispiele für Definition Markierte 1 Einführung in Definition Markierte 2 Beispiele für Homogener

Mehr

Zeitstetige Markov-Prozesse: Einführung und Beispiele

Zeitstetige Markov-Prozesse: Einführung und Beispiele Zeitstetige Markov-Prozesse: Einführung und Beispiele Simone Wielart 08.12.10 Inhalt Q-Matrizen und ihre Exponentiale Inhalt Q-Matrizen und ihre Exponentiale Zeitstetige stochastische Prozesse Inhalt Q-Matrizen

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Zufallszahlen und Monte Carlo Peter Frentrup Humboldt-Universität zu Berlin 17. Oktober 2017 (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 17. Oktober 2017 1 / 23

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Hawkes Prozesse Grundlagen

Hawkes Prozesse Grundlagen Hawkes Prozesse Grundlagen Im Folgenden sei (Ω, F, F, P) eine stochastische Basis. Das heißt F = (F t ) t ist eine rechtsstetige Filtration mit F t F für alle t und P ein Wahrscheinlichkeitsmaß auf dem

Mehr

7 Poisson-Punktprozesse

7 Poisson-Punktprozesse Poisson-Punktprozesse sind natürliche Modelle für zufällige Konfigurationen von Punkten im Raum Wie der Name sagt, spielt die Poisson-Verteilung eine entscheidende Rolle Wir werden also mit der Definition

Mehr

15 Grundlagen der Simulation

15 Grundlagen der Simulation 15 Grundlagen der Simulation 15.1 Einführung Komplexe Problemstellungen, die einer analytischen Behandlung nur sehr schwer oder gar nicht zugänglich sind Lösung von diskreten (oder analytischen) Optimierungsaufgaben,

Mehr

Markierte Punktprozesse und abstrakte kollektive Modelle

Markierte Punktprozesse und abstrakte kollektive Modelle Festkolloquium 20 Jahre (neue) Versicherungsmathematik an der TU Dresden Markierte Punktprozesse und abstrakte kollektive Modelle Anke Todtermuschke 21. Oktober 2011 Gliederung 1 Modellierung einer Folge

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

3 Produktmaße und Unabhängigkeit

3 Produktmaße und Unabhängigkeit 3 Produktmaße und Unabhängigkeit 3.1 Der allgemeine Fall Im Folgenden sei I eine beliebige Indexmenge. i I sei (Ω i, A i ein messbarer Raum. Weiter sei Ω : i I Ω i ein neuer Ergebnisraum. Wir definieren

Mehr

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Simulation von Zufallszahlen Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Definition: Eine Folge von Pseudo-Zufallszahlen U i ist eine deterministische

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 1: Monte-Carlo-Methoden, Zufallszahlen, Statistische Tests Randolf Altmeyer November 22, 2016 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Lineares

Mehr

Gaußsche Felder und Simulation

Gaußsche Felder und Simulation 3 2 data_2d_1.dat data_2d_2.dat data_2d_64.dat data_2d_128.dat 1-1 -2-3 1 2 3 4 5 6 7 Gaußsche Felder und Simulation Benedikt Jahn, Aaron Spettl 4. November 28 Institut für Stochastik, Seminar Zufällige

Mehr

Statistik für Ingenieure Vorlesung 6

Statistik für Ingenieure Vorlesung 6 Statistik für Ingenieure Vorlesung 6 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 05. Dezember 2017 3.4.3 Stetige Gleichverteilung Parameter: Intervall [a, b] R. Zufallsgröße

Mehr

3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte

3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. Jan Johannes Sandra Schluttenhofer Wintersemester 208/9 3. Übungsblatt - Lösungsskizzen Aufgabe 9 Stetige Verteilungen, 4 =.5 +.5 +

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 5: Markov-Chain-Monte-Carlo-Verfahren Randolf Altmeyer February 1, 2017 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Nichtparametrische Methoden

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 05. 04. 004 Prof. Dr. G. Last Klausur zur Vorlesung Stochastik II Dauer: 90 Minuten Name: Vorname: Matrikelnummer: Diese Klausur hat

Mehr

Alois Fichtl, Julius Vogelbacher 10. Juni Voronoi und Johnson-Mehl Mosaike

Alois Fichtl, Julius Vogelbacher 10. Juni Voronoi und Johnson-Mehl Mosaike Alois Fichtl, Julius Vogelbacher 10. Juni 2008 Voronoi und Johnson-Mehl Mosaike Seite 2 Voronoi- und Johnson-Mehl-Mosaike Alois Fichtl, Julius Vogelbacher 10. Juni 2008 Inhaltsverzeichnis Einführung Mosaike

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Markov Chain Monte Carlo Peter Frentrup Humboldt-Universität zu Berlin 16. Januar 2018 (Humboldt-Universität zu Berlin) Markov Chain Monte Carlo 16. Januar 2018 1 / 17 Übersicht 1

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume Kapitel II Kontinuierliche Wahrscheinlichkeitsräume 1. Einführung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 211/476 Beispiel 85 Wir betrachten

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Stochastische Geometrie und ihre Anwendungen Thema: Faserprozesse

Stochastische Geometrie und ihre Anwendungen Thema: Faserprozesse Stochastische Geometrie und ihre Anwendungen Thema: Faserprozesse Universität Ulm Degang Kong 8.01.010 1 Inhaltsverzeichnis 1. Ungerichtete Linienprozesse als Faserprozesse. Planare Faserprozesse.1 Grundlagen.

Mehr

15.3 Statistische Tests von Pseudozufallszahlen

15.3 Statistische Tests von Pseudozufallszahlen 15.3 Statistische Tests von Pseudozufallszahlen Def. 52 Ein Test ist eine Entscheidungsvorschrift, die über die Akzeptanz genau einer von zwei alternativen Hypothesen entscheidet. Bsp. 109 (Analogie zur

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

Markierte Punktprozesse und zufällige Tesselationen

Markierte Punktprozesse und zufällige Tesselationen und zufällige Tesselationen Seminar stochastische Geometrie und ihre Anwendungen 7. Dezember 2009 und zufällige Tesselationen Gliederung 1 2 3 und zufällige Tesselationen Gliederung 1 2 3 und zufällige

Mehr

Extrapolation und Interpolation von räumlichen Mustern

Extrapolation und Interpolation von räumlichen Mustern Extrapolation und Interpolation von räumlichen Mustern 01. Juli 2008 Inhaltsverzeichnis 1 Interpolation Extrapolation Beispiel: Mammutbaumsetzlinge 2 Grundlagen Keim-Korn- Clusterprozesse Cox-Clusterprozess

Mehr

Lineare Kongruenzgeneratoren und Quicksort

Lineare Kongruenzgeneratoren und Quicksort Seminar Perlen der theoretischen Informatik Dozenten: Prof. Johannes Köbler und Olaf Beyersdorff Lineare Kongruenzgeneratoren und Quicksort Ausarbeitung zum Vortrag Mia Viktoria Meyer 12. November 2002

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Karlsruher Institut für Technologie Ulrich Husemann Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie

Mehr

Bayesian analysis of spatial point processes in the neighbourhood of Voronoi. networks

Bayesian analysis of spatial point processes in the neighbourhood of Voronoi. networks Bayesian analysis of spatial point processes in the neighbourhood of Voronoi networks Judith Schmidt und Bettina Hund 02 Juli 2008 Seminar: Stochastische Geometrie und ihre Anwendungen - Zufa llige Netzwerke

Mehr

Kapitel 6 Martingale

Kapitel 6 Martingale Kapitel 6 Martingale Martingale spielen eine große Rolle in der Finanzmathematik, und sind zudem ein wichtiges Hilfsmittel für die statistische Inferenz stochastischer Prozesse, insbesondere auch für Zählprozesse

Mehr

Nr. 4: Pseudo-Zufallszahlengeneratoren

Nr. 4: Pseudo-Zufallszahlengeneratoren Proseminar: Finanzmathematische Modelle und Simulationen Martin Dieckmann WS 09/0 Nr. 4: Pseudo-Zufallszahlengeneratoren Begriff Pseudo-Zufallszahl Zufallszahlen im Rechner entstehen letztlich immer durch

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.57 2018/06/08 16:27:08 hk Exp $ $Id: jordan.tex,v 1.34 2018/07/12 20:08:29 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Am Ende der letzten Sitzung hatten wir zwei

Mehr

7 Bedingte Erwartungswerte und Bedingte Verteilungen

7 Bedingte Erwartungswerte und Bedingte Verteilungen 7 edingte Erwartungswerte und edingte Verteilungen Sei (Ω,, P ein W Raum, (Ω, ein Messraum, Y : Ω Ω sei (, -messbar und nehme die Werte y 1,..., y n Ω an. Y 1 (y k {ω Ω Y (ω y k } : k Ω 1 + + n und σ(y

Mehr

Scheinklausur zur Vorlesung Stochastik II

Scheinklausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 2007/2008 Universität Karlsruhe 25. 02. 2008 Dr. B. Klar Scheinklausur zur Vorlesung Stochastik II Muster-Lösung Dauer: 90 Minuten Name: Vorname: Matrikelnummer:

Mehr

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W.

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W. 8. Formelsammlung 8.1 Gesetze zum Rechnen mit Ereignissen Im Folgenden seien A und B, sowie A 1,..., A n Ereignisse. Die Notation A B steht für A B und zugleich A B = (disjunkte Vereinigung). A 1... A

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Zufallszahlen. Diskrete Simulation. Zufallszahlengeneratoren - Zufallszahlen

Zufallszahlen. Diskrete Simulation. Zufallszahlengeneratoren - Zufallszahlen Zufallszahlen Zufallszahlengeneratoren Transformation von Zufallszahlen Test von Zufallszahlengeneratoren Otto-von-Guericke-Universität Magdeburg Thomas Schulze Zufallszahlengeneratoren - Zufallszahlen

Mehr

Stochastik Wiederholung von Teil 1

Stochastik Wiederholung von Teil 1 Stochastik Wiederholung von Teil 1 Andrej Depperschmidt Sommersemester 2016 Wahrscheinlichkeitsraum Definition Das Tripple (Ω, A, P) heißt Wahrscheinlichkeitsraum, falls gilt: (i) A ist eine σ-algebra,

Mehr

Schwache Konvergenz von Wahrscheinlichkeitsmaßen

Schwache Konvergenz von Wahrscheinlichkeitsmaßen Schwache Konvergenz von Wahrscheinlichkeitsmaßen 6. Juli 2010 Inhaltsverzeichnis 1 Definition 2 3 Lindeberg-Bedingung Interpretation Definition Motivation (Konvergenz von Wahrscheinlichkeitsmaßen) Sind

Mehr

Stochastik Praktikum Markov Chain Monte Carlo Methoden

Stochastik Praktikum Markov Chain Monte Carlo Methoden Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

Anwendungen mit SAS: Direkt aus der Praxis! Block 1

Anwendungen mit SAS: Direkt aus der Praxis! Block 1 Anwendungen mit SAS: Direkt aus der Praxis! Block 1 Deskriptive Statistik und Simulation von Zufallsvariablen Fachhochschule Koblenz Fachbereich Mathematik und Technik Dr. Denise Rey 28. November 2008

Mehr

Das Boolesche Modell. Olaf Wied. November 30, 2009

Das Boolesche Modell. Olaf Wied. November 30, 2009 November 30, 2009 Inhalt 1. Einführung und Definition 2. Eigenschaften 3. Modell mit konvexen Körnern 4. Statistiken und Anwendung in R Keim - Korn Modell Punkte im R d um jeden Punkt: beliebige, kompakte

Mehr

Programmiertechnik II

Programmiertechnik II Zufallszahlen Motivation Simulation Frisörbeispiel Stichprobenauswahl Telefonumfragen Numerische Algorithmen naives Beispiel: Berechnung von Pi Automatisiertes Testen Beispiel aus Übungsaufgabe "Faire"

Mehr

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik Institut für Stochastik 18. Juni 2013 Inhalt 1 2 3 4 5 Nach ZGWS konvergiert für n F n (x) = P{ X 1+...+X n np npq x} gegen F(x) = 1 2π x e 1 2 u2 du, wenn die X i unabhängig und bernoulliverteilt sind

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig,

Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig, Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig, wenn für alle (s 1,..., s n ) {0, 1} n gilt, dass wobei A 0 i = Āi und A 1 i = A i. Pr[A s 1 1... Asn n ] = Pr[A

Mehr

Meßbare Funktionen. bilden die Grundlage der Integrationstheorie. Definition 24.1 :

Meßbare Funktionen. bilden die Grundlage der Integrationstheorie. Definition 24.1 : 24 Meßbare Funktionen bilden die Grundlage der Integrationstheorie. Definition 24. : Sei X eine beliebige Menge, Y ein topologischer Raum, λ ein Maß auf X. f : X Y heißt λ-messbar, falls f (Ω) λ-messbar

Mehr

Seminar stochastische Geometrie. 25. Januar Faserprozesse im R 2. Simona Renner. Faserprozesse. Kenngrößen Intensität Richtungsrose

Seminar stochastische Geometrie. 25. Januar Faserprozesse im R 2. Simona Renner. Faserprozesse. Kenngrößen Intensität Richtungsrose Seminar stochastische Geometrie 25. Januar 2010 Contents 1 2 3 4 5 Definitionen Faser: glatte Kurve endlicher Länge in der Ebene Faser γ ist das Bild der Kurve γ(t) = (γ 1 (t), γ 2 (t)) mit (i) γ : [0,

Mehr

Zufallsvariable, Verteilung, Verteilungsfunktion

Zufallsvariable, Verteilung, Verteilungsfunktion Kapitel 5 Zufallsvariable, Verteilung, Verteilungsfunktion 5.1 Zufallsvariable Sei (Ω, A, P ) ein beliebiger Wahrscheinlichkeitsraum. Häufig interessiert nicht ω selbst, sondern eine Kennzahl X(ω), d.h.

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten Kapitel 2 Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten 2.1 Stochastische Unabhängigkeit von Ereignissen Gegeben sei ein W-Raum (Ω, C, P. Der Begriff der stochastischen Unabhängigkeit von

Mehr

Der Metropolis-Hastings Algorithmus

Der Metropolis-Hastings Algorithmus Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Markov-Chain Monte-Carlo Verfahren Übersicht 1 Einführung

Mehr

Übersicht. 1 Einführung in Markov-Chain Monte-Carlo Verfahren. 2 Kurze Wiederholung von Markov-Ketten

Übersicht. 1 Einführung in Markov-Chain Monte-Carlo Verfahren. 2 Kurze Wiederholung von Markov-Ketten Markov-Chain Monte-Carlo Verfahren Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Übersicht 1 Einführung

Mehr

2 Halbgruppen von Übergangswahrscheinlichkeiten. Markov-Prozesse

2 Halbgruppen von Übergangswahrscheinlichkeiten. Markov-Prozesse 2 Halbgruppen von Übergangswahrscheinlichkeiten Markov-Prozesse Im Folgenden sei (X, B) ein (polnischer) Messraum und T = [0, ) oder T = N 0 Definition 21 Eine Familie (P t ) t T von (X, B) mit Übergangswahrscheinlichkeiten

Mehr

Mathematische Statistik Aufgaben zum Üben. Schätzer

Mathematische Statistik Aufgaben zum Üben. Schätzer Prof. Dr. Z. Kabluchko Wintersemester 2016/17 Philipp Godland 14. November 2016 Mathematische Statistik Aufgaben zum Üben Keine Abgabe Aufgabe 1 Schätzer Es seien X 1,..., X n unabhängige und identisch

Mehr

ALMA II - ÜBERBLICK STOCHASTIK. Jochen Garcke

ALMA II - ÜBERBLICK STOCHASTIK. Jochen Garcke ALMA II - ÜBERBLICK STOCHASTIK Jochen Garcke GRUNDBEGRIFFE Wahrscheinlichkeitsraum (Ω, A, P) beschreibt Zufallssituation Realisierung, Stichprobe, Elementarereignis ω Ω Ergebnisraum zufälliges Ereignis

Mehr

Methoden der Statistik Markov Chain Monte Carlo Methoden

Methoden der Statistik Markov Chain Monte Carlo Methoden Methoden der Statistik Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 08.02.2013 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer«

Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer« Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer«Werner Linde WS 2008/09 Inhaltsverzeichnis 1 Wahrscheinlichkeiten 2 1.1 Wahrscheinlichkeitsräume...........................

Mehr

Der Poissonprozess. Kapitel 5

Der Poissonprozess. Kapitel 5 spielt in der stochastischen Modellierung eine fundamentale Rolle Grund ist seine verteilungsfreie Charakterisierung durch wenige qualitative Eigenschaften, die in zahlreichen Anwendungsbeispielen plausibel

Mehr

Pollards Rho-Methode zur Faktorisierung

Pollards Rho-Methode zur Faktorisierung C A R L V O N O S S I E T Z K Y Pollards Rho-Methode zur Faktorisierung Abschlusspräsentation Bachelorarbeit Janosch Döcker Carl von Ossietzky Universität Oldenburg Department für Informatik Abteilung

Mehr

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Oktober 2018 Prof. Dr. Hans-Jörg

Mehr

Vorstellung der Kopplung bei Markovketten

Vorstellung der Kopplung bei Markovketten Vorstellung der Kopplung bei Markovketten Leonie Weinhold 13. Mai 2011 1 Einleitung In der Wahrscheinlichkeitstheorie und ihren Anwendungen ist die Coupling- Methode ein wichtiges Instrument, um z.b. Aussagen

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr 1.4.4 Laplace-Prinzip in kontinuierlichen Wahrscheinlichkeitsräumen Das folgende Beispiel zeigt, dass im kontinuierlichen Fall die Bedeutung von gleichwahrscheinlich nicht immer ganz klar sein muss. Bertrand

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist:

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist: Multivariate elliptische Verteilungen a) Die multivariate Normalverteilung Definition 2 Der Zufallsvektor (X 1, X 2,..., X d ) T hat eine multivariate Normalverteilung (oder eine multivariate Gauss sche

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 29 UNIVERSITÄT KARLSRUHE Blatt 6 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 27: Sei X eine R + -wertige

Mehr

1.3 Zufallsvariablen

1.3 Zufallsvariablen 1.3 Zufallsvariablen Beispiel Irrfahrt zwischen drei Zuständen Start in G bei t = 0, Zeithorizont T N Grundraum σ-algebra Ω = {ω = (ω 0, ω 1,..., ω T ) {G, R, B} T +1, ω 0 = G} Wahrscheinlichkeitsmaß P

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsraume

Kapitel II Kontinuierliche Wahrscheinlichkeitsraume Kapitel II Kontinuierliche Wahrscheinlichkeitsraume 1. Einfuhrung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 195/460 Beispiel 78 Wir betrachten

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

15 Über Zufallsgeneratoren (fakultativ)

15 Über Zufallsgeneratoren (fakultativ) Über Zufallsgeneratoren (fakultativ) 136 15 Über Zufallsgeneratoren (fakultativ) Erläutert wird die Erzeugung von gemäÿ einem WMaÿ P verteilter Realisationen mit Hilfe von Zufallsgeneratoren. Der Satz

Mehr

10 Transformation von Zufallsvariablen

10 Transformation von Zufallsvariablen 10 Transformation von Zufallsvariablen Sei X : Ω R eine Zufallsvariable mit Verteilungsfunktion F X (x) = P(X < x). Wir betrachten eine Funktion g: R R und sei Zufallsvariable Y : Ω R mit Y = g(x). Y :

Mehr

Einführung in die statistische Testtheorie

Einführung in die statistische Testtheorie 1 Seminar Simulation und Bildanalyse mit Java von Benjamin Burr und Philipp Orth 2 Inhalt 1. Ein erstes Beispiel 2. 3. Die Gütefunktion 4. Gleichmäßig beste Tests (UMP-Tests) 1 Einführendes Beispiel 3

Mehr

Einführung und Grundlagen

Einführung und Grundlagen Kapitel 1 Einführung und Grundlagen Generelle Notation: Ω, A, P sei ein W-Raum im Hintergrund nie weiter spezifiziert Die betrachteten Zufallsvariablen seien auf Ω definiert, zb X : Ω, A M, A, wobei M,

Mehr

Sammlung alter Klausuraufgaben zur Stochastik keine Abgabe keine Besprechung in den Tutorien

Sammlung alter Klausuraufgaben zur Stochastik keine Abgabe keine Besprechung in den Tutorien Sammlung alter Klausuraufgaben zur Stochastik keine Abgabe keine Besprechung in den Tutorien Prof. F. Merkl 23. Mai 2016 Zu Ihrer Information und als zusätzliches Übungsmaterial sind hier die Aufgaben

Mehr

Brownsche Bewegung: Eine Einführung

Brownsche Bewegung: Eine Einführung Brownsche Bewegung: Eine Einführung Batu Güneysu Institut für Mathematik Humboldt-Universität zu Berlin Greifswald, 18.04.2018 Batu Güneysu Brownsche Bewegung: Eine Einführung 1 / 14 Wir fixieren m N und

Mehr

Beispiel 6 (Multivariate Normalverteilung)

Beispiel 6 (Multivariate Normalverteilung) Beispiel 6 (Multivariate Normalverteilung) Sei X N(µ,Σ). Es existiert eine Matrix A IR d k, sodass X d = µ+az wobei Z N k (0,I) und AA T = Σ. Weiters gilt Z = RS wobei S ein gleichmäßig verteilter Zufallsvektor

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

Aufgaben zu Kapitel 0

Aufgaben zu Kapitel 0 Aufgaben zu Kapitel 0 0.1. Seien A und B zwei Mengen. Wie kann man paarweise disjunkte Mengen A 1, A 2 und A 3 so wählen, dass A 1 A 2 A 3 = A B gilt? 0.2. Seien E ein Menge und A eine Teilmengen von E.

Mehr

Studienbegleitende Prüfung Stochastik 2

Studienbegleitende Prüfung Stochastik 2 Universität Karlsruhe (TH) Institut für Stochastik Prof. Dr. N. Bäuerle Name: Vorname: Matr.-Nr.: Studienbegleitende Prüfung Stochastik 2 27. März 2007 Diese Klausur hat bestanden, wer mindestens 20 Punkte

Mehr

Grundlagen der Monte-Carlo-Simulation. Dr. Sebastian Lück 7. Februar 2012

Grundlagen der Monte-Carlo-Simulation. Dr. Sebastian Lück 7. Februar 2012 Grundlagen der Monte-Carlo-Simulation Dr. Sebastian Lück 7. Februar 2012 page 2 Contents Motivation Erzeugung von SPZZ Software Transformation von SPZZ Akzeptanz- und Verwerfungsmethode Monte-Carlo-Integration

Mehr

Konfidenzintervalle. Gesucht: U = U(X 1,..., X n ), O = O(X 1,..., X n ), sodass für das wahre θ gilt

Konfidenzintervalle. Gesucht: U = U(X 1,..., X n ), O = O(X 1,..., X n ), sodass für das wahre θ gilt Konfidenzintervalle Annahme: X 1,..., X n iid F θ. Gesucht: U = U(X 1,..., X n ), O = O(X 1,..., X n ), sodass für das wahre θ gilt P θ (U θ O) = 1 α, α (0, 1). Das Intervall [U, O] ist ein Konfidenzintervall

Mehr

Ü b u n g s b l a t t 7

Ü b u n g s b l a t t 7 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 21. 5. 2007 Ü b u n g s b l a t t 7 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

10. Übung zur Linearen Algebra I -

10. Übung zur Linearen Algebra I - . Übung zur Linearen Algebra I - en Kommentare an Hannes.Klarner@FU-Berlin.de FU Berlin. WS 29-. Aufgabe 37 i Für welche α R besitzt das lineare Gleichungssystem 4 αx + αx 2 = 4x + α + 2x 2 = α genau eine,

Mehr

Bem. 6 Die charakterische Funktion existiert.

Bem. 6 Die charakterische Funktion existiert. 4.4 Charakteristische Funktionen Def. 2.14 Sei X Zufallsvariable mit Verteilungsfunktion F X und Dichte f X (falls X stetig) oder Wkt.funktion p i (falls X diskret). Die Funktion φ X (t) := Ee itx = eitx

Mehr