Statistics, Data Analysis, and Simulation SS 2015

Größe: px
Ab Seite anzeigen:

Download "Statistics, Data Analysis, and Simulation SS 2015"

Transkript

1 Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler Statistics, Data Analysis, and Simulation SS / 20

2 2. Monte Carlo-Methoden 2.1 Zufallszahlen - Warum? 2.2 Zahlendarstellung im Rechner 2.3 Generatoren Linear kongruente Generatoren (LCG) Multiplikativ linear kongruente Generatoren (MLCG) Dr. Michael O. Distler <[email protected]> Statistics, Data Analysis, and Simulation SS / 20

3 Techniques for producing numbers from various distributions The inverse transform sampling method: Let X be a random variable whose distribution can be described by the cumulative distribution function F. We want to generate values of X which are distributed according to this distribution. The inverse transform sampling method works as follows: 1 Generate a random number u from the standard uniform distribution in the interval [0, 1]. 2 Compute the value x such that F(x) = u. 3 Take x to be the random number drawn from the distribution described by F. Dr. Michael O. Distler <[email protected]> Statistics, Data Analysis, and Simulation SS / 20

4 Inverse transform sampling Generator gives: 0 X n < m 0 X n m < 1 Uniform distribution: U(0, 1) Transformation: f (x) dx = U(0, 1) du CDF: x f (t) dt = F(x) = u x = F ( 1) (u) Dr. Michael O. Distler <[email protected]> Statistics, Data Analysis, and Simulation SS / 20

5 2.4. Qualität von Generatoren Spektraltest Bilde Paare aus benachbarten Zahlen (x j, x j+1 ) j = 0, 1,..., n 1 Darstellung als Punkte in einem 2dim kartesischen Koordinatensystem: a = 3, m = 7 : 1, 3, 2, 6, 4, 5, 1,... (1, 3), (3, 2), (2, 6), (6, 4), (4, 5), (5, 1) Punkte eines MLCG bilden regelmäßiges Gitter. Warum? Im Wertebereich 0 x j < m gibt es m 2 Zahlenpaare. MLCG liefert aber nur m 1 Zahlenpaare Dr. Michael O. Distler <[email protected]> Statistics, Data Analysis, and Simulation SS / 20

6 Beispiele: Spektraltest 6 a=3 m=7 5 4 x i x i Dr. Michael O. Distler <[email protected]> Statistics, Data Analysis, and Simulation SS / 20

7 Beispiele: Spektraltest 90 a=29 m= x i x i Dr. Michael O. Distler <[email protected]> Statistics, Data Analysis, and Simulation SS / 20

8 Beispiele: Spektraltest 90 a=23 m= x i x i Dr. Michael O. Distler <[email protected]> Statistics, Data Analysis, and Simulation SS / 20

9 Beispiele: 1 Spektraltest a=29 m= x i x i Dr. Michael O. Distler <[email protected]> Statistics, Data Analysis, and Simulation SS / 20

10 Beispiele: 1 Spektraltest a=23 m= x i x i Dr. Michael O. Distler <[email protected]> Statistics, Data Analysis, and Simulation SS / 20

11 Umrechnung auf Gitter 0 x j m < 1. Voll besetztes Gitter hat Linienabstand d = 1 m Unser Gitter hat bei gleichmäßiger Verteilung bestenfalls: d m 1/2 für 2 Dimensionen Ungleichmäßige Abstände: d m 1/2 Theoretische Überlegungen liefern obere Grenzen für die kleinstmöglichen Gitterabstände in t Dimensionen: d t d t = c t m 1/t c 2 = 4 3/4, c 3 = 6 1/2, c 4 = 4 1/2, c 5 = Dr. Michael O. Distler <[email protected]> Statistics, Data Analysis, and Simulation SS / 20

12 2.4.2 Test auf gleichmäßige Verteilung Das Intervall [0, 1] wird in k gleiche Unterintervalle der Länge 1/k unterteilt. N Zufallszahlen werden erzeugt. N i fallen in das Unterintervall i. k Ni = N, N i = N k, (N i N/k) 2 = χ 2 N/k i=1 sollte einer χ 2 -Verteilung mit (k 1) Freiheitsgraden folgen. Dr. Michael O. Distler <[email protected]> Statistics, Data Analysis, and Simulation SS / 20

13 2.4.3 Sequenz-(up-down-)Test Vergleiche x i und x i+1 { 1 für xi < x Erzeuge Bitfolge mit i+1 0 für x i > x i+1 Zähle die Folgen von Nullen und Einser der Länge k: N(k) N k N(k) = N für N + 1 Zufallszahlen k=1 Für unkorrelierte Zufallszahlen erwartet man: N(1) = 5N+1 12 N(2) = 11N N(3) = 19N N(k) = (k 2 +3k+1)N (k 3 +3k 2 k 4) (k+3)!/ N(1) = 5 (6.75) N(2) = 4 (2.75) N(3) = 1 (0.58) Dr. Michael O. Distler <[email protected]> Statistics, Data Analysis, and Simulation SS / 20

14 2.4.4 Random Walk-Test Wähle ein kleine Zahl 0 < α 1. Bilde eine große Zahl von Zufallszahlen und registriere die Zahl r der Fälle, in denen eine Zufallszahl kleiner α erscheint. Man erwartet eine Binomialverteilung für r mit p = α. Diese Test sollte auch gemacht werden für Zufallszahlen, die größer als (1 α) sind. Dr. Michael O. Distler <[email protected]> Statistics, Data Analysis, and Simulation SS / 20

15 2.4.5 Lücken-(gap)Test Wähle zwei Zahlen 0 α < β 1. Erzeuge (r + 1) Zufallszahlen im Intervall [0, 1]. Die Wahrscheinlichkeit, dass die ersten r Zahlen ausserhalb des Intervalls (α, β) liegen und die (r + 1)ste innerhalb, sollte sein: P r = p (1 p) r Dr. Michael O. Distler <[email protected]> Statistics, Data Analysis, and Simulation SS / 20

16 2.4.6 Collision-Test Teile das Intervall [0, 1) in d gleiche Segmente. Teile entsprechend [0, 1) t in k = d t Hyperkuben. Erzeuge n zufällige Punkte in [0, 1) t. Wir definieren eine neue Zufallsvariable C, in dem wir zählen, wie oft wir eine Zahl in eine Hyperkubus füllen, der schon besetzt ist. Wir erwarten für C eine Poisson-Verteilung um den Mittelwert: λ C = n2 (k groß) 2k Dr. Michael O. Distler <[email protected]> Statistics, Data Analysis, and Simulation SS / 20

17 2.4.7 Birthday-Spacing-Test Teile den Wertebereich in k gleich Intervalle (Hyperkuben). Definiere eine Ordnungsfunktion für die Zellen, damit für die gefüllten Zellen gilt: I (1) I (2)... I (n) Definiere den Abstand S j = I (j+1) I (j) j = 1,..., n 1. Die neue Zufallsvariable Y zählt die Fälle (Kollisionen), für die gilt: S (j+1) = S (j). Wir erwarten für Y eine Poisson-Verteilung um den Mittelwert: λ Y = n3 (k groß) 4k Der Name stammt von dem Geburtstagsparadoxon (n Personen, das Jahr hat k Tage). papers/wsc01rng.pdf Dr. Michael O. Distler <[email protected]> Statistics, Data Analysis, and Simulation SS / 20

18 Markov chain Monte Carlo Metropolis-Hastings Algorithmus Aufgabe: Bestimmen Sie Mittelwert, Varianz und Schiefe der Wahrscheinlichkeitsdichte ( p(x) = C exp 1 ) (x 3.2)(x 2)(x 1.1)(x + 0.9)(x + 2)(x + 3.3) 50 mit einer MCMC Methode (Metropolis-Hastings Algorithmus) Dazu erzeugen Sie eine Folge von Zahlen x t, t = 1,..., N (Markov chain), die der Dichte p(x) folgen. Nach den Regeln der MC Integration gilt dann für den Erwartungswert 0.1 A 1 N N A(x t ). t=1 Dr. Michael O. Distler <[email protected]> Statistics, Data Analysis, and Simulation SS / 20

19 Metropolis-Hastings Algorithmus 1 Wählen Sie einen Startwert und legen Sie die Kettenlänge fest, z.b. x 1 = 1 und N = Wählen Sie eine Vorschlagsdichte q(x x), z.b. die Normalverteilung N (µ, σ 2 ). Setzen Sie σ 2 = 2. Je ähnlicher die Vorschlagsdichte der Dichte p(x) ist, desto besser funktioniert der Algorithmus. 3 Generieren Sie zufällig einen Vorschlag x für x t+1 aus der Vorschlagsdichte N (x t, σ 2 ). 4 Generieren Sie eine gleichverteilte Zufallszahl u aus U(0, 1). 5 Der Vorschlag x wird akzeptiert, falls: p(x ) p(x t ) q(x t x ) q(x x t ) u Für den Fall einer symmetrischen Vorschlagsdichte (hier Normalverteilung) gilt q(x t x )/q(x x t ) = 1. 6 Wird der Vorschlag nicht akzeptiert, setzen Sie x t+1 = x t. 7 Fahren Sie mit Punkt 3. fort, bis die gewünschte Kettenlänge N erreicht ist. Dr. Michael O. Distler <[email protected]> Statistics, Data Analysis, and Simulation SS / 20

20 Metropolis-Hastings Algorithmus Mögliche Optimierungen: Wenn der Startwert ungünstig gewählt wurde, dann benötigt der Algorithmus einige Zeit um einzuschwingen (sog. burn-in). In der Praxis werden die ersten 100 oder 1000 Werte verworfen und so das " Gedächtnis" (d.h. die Abhängigkeit vom Startwert) gelöscht. Variieren Sie die Varianz der Vorschlagsdichte, z.b. σ 2 = 0.1, 2, 10 und betrachten Sie jeweils den Anteil der akzeptierten Vorschläge und plotten einen Ausschnitt von 1000 Werten der Kette. In der Praxis bewährt sich ein Anteil von 50%. Wählen Sie eine ganz andere Vorschlagsdichte, z.b. U( 2 + x t, 2 + x t ). Funktioniert der Algorithmus damit? (siehe auch Dr. Michael O. Distler <[email protected]> Statistics, Data Analysis, and Simulation SS / 20

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler [email protected] Mainz, 16. November 2009 2. Monte Carlo-Methoden 2.1 Zufallszahlen - Warum? 2.2 Zahlendarstellung im Rechner 2.3 Generatoren 2.3.1 Linear kongruente Generatoren

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, June 11, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Mainz, 8. Juni 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Stochastic Processes SS 2010 Prof. Anton Wakolbinger. Klausur am 16. Juli 2010

Stochastic Processes SS 2010 Prof. Anton Wakolbinger. Klausur am 16. Juli 2010 Stochastic Processes SS 2010 Prof. Anton Wakolbinger Klausur am 16. Juli 2010 Vor- und Nachname: Matrikelnummer: Studiengang: Tutor(in): In der Klausur können 100 Punkte erreicht werden. Die Gesamtpunktezahl

Mehr

W-Rechnung und Statistik für Ingenieure Übung 8

W-Rechnung und Statistik für Ingenieure Übung 8 W-Rechnung und Statistik für Ingenieure Übung 8 Aufgabe 1 : Motivation Anhand von Daten soll eine Aussage über die voraussichtliche Verteilung zukünftiger Daten gemacht werden, z.b. die Wahrscheinlichkeit

Mehr

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS Stochastic Processes Summer Semester 2008 Final Exam Friday June 4, 2008, 12:30, Magnus-HS Name: Matrikelnummer: Vorname: Studienrichtung: Whenever appropriate give short arguments for your results. In

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 5: Markov-Chain-Monte-Carlo-Verfahren Randolf Altmeyer February 1, 2017 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Nichtparametrische Methoden

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Zufallszahlen und Monte Carlo Peter Frentrup Humboldt-Universität zu Berlin 17. Oktober 2017 (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 17. Oktober 2017 1 / 23

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler [email protected] Mainz, 13. Juli 2011 Ziel der Vorlesung Vermittlung von Grundkenntnissen der Statistik, Simulationstechnik und numerischen Methoden (Algorithmen) Aufgabe:

Mehr

Einführung in die Simulation. Dr. Christoph Laroque Wintersemester 11/12. Dresden,

Einführung in die Simulation. Dr. Christoph Laroque Wintersemester 11/12. Dresden, Fakultät Informatik, Institut für Angewandte Informatik, Professur Modellierung und Simulation Einführung in die Simulation Dr. Christoph Laroque Wintersemester 11/12 Dresden, 11.10.2011 01.11.2011 Einführung

Mehr

Statistik für Informatiker, SS Verteilungen mit Dichte

Statistik für Informatiker, SS Verteilungen mit Dichte 1/39 Statistik für Informatiker, SS 2017 1.1.6 Verteilungen mit Dichte Matthias Birkner http://www.staff.uni-mainz.de/birkner/statinfo17/ 17.5.2017 Zufallsvariablen mit Dichten sind ein kontinuierliches

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

7 Zufallszahlen, Simulation

7 Zufallszahlen, Simulation 7 Zufallszahlen, Simulation Es ist nützlich, Folgen von i.i.d. R[0, 1]-verteilten Zufallszahlen auf einem Rechner erzeugen zu können vgl. Simulation, Monte-Carlo-Verfahren). Letztere sind i.a. keine echten

Mehr

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Simulation von Zufallszahlen Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Definition: Eine Folge von Pseudo-Zufallszahlen U i ist eine deterministische

Mehr

Der Metropolis-Hastings Algorithmus

Der Metropolis-Hastings Algorithmus Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Markov-Chain Monte-Carlo Verfahren Übersicht 1 Einführung

Mehr

Übersicht. 1 Einführung in Markov-Chain Monte-Carlo Verfahren. 2 Kurze Wiederholung von Markov-Ketten

Übersicht. 1 Einführung in Markov-Chain Monte-Carlo Verfahren. 2 Kurze Wiederholung von Markov-Ketten Markov-Chain Monte-Carlo Verfahren Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Übersicht 1 Einführung

Mehr

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Karlsruher Institut für Technologie Ulrich Husemann Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie

Mehr

Modellierung- und Simulation Mathis Plewa ( )

Modellierung- und Simulation Mathis Plewa ( ) Inhaltsverzeichnis Abbildungsverzeichnis... 1 Übungsaufgabe: Zufallsgeneratoren und Histogramme... 2 Standard Gleichverteilung... 2 Gaußverteilung... 3 Exponentialverteilung... 4 Übungsaufgabe: Geometrische

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Stetige und diskrete Wahrscheinlichkeitsverteilungen Lageparameter Streuungsparameter Diskrete und stetige Zufallsvariablen Eine Variable (oder Merkmal

Mehr

Eine Einführung in R: Dichten und Verteilungsfunktionen

Eine Einführung in R: Dichten und Verteilungsfunktionen Eine Einführung in R: Dichten und Verteilungsfunktionen Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 25. November 2009 Bernd

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Bayesian Networks. Syntax Semantics Parametrized Distributions Inference in Bayesian Networks. Exact Inference. Approximate Inference

Bayesian Networks. Syntax Semantics Parametrized Distributions Inference in Bayesian Networks. Exact Inference. Approximate Inference Syntax Semantics Parametrized Distributions Inference in Exact Inference Approximate Inference enumeration variable elimination stochastic simulation Markov Chain Monte Carlo (MCMC) 1 Includes many slides

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

Computer in der Wissenschaft

Computer in der Wissenschaft Dr. Michael O. Distler [email protected] Mainz, 8. Januar 2014 Methode der kleinsten Quadrate Geschichte: Von Legendre, Gauß und Laplace zu Beginn des 19. Jahrhunderts eingeführt. Die Methode der kleinsten

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Statistik für Ingenieure Vorlesung 6

Statistik für Ingenieure Vorlesung 6 Statistik für Ingenieure Vorlesung 6 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 05. Dezember 2017 3.4.3 Stetige Gleichverteilung Parameter: Intervall [a, b] R. Zufallsgröße

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 1: Monte-Carlo-Methoden, Zufallszahlen, Statistische Tests Randolf Altmeyer November 22, 2016 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Lineares

Mehr

Institut für Statistik der LMU. FORMELSAMMLUNG 2003 zur STOCHASTIK FÜR BIOINFORMATIKER

Institut für Statistik der LMU. FORMELSAMMLUNG 2003 zur STOCHASTIK FÜR BIOINFORMATIKER Institut für Statistik der LMU FORMELSAMMLUNG 2003 zur STOCHASTIK FÜR BIOINFORMATIKER 2003 2003 Inhaltsverzeichnis 1 Elementare Wahrscheinlichkeitsrechnung 1 1.1 Die Axiome von Kolmogorov...........................

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 8. Vorlesung Pseudozufallszahlen sind, wie der Name schon sagt, keine echten Zufallszahlen, sondern werden durch Generatoren erzeugt. Als Pseudozufallszahlen bezeichnet man Zahlenfolgen die durch einen

Mehr

Simulation von Zufallsvariablen und Punktprozessen

Simulation von Zufallsvariablen und Punktprozessen Simulation von Zufallsvariablen und Punktprozessen 09.11.2009 Inhaltsverzeichnis 1 Einleitung 2 Pseudozufallszahlen 3 Punktprozesse Zufallszahlen Definition (Duden): Eine Zufallszahl ist eine Zahl, die

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt. Normalverteilung Diskrete Stetige f(x) = 1 2πσ 2 e 1 2 ((x µ)2 σ 2 ) Gauß 91 / 169 Normalverteilung Diskrete Stetige Satz: f aus (1) ist Dichte. Beweis: 1. f(x) 0 x R und σ > 0. 2. bleibt z.z. lim F(x)

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt

Mehr

Pseudozufallsgeneratoren

Pseudozufallsgeneratoren Pseudozufallsgeneratoren In welchen kryptographischen Verfahren werden keine Zufallszahlen benötigt? Wie generiert man Zufallszahlen in einer deterministischen Maschine wie dem Computer? Wenn man eine

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

Wahrscheinlichkeitsverteilungen und ihre Implementierung in Root. Eric Volkmann

Wahrscheinlichkeitsverteilungen und ihre Implementierung in Root. Eric Volkmann Wahrscheinlichkeitsverteilungen und ihre Implementierung in Root Eric Volkmann Inhalt Mathematische Definition Random Number Generators Wichtige Verteilungen Anwendungsbeispiel: Monte-Carlo Simulation

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Datenanalyse für Naturwissenschaftler und Ingenieure

Datenanalyse für Naturwissenschaftler und Ingenieure Siegmund Brandt Datenanalyse für Naturwissenschaftler und Ingenieure Mit statistischen Methoden und Java-Programmen 5. Auflage 4y Springer Spektrum Inhaltsverzeichnis Vorwort zur fünften Auflage Liste

Mehr

Unit 4. The Extension Principle. Fuzzy Logic I 123

Unit 4. The Extension Principle. Fuzzy Logic I 123 Unit 4 The Extension Principle Fuzzy Logic I 123 Images and Preimages of Functions Let f : X Y be a function and A be a subset of X. Then the image of A w.r.t. f is defined as follows: f(a) = {y Y there

Mehr

Stochastik Praktikum Markov Chain Monte Carlo Methoden

Stochastik Praktikum Markov Chain Monte Carlo Methoden Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best [email protected] Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

Serie 9, Musterlösung

Serie 9, Musterlösung WST www.adams-science.org Serie 9, Musterlösung Klasse: 4U, 4Mb, 4Eb Datum: FS 18 1. Mädchen vs. Knaben 442187 Unter 3000 in einer Klinik neugeborenen Kindern befanden sich 1578 Knaben. Testen Sie mit

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt.

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt. . Grundbegri e Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. ist auch das sichere Ereignis,

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 5. Vorlesung Verteilungsfunktion (VF) Definition 9 Die Verteilungsfunktion (VF) einer Zufallsgröße X ist F : R R definiert als F (x) := P({ω Ω : X (ω) x}) = P( X x ) für jedes x R. Satz 9 - Eigenschaften

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler 6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung

Mehr