Computer in der Wissenschaft

Größe: px
Ab Seite anzeigen:

Download "Computer in der Wissenschaft"

Transkript

1 Dr. Michael O. Distler Mainz, 8. Januar 2014

2 Methode der kleinsten Quadrate Geschichte: Von Legendre, Gauß und Laplace zu Beginn des 19. Jahrhunderts eingeführt. Die Methode der kleinsten Quadrate ist damit älter als die allgemeinere Maximum Likelihood-Methode. In diesem Kapitel werden direkte Messwerte mit der Eigenschaft von Zufallsvariablen (Daten) durchweg mit y i bezeichnet. n-malige Messung einer Größe x liefert also y 1, y 2,..., y n : y i = x + ɛ i ɛ i ist die Abweichung y i x (Messfehler).

3 Methode der kleinsten Quadrate Die gemessenen Werte weichen von dem wahren Wert um einen Betrag ab, der durch die Standardabweichung σ beschrieben wird. Im Sinne der Statistik sind die y i eine Stichprobe, welcher eine Wahrscheinlichkeitsdichte zugrunde liegt. Es soll eine funktionelle Beziehung (Modell) für die wahren Werte vorliegen. Dieses Modell kann von zusätzlichen Variablen a j (Parametern) abhängen. Für diese Parameter gibt es keine direkte Messung. Das Modell wird durch eine oder mehrere Gleichungen der Form f (a 1, a 2,..., a p, y 1, y 2,..., y n ) = 0 beschrieben. Diese Gleichungen heißen Bedingungen.

4 Methode der kleinsten Quadrate Das Modell kann benutzt werden, um Korrekturen y i für die Messwerte y i zu finden, so dass die korrigierten Werte die Bedingungen exakt erfüllen. Das Prinzip der kleinsten Quadrate verlangt, dass die Summe der Quadrate der Residuen y i den kleinstmöglichen Wert annimmt. Im einfachsten Fall unkorrelierter Daten, die alle die gleiche Standardabweichung haben, entspricht das der Forderung: S = n i=1 y 2 i = Minimum Man kann so Werte für die nicht gemessenen Parameter unter allgemeinen Bedingungen ermitteln indirekte Messung

5 Methode der kleinsten Quadrate Die Methode der kleinsten Quadrate hat einige optimale statistische Eigenschaften und führt oft zu einfachen Lösungen. Andere Vorschriften sind denkbar, führen aber im allgemeinen zu komplizierten Lösungen. n y i = Minimum oder max y i = Minimum i=1

6 Methode der kleinsten Quadrate Allgemeiner Fall: Daten werden beschrieben durch n-vektor y. Verschiedene Standardabweichungen und mit Korrelationen, beschrieben durch die Kovarianzmatrix V. Bedingung der kleinsten Quadrate in Matrixform: S = y T V 1 y Hierbei ist y der Residuenvektor.

7 Lineare kleinste Quadrate Beispiel: Im Weinanbau werden die jeweils im Herbst geernteten Erträge in Tonnen je 100 m 2 (t/ar) gemessen. Es ist bekannt, dass der Jahresertrag bereits im Juli ziemlich gut prognostiziert werden kann, und zwar durch die Bestimmung der mittleren Anzahl von Beeren, die je Traube gebildet worden sind. Jahr Ertrag (y i ) Cluster (x i ) ,6 116, ,2 82, ,5 110, ,2 97, ,2 115, ,7 80, ,8 125, ,9 116, ,7 117, ,1 93, ,4 107, ,4 122,30 Ertrag/(t/ar) y Clusterzahl x

8 Lineare kleinste Quadrate Anpassung einer Geraden f (x) = a + b x mit Hilfe von gnuplot: degrees of freedom (FIT_NDF) : 10 rms of residuals (FIT_STDFIT) = sqrt(wssr/ndf) : variance of residuals (reduced chisquare) = WSSR/ndf : Final set of parameters Asymptotic Standard Error ======================= ========================== a = / (76.23%) b = / (14.11%) correlation matrix of the fit parameters: a b a b

9 Bestimmung von Parameterwerten Bestimmung von Parameterwerten a aus Messungen anhand eines linearen Modells. Der Vektor a der Parameter hat p Elemente a 1, a 2,..., a p. Die Messwerte bilden den Vektor y von n Zufallsvariablen mit Elementen y 1, y 2,..., y n. Der Erwartungswert von y ist gegeben als Funktion der Variablen x der Form: y(x) = f (x, a) = a 1 f 1 (x) + a 2 f 2 (x) a p f p (x). Damit ist der Erwartungswert jeder Einzelmessung y i gegeben durch E[y i ] = f (x i, ā) = ȳ i wobei die Elemente von ā die wahren Werte des Parameters a sind.

10 Bestimmung von Parameterwerten Die Residuen r i = y i f (x i, a) haben für a = ā die Eigenschaften E[r i ] = 0 E[r 2 i ] = V [r i ] = σ 2 i. Die einzigen Annahmen hier sind Unverzerrtheit und eine endliche Varianz der Wahrscheinlichkeitsdichte der Residuen. Insbesondere ist es nicht zwingend nötig, dass sie gauß-verteilt ist.

11 Normalgleichungen im Fall gleicher Fehler Alle Daten sollen die gleiche Varianz haben und unkorreliert sein. Nach dem Prinzip der kleinsten Quadrate muss die Summe der Quadrate der Residuen in Bezug auf die Parameter a 1, a 2,..., a p minimiert werden: S = n i=1 r 2 i = n (y i a 1 f 1 (x i ) a 2 f 2 (x i )... a p f p (x i )) 2 i=1 Bedingungen für das Minimum: S n = 2 f 1 (x i ) (a 1 f 1 (x i ) + a 2 f 2 (x i ) a p f p (x i ) y i ) = 0 a 1 i= S n = 2 f p (x i ) (a 1 f 1 (x i ) + a 2 f 2 (x i ) a p f p (x i ) y i ) = 0 a p i=1

12 Normalgleichungen im Fall gleicher Fehler Die Bedingung kann in Form der sogenannten Normalgleichungen geschrieben werden a 1 f1 (x i ) a p f1 (x i )f p (x i ) = a 1 f2 (x i )f 1 (x i ) a p f2 (x i )f p (x i ) = y i f 1 (x i ) y i f 2 (x i )... a 1 fp (x i )f 1 (x i ) a p fp (x i ) 2 = y i f p (x i ) Die Schätzwerte von a 1, a 2,..., a p nach kleinsten Quadraten folgen als die Lösung dieser Normalgleichung.

13 Matrixschreibweise Matrixschreibweise und Matrixalgebra vereinfachen die Formulierung wesentlich. Die n p Werte f j (x i ) werden als Elemente einer n p Matrix aufgefasst. Die p Parameter a j und die n Messwerte y i bilden Spaltenvektoren. A = f 1 (x 1 ) f 2 (x 1 )... f p (x 1 ) f 1 (x 2 ) f 2 (x 2 )... f p (x 2 ) f 1 (x n ) f 2 (x n )... f p (x n ) a = a 1 a 2... a p y = y 1 y y n

14 Matrixschreibweise Der n-vektor der Resudien ist damit Die Summe S ist r = y Aa. S = r T r = (y Aa) T (y Aa) Bedingung für das Minimum = y T y 2a T A T y + a T A T Aa 2A T y + 2A T Aâ = 0 oder in der Matrixform der Normalgleichungen (A T A)â = A T y Die Lösung kann mit Standardverfahren der Matrixalgebra berechnet werden: â = (A T A) 1 A T y

15 Kovarianzmatrix der Parameter Die Kovarianzmatrix ist die quadratische n n-matrix var(y 1 ) cov(y 1, y 2 )... cov(y 1, y n ) V[y] = cov(y 2, y 1 ) var(y 2 )... cov(y 2, y n ) cov(y n, y 1 ) cov(y n, y 2 )... var(y n ) Hier ist die Kovarianzmatrix eine Diagonalmatrix: V[y] = σ σ σ 2

16 Kovarianzmatrix der Parameter Für eine lineare Beziehung â = By gilt die Standardformel der Fehlerfortpflanzung: V[â] = BV[y]B T mit B = (A T A) 1 A T wird daraus V[â] = (A T A) 1 A T V[y]A(A T A) 1 oder für den vorliegenden Fall gleicher Fehler einfach V[â] = σ 2 (A T A) 1

17 Quadratsumme der Residuen Die Summe Ŝ der Quadrate der Residuen im Minimum ist Ŝ = y T y 2â T A T y + â T A T A(A T A) 1 A T y = y T y â T A T y. Der Erwartungswert E[Ŝ] ist E[Ŝ] = σ2 (n p). Ist die Varianz der Messdaten nicht bekannt, so erhält man aus Ŝ den Schätzwert ˆσ 2 = Ŝ/(n p). Dies ist für große Werte von (n p) eine gute Schätzung.

18 Korrektur der Datenwerte Nach Berechnung der Parameter mit linearen kleinsten Quadraten können Werte der Funktion f (x) für beliebige x bestimmt werden durch ŷ(x) = f (x, â) = p â j f j (x). j=1 Speziell für die Werte x i, die zu den Messwerten y i gehören, ergeben sich die korrigierten Datenpunkte zu ŷ = Aâ. Fehlerfortplanzung liefert die Kovarianzmatrix V[ŷ] = AV[a]A T = σ 2 A(A T A) 1 A T

19 Der Fall unterschiedlicher Fehler Wenn die einzelnen Datenpunkte statistisch unabhängig sind, dann ist die Kovarianzmatrix σ V[y] = 0 σ σn 2 Der Ausdruck für die Summe der Residuenquadrate lautet nun: S = i r 2 i σ 2 i = Minimum Man führt die Gewichtsmatrix W(y) ein als inverse Matrix der Kovarianzmatrix 1/σ W(y) = V[y] 1 = 0 1/σ /σn 2

20 Der Fall unterschiedlicher Fehler Die Summe der Quadrate der gewichteten Residuen S = r T W(y)r = (y Aa) T W(y)(y Aa) muss nun bezüglich der Parameter minimiert werden. Es ergibt sich: â = (A T WA) 1 A T Wy V[â] = (A T WA) 1 Die Summe der Residuenquadrate für a = â hat die Form Ŝ = y T Wy â T A T Wy und den Erwartungswert E[Ŝ] = n p. Die Kovarianzmatrix der korrigierten Datenpunkte ist V[ŷ] = A(A T WA) 1 A T

21 Kleinste Quadrate in der Praxis: Geradenanpassung Geradenanpassung mit der Funktion y = f (x, a) = a 1 + a 2 x. Messwerte y i liegen an den genau bekannten Punkten x i vor. A = a = ( a1 a 2 1 x 1 1 x 2 1 x x n ) y = V = y 1 y 2 y 3... y n σ σ σ σ 2 n W = V 1 w ii = 1 σ 2 i

22 Kleinste Quadrate in der Praxis: Geradenanpassung Lösung: ( ) ( A T wi wi x WA = i S1 S wi x i wi xi 2 = x S x S xx ( ) ( ) A T wi y Wy = i Sy = wi x i y i ( S1 S x S x S xx ) ( a1 a 2 ) = S xy ( Sy S xy ) ) ( S1 S x S x S xx â = (A T WA) 1 A T Wy V[â] = (A T WA) 1 ) 1 = 1 ( Sxx S x D S x S 1 ) mit D = S 1 S xx S 2 x

23 Kleinste Quadrate in der Praxis: Geradenanpassung Die Lösung ist â 1 = (S xx S y S x S xy )/D â 2 = ( S x S y S 1 S xy )/D und die Kovarianzmatrix ist V[â] = 1 ( Sxx S x D S x S 1 ). Weiterhin ist die Summe der Residuenquadrate Ŝ = S yy â 1 S y â 2 S xy Für einen Wert ŷ = â 1 + â 2 x, berechnet an der Stelle x, ist die Standardabweichung die Wurzel aus der Varianz: V [ŷ] = V [â 1 ] + x 2 V [â 2 ] + 2xV [â 1, â 2 ] = (S xx 2xS x + x 2 S 1 )/D

24 Poisson-Verteilung Die Poisson-Verteilung ist gegeben durch: P(r) = µr e µ r! Der Mittelwert ist: r = µ Die Varianz ergibt sich aus V [r] = np(1 p) für die Binomialverteilung: V [r] = σ 2 = np = µ µ = µ = µ = µ =

25 Das Gesetz der großen Zahl Angenommen, dass in n statistisch unabhängigen Experimenten das Ereignis j insgesamt n j mal aufgetreten ist. Die Zahlen n j folgen einer Binomialverteilung, und das Verhältnis h j = n j /n ist die entsprechende Zufallsvariable. Der Erwartungswert E[h j ] ist die Wahrscheinlichkeit p j für das Ereignis j: p j = E[h j ] = E[n j /n] Für die Varianz gilt dann (Binomialverteilung!): V [h j ] = σ 2 (h j ) = σ 2 (n j /n) = 1 n 2 σ2 (n j ) = 1 n 2 np j(1 p j ) Da das Produkt p j (1 p j ) immer 1 4 ist, gilt die Ungleichung σ 2 (h j ) < 1/n bekannt als das Gesetz der großen Zahl.

26 Der Zentrale Grenzwertsatz Der zentrale Grenzwertsatz (ZGS) ist der wichtigste Satz in der Statistik. Unter anderem erklärt er die zentrale Bedeutung der Gauß-Verteilung. Die Wahrscheinlichkeitsdichte der Summe w = n i=1 x i einer Stichprobe aus n unabhängigen Zufallsvariablen x i mit einer beliebigen Wahrscheinlichkeitsdichte mit Mittelwert x und Varianz σ 2 geht in der Grenze n gegen eine Gauß-Wahrscheinlichkeitsdichte mit Mittelwert w = n x und Varianz V [w] = nσ 2.

27 Illustration: Zentraler Grenzwertsatz N=1 0.4 Gauss 0.4 N= N= N= Dargestellt ist die Summe uniform verteilter Zufallszahlen im Vergleich zur Standardnormalverteilung.

28 Spezielle Wahrscheinlichkeitsdichten Gleichverteilung: Diese Wahrscheinlichkeitsdichte ist konstant zwischen den Grenzen x = a und x = b: f (x) = Mittelwert und Varianz sind: x = E[x] = a + b 2 { 1 b a a x < b 0 außerhalb V [x] = σ 2 = (b a)2 12 Die Gleichverteilung wird oft U(a, b) ( uniform ) geschrieben. Besonders wichtig ist die Verteilung U(0, 1) mit den Grenzen 0 und 1, die eine Varianz 1/12 hat.

29 Die Normalverteilung (Gauß-Verteilung) Die wichtigste Wahrscheinlichkeitsdichte wegen ihrer großen Bedeutung in der Praxis. f (x) = 1 e (x µ)2 2σ 2 2πσ Die Normalverteilung wird von zwei Parametern bestimmt, dem Mittelwert µ und der Standardabweichung σ. Die Wahrscheinlichkeitsdichte mit dem Mittelwert µ = 0 und der Varianz σ 2 = 1 heißt standardisierte Gauß-Verteilung, abgekürzt N(0, 1). Die Gauß-Verteilung kann hergeleitet werden als Grenzfall der Binomialverteilung für große Werte von n und r, und auf ähnliche Weise auch als Grenzfall der Poisson-Verteilung für große Werte von µ.

30 Die Normalverteilung (Gauß-Verteilung) dx N(0, 1) = 0,6827 = (1 0,3173) dx N(0, 1) = 0,9545 = (1 0,0455) dx N(0, 1) = 0,9973 = (1 0,0027) FWHM: Dieser Begriff ist oft nützlich, um auf einfache Weise die Standardabweichung einer Gaußkurve zu schätzen. FWHM = 2σ 2ln2 = 2,355σ

31 Integrierte Gaußfunktion Die Wahrscheinlichkeitsverteilung wird mit Φ(x) bezeichnet, Φ(x) = 1 2πσ x e (t µ) 2 2σ 2 dt. In vielen Formelsammlungen finden sich Tabellen der integrierten standardisierten Gauß-Verteilung, F(x) = 1 2π z e x2 2. Die integrierte Verteilungsfunktion kann durch die Gauß sche Fehlerfunktion erf(x) ausgedrückt werden, erf(x) = 2 π x Φ(x) = e t2 dt. ( ( )) x µ 1 + erf. 2σ

32 Integrierte Gaußfunktion *(1+erf(x/sqrt(2))) 0.4*exp(-0.5*x*x)

33 χ 2 -Verteilung Falls x 1, x 2,..., x n unabhängige Zufallsvariable sind, die alle einer Gauß-Wahrscheinlichkeitsdichte folgen mit Mittelwert 0 und Varianz 1, so folgt die Summe u = χ 2 = n i=1 x 2 i einer χ 2 -Verteilung f n (u) = f n (χ 2 ) mit n Freiheitsgraden. Die Wahrscheinlichkeitsdichte ist: ( 1 u ) n/ e u/2 f n (u) = Γ(n/2) Die Wahrscheinlichkeitsdichte f n (u) hat ein Maximum bei (n 2). Der Mittelwert ist n und die Varianz 2n.

34 χ 2 -Wahrscheinlichkeitsdichte pdf(2,x) pdf(3,x) pdf(4,x) pdf(5,x) pdf(6,x) pdf(7,x) pdf(8,x) pdf(9,x)

35 χ 2 -Verteilungsfunktion Sie beschreibt die Wahrscheinlichkeit, dass χ 2 n im Intervall [0, x] liegt cdf(2,x) cdf(3,x) cdf(4,x) cdf(5,x) cdf(6,x) cdf(7,x) cdf(8,x) cdf(9,x)

36 χ 2 -Verteilung mit 5 Freiheitsgraden % c.l. [ ]

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 31. Mai 2011 4. Methode der kleinsten Quadrate Geschichte: Von Legendre, Gauß und Laplace zu Beginn des 19. Jahrhunderts eingeführt. Die Methode der

Mehr

Einführung in die wissenschaftliche Datenanalyse

Einführung in die wissenschaftliche Datenanalyse Einführung in die wissenschaftliche Datenanalyse Dr. Michael O. Distler distler@uni-mainz.de http://www-fp.physik.uni-mainz.de/fpkurs/ Mainz, 22. October 2010 Literatur Grundbegriffe Wahrscheinlichkeitsverteilungen

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 2. November 2009 Poisson-Verteilung Die Poisson-Verteilung ist gegeben durch: P(r) = µr e µ r! Der Mittelwert ist: r = µ Die Varianz ergibt sich aus

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Mainz, 8. Juni 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 29. Oktober 2007 1. Statistik 1.1 Wahrscheinlichkeit Pragmatisch: p(e) = n(e) N für N sehr groß Kombination von Wahrscheinlichkeiten p(a oder B) =

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 13. Juli 2011 Ziel der Vorlesung Vermittlung von Grundkenntnissen der Statistik, Simulationstechnik und numerischen Methoden (Algorithmen) Aufgabe:

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Inhaltsverzeichnis. 4 Statistik Einleitung Wahrscheinlichkeit Verteilungen Grundbegriffe 98

Inhaltsverzeichnis. 4 Statistik Einleitung Wahrscheinlichkeit Verteilungen Grundbegriffe 98 Inhaltsverzeichnis 1 Datenbehandlung und Programmierung 11 1.1 Information 11 1.2 Codierung 13 1.3 Informationsübertragung 17 1.4 Analogsignale - Abtasttheorem 18 1.5 Repräsentation numerischer Daten 20

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, May 29, 2017 Dr. Michael O. Distler

Mehr

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood KARLSRUHER INSTITUT FÜR TECHNOLOGIE (KIT) 0 KIT 06.01.2012 Universität des Fabian Landes Hoffmann Baden-Württemberg und nationales Forschungszentrum

Mehr

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Hauptseminar - Methoden der experimentellen Teilchenphysik WS 2011/2012 Fabian Hoffmann 2. Dezember 2011 Inhaltsverzeichnis 1 Einleitung

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 15.01.2009 Numerische Methoden und Algorithmen in der Physik Christian Autermann 1/ 47 Methode der kleinsten Quadrate

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt

Mehr

Statistik für Ingenieure Vorlesung 5

Statistik für Ingenieure Vorlesung 5 Statistik für Ingenieure Vorlesung 5 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 28. November 2017 3.4 Wichtige stetige Verteilungen 3.4.1 Exponentialverteilung Parameter:

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Mainz, 26. Juni 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Statistische Methoden

Statistische Methoden Modeling of Data / Maximum Likelyhood methods Institut für Experimentelle und Angewandte Physik Christian-Albrechts-Universität zu Kiel 22.05.2006 Datenmodellierung Messung vs Modell Optimierungsproblem:

Mehr

Statistik - Fehlerrechnung - Auswertung von Messungen

Statistik - Fehlerrechnung - Auswertung von Messungen Statistik - Fehlerrechnung - Auswertung von Messungen TEIL II Vorbereitungskurs F-Praktikum B (Physik), RWTH Aachen Thomas Hebbeker Eindimensionaler Fall: Parameterbestimmung - Beispiele [Übung] Mehrdimensionaler

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, 2. Juli 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Konjugierte Prior Konjugierte Prior

Mehr

Wahrscheinlichkeiten. Verteilungen

Wahrscheinlichkeiten. Verteilungen Wahrscheinlichkeiten. Verteilungen 2 2.1 Wahrscheinlichkeitsrechnung Das Ergebnis eines mit Zufälligkeit behafteten Versuchs nennen wir ein Ereignis. Beim Wurf einer Münze sind zwei Ereignisse möglich.

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 7. Mai 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 5 Version: 30. April

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Goethe-Universität Frankfurt

Goethe-Universität Frankfurt Goethe-Universität Frankfurt Fachbereich Wirtschaftswissenschaft PD Dr. Martin Biewen Dr. Ralf Wilke Sommersemester 2006 Klausur Statistik II 1. Alle Aufgaben sind zu beantworten. 2. Bitte runden Sie Ihre

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 24. Mai 2011 3. Schätzung von Parametern Problemstellung: Aus fehlerbehafteten Messungen möglichst genaue Ergebnisse erarbeiten zusammen mit Aussagen

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr 1.4.4 Laplace-Prinzip in kontinuierlichen Wahrscheinlichkeitsräumen Das folgende Beispiel zeigt, dass im kontinuierlichen Fall die Bedeutung von gleichwahrscheinlich nicht immer ganz klar sein muss. Bertrand

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Rechenregeln für den Erwartungswert Ist f symmetrisch bzgl. a, so gilt E(X)

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik Wiederholung von Grundwissen der Stochastik. Grundbegri e der Stochastik Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 11. Vorlesung Jochen Köhler 10.05.011 1 Inhalt der heutigen Vorlesung Zusammenfassung Parameterschätzung Übersicht über Schätzung und Modellbildung Modellevaluation

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Parameteranpassung mit kleinsten Quadraten und Maximum Likelihood

Parameteranpassung mit kleinsten Quadraten und Maximum Likelihood Parameteranpassung mit kleinsten Quadraten und Maximum Likelihood Armin Burgmeier 27. November 2009 1 Schätzwerte 1.1 Einführung Physikalische Messungen sind immer fehlerbehaftet. Man misst niemals den

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

4.1 Stichproben, Verteilungen und Schätzwerte. N(t) = N 0 e λt, (4.1)

4.1 Stichproben, Verteilungen und Schätzwerte. N(t) = N 0 e λt, (4.1) Kapitel 4 Stichproben und Schätzungen 4.1 Stichproben, Verteilungen und Schätzwerte Eine physikalische Messung ist eine endliche Stichprobe aus einer Grundgesamtheit, die endlich oder unendlich sein kann.

Mehr

D-CHAB Frühlingssemester 2017 T =

D-CHAB Frühlingssemester 2017 T = D-CHAB Frühlingssemester 17 Grundlagen der Mathematik II Dr Marcel Dettling Lösung 13 1) Die relevanten Parameter sind n = 3, x = 1867, σ x = und µ = 18 (a) Die Teststatistik T = X µ Σ x / n ist nach Annahme

Mehr

Die Maximum-Likelihood-Methode

Die Maximum-Likelihood-Methode Vorlesung: Computergestützte Datenauswertung Die Maximum-Likelihood-Methode Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik SS '17 KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

1 Beispiel zur Methode der kleinsten Quadrate

1 Beispiel zur Methode der kleinsten Quadrate 1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25

Mehr

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm. Veranstaltung: Statistik für das Lehramt 16.12.2016 Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm Erwartungswert Varianz Standardabweichung Die Wahrscheinlichkeitsverteilung

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Springer-Lehrbuch Wahrscheinlichkeitsrechnung und schließende Statistik Bearbeitet von Karl Mosler, Friedrich Schmid 4., verb. Aufl. 2010. Taschenbuch. XII, 347 S. Paperback ISBN 978 3 642 15009 8 Format

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 08.01.2009 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 32 Einführung Wahrscheinlichkeit Verteilungen

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

FORMELSAMMLUNG STATISTIK B

FORMELSAMMLUNG STATISTIK B Somersemester 2012 FORMELSAMMLUNG STATISTIK B Prof. Kneip / Dr. Scheer / Dr. Arns Version vom April 2012 Inhaltsverzeichnis 1 Wahrscheinlichkeitsrechnung 2 2 Diskrete Zufallsvariablen 5 3 Stetige Zufallsvariablen

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^2],{x,0,10}] 76

Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^2],{x,0,10}] 76 4. Normalverteilung Gauß'sche Glockenkurve: P(a X b) = b 1 x 1 a e dx 1 0.8 0.6 0.4 0. 4 6 8 10 Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^],{x,0,10}] 76 Zentraler Grenzwertsatz: Es sei X 1, X,... eine

Mehr

Rechnernutzung in der Physik

Rechnernutzung in der Physik Vorlesung: Rechnernutzung in der Physik Parameteranpassung mit der Likelihood-Methode Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Mehr

4.2 Moment und Varianz

4.2 Moment und Varianz 4.2 Moment und Varianz Def. 2.10 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: EX p

Mehr

Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg

Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Dr. Stan Lai und Prof. Markus Schumacher Physikalisches Institut Westbau 2 OG Raum 008 Telefonnummer

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastik, 5.5. Wir gehen stets von einem Maßraum (Ω, A, µ) bzw. einem Wahrscheinlichkeitsraum (Ω,A,P) aus. Die Borel σ-algebra auf R n wird mit B n bezeichnet, das Lebesgue Maß auf

Mehr

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II. Prof. Dr.

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II. Prof. Dr. Statistik II Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen Statistik II 2. Parameterschätzung: 2.1 Grundbegriffe; 2.2 Maximum-Likelihood-Methode;

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Karl Mosler Friedrich Schmid Wahrscheinlichkeitsrechnung und schließende Statistik Vierte, verbesserte Auflage Springer Inhaltsverzeichnis 0 Einführung 1 1 Zufalls Vorgänge und Wahrscheinlichkeiten 5 1.1

Mehr

Spezielle Verteilungen

Spezielle Verteilungen Spezielle Verteilungen Prof. Sabine Attinger Jun. Prof. Anke Hildebrandt Beschreibende Statistik Lagemaße: 1. Mittelwert: µ = x = 1 n n i= 1 x i 3. Median=0.5 Perzentil Beschreibende Statistik Streumaße:

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 21. Dezember 2011 1 Definition Binomialverteilung Geometrische Verteilung Poissonverteilung 2 Standardisierte Verteilung

Mehr

Spezielle Verteilungen einer Variablen

Spezielle Verteilungen einer Variablen Kapitel 2 Spezielle Verteilungen einer Variablen In diesem Kapitel werden wir einige häufig benutzte Verteilungen, die von einer Variablen abhängen, vorstellen. 2.1 Binomial-Verteilung Binomial-Verteilungen

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Verteilungen mehrerer Variablen

Verteilungen mehrerer Variablen Kapitel 3 Verteilungen mehrerer Variablen 3. Eigenschaften von Verteilungen mehrerer Variablen Im allgemeinen muss man Wahrscheinlichkeiten für mehrere Variable, die häufig auch voneinander abhängen, gleichzeitig

Mehr

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Oktober 2018 Prof. Dr. Hans-Jörg

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler 1 Messfehler Jede Messung ist ungenau, hat einen Fehler. Wenn Sie zum Beispiel die Schwingungsdauer eines Pendels messen, werden Sie - trotz gleicher experimenteller Anordnungen - unterschiedliche Messwerte

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion f(x) =

Mehr

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente...

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente... Inhaltsverzeichnis 1 Grundlagen der Wahrscheinlichkeitsrechnung 1 1.1 Wahrscheinlichkeitsräume Ein erster mathematischer Blick auf Zufallsexperimente.......... 1 1.1.1 Wahrscheinlichkeit, Ergebnisraum,

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 17. November 2010 1 Gesetze Das Gesetz der seltenen Ereignisse Das schwache Gesetz der großen Zahl 2 Verteilungsfunktionen

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

Schätzung von Parametern

Schätzung von Parametern Schätzung von Parametern Schätzung von Parametern Quantitative Wissenschaft: Messung von Parametern Gemessene Werte weichen durch (statistische und systematische) Messfehler vom wahren Wert des Parameters

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

Lineare Regression. Kapitel Regressionsgerade

Lineare Regression. Kapitel Regressionsgerade Kapitel 5 Lineare Regression 5 Regressionsgerade Eine reelle Zielgröße y hänge von einer reellen Einflussgröße x ab: y = yx) ; zb: Verkauf y eines Produkts in Stückzahl] hängt vom Preis in e] ab Das Modell

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Hypothesenbewertungen: Übersicht

Hypothesenbewertungen: Übersicht Hypothesenbewertungen: Übersicht Wie kann man Fehler einer Hypothese abschätzen? Wie kann man einschätzen, ob ein Algorithmus besser ist als ein anderer? Trainingsfehler, wirklicher Fehler Kreuzvalidierung

Mehr

Lösung Übungsblatt 5

Lösung Übungsblatt 5 Lösung Übungsblatt 5 5. Januar 05 Aufgabe. Die sogenannte Halb-Normalverteilung spielt eine wichtige Rolle bei der statistischen Analyse von Ineffizienzen von Produktionseinheiten. In Abhängigkeit von

Mehr

Klausur Stochastik und Statistik 31. Juli 2012

Klausur Stochastik und Statistik 31. Juli 2012 Klausur Stochastik und Statistik 31. Juli 2012 Prof. Dr. Matthias Schmid Institut für Statistik, LMU München Wichtig: ˆ Überprüfen Sie, ob Ihr Klausurexemplar vollständig ist. Die Klausur besteht aus fünf

Mehr

1.3 Wiederholung der Konvergenzkonzepte

1.3 Wiederholung der Konvergenzkonzepte 1.3 Wiederholung der Konvergenzkonzepte Wir erlauben nun, dass der Stichprobenumfang n unendlich groß wird und untersuchen das Verhalten von Stichprobengrößen für diesen Fall. Dies liefert uns nützliche

Mehr

Institut für Stochastik Prof. Dr. N. Henze Dipl.-Math. V. Riess

Institut für Stochastik Prof. Dr. N. Henze Dipl.-Math. V. Riess Institut für Stochastik Prof. Dr. N. Henze Dipl.-Math. V. Riess Name: Vorname: Matrikelnummer: Lösungsvorschlag zur Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik (Stochastik) Datum: 07.

Mehr

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Karlsruher Institut für Technologie Ulrich Husemann Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun http://blog.ruediger-braun.net Heinrich-Heine-Universität Düsseldorf 16. Januar 2015 1 Verteilungsfunktionen Definition Binomialverteilung 2 Stetige Zufallsvariable,

Mehr