1 Dichte- und Verteilungsfunktion
|
|
|
- Barbara Ziegler
- vor 9 Jahren
- Abrufe
Transkript
1 Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die Anzahl der verkauften Bücher pro Jahr in tsd.) kann als stetige Zufallsvariable X mit folgender Dichtefunktion angesehen werden: a x 2, x 2 fx), sonst a) Bestimme a! Lösung: Damit fx) eine gültige Dichtefunktion ist, muss ihr Integral ergeben! fx) dx! Da fx) außerhalb vom Interval [, 2] den Wert hat, folgt: Somit ergibt sich fx) zu: 2 2 fx) dx a x 2 dx a 2 x a 2 a 8 a 8 fx) 8 x2, x 2, sonst b) Über den jährlichen Verkauf wie vieler Bücher kann sich der Professor im Durchschnitt freuen?
2 Lösung: Um die Anzahl der durchschnittlich pro Jahr verkauften Bücher zu ermitteln, müssen wir den Erwartungswert der Zufallsvariablen X berechnen! E X) x fx) dx x fx) dx x x2 dx 8 x dx x dx ) 2 4 x4 ) )) ) ) 4 24 c) Berechnen Sie die Standardabweichung der Verteilung der Zufallsvariablen X! Lösung: Die Varianz einer Zufallsvariablen wird mit der folgenden Formel berechnet: VA) : Somit erhalten wir: VX) a E A)) fa) da x EX)) 2 fx) dx x 5) x2 dx x 5) 2 x 2 dx x 2 x ) x 2 dx x 2 x 2 dx x 4 dx 2 2 x x 2 dx + x dx ) 225 x 2 dx ) x 2 dx 2
3 ) 2 )) 2 5 x5 4 x x ) ) )) 2 Um die Standardabweichung zu erhalten, müssen wir die Wurzel der Varianz berechnen: σ 5, 87 d) Mit welcher Wahrscheinlichkeit verkauft der tüchtige Professor mehr als 8 Bücher in einem Jahr? Lösung: Zur Lösung dieser Frage, müssen wir zunächst ausrechnen, wie groß die Wahrscheinlichkeit ist, dass der Professor weniger als 8 Bücher in einem Jahr verkauft. Anschließend berechnen wir die Gegenwahrscheinlichkeit, um auf den gesuchten Wert zu kommen. W X 8) F 8) Fx) ist die Verteilungsfunktion der Zufallsvariablen X. Diese wird wie folgt berechnet: F x) fx) dx 8 x2 dx 8 x 2 dx Nun können wir W X 8) berechnen: 8 x 8 x W X 8) F 8)
4 Die Wahrscheinlichkeit W X > 8) berechnet sich nun aus der Gegenwahrscheinlichkeit von W X 8): W X > 8) W X 8) e) Wie viele Bücher müsste der Professor pro Jahr drucken lassen, um mit 8%iger Wahrscheinlichkeit ausreichend Bücher für alle Kunden auf Vorrat zu haben? Lösung: Zur Beantwortung dieser Frage müssen wir das,8-faktil berechnen. Dieses erhalten wir durch Gleichsetzung der Verteilungsfunktion mit dem Wert.8:.8! 8 x 64 x x 64 x 8, 5664 In 8% der Fälle ist die Produktion von Büchern aufrunden!) also ausreichend. 4
5 2 Anwendung von Verteilungen Anne Imberg hat vor Kurzem angefangen, [AI] an der RUB zu studieren. Von Kommilitonen in höheren Semestern hat sie gehört, dass die Wahrscheinlichkeit, auf dem Weg von Hattingen zur Uni in einen Stau zu geraten 25% beträgt. Sie interessiert sich für die Frage, wie groß die Wahrscheinlichkeit ist, in ihren 6 Semestern mehr als mal im Stau zu stehen, wenn sie jeden Tag zur Uni fährt jedes Jahr hat 65 Tage). a) Gib eine Verteilung samt Parametern an, die dem Problem entspricht. Es kann angenommen werden, dass Staus statistisch unabhängig sind. Lösung: B95;.25) Mit einer gewissen Wahrscheinlichkeit p in einen Stau zu geraten kann als Bernoulli- Experiment gesehen werden YES-NO trial). Eine Verkettung mehrerer solcher Experimente beschreibt die Binomialverteilung. Diese ist parametrisiert über die Anzahl der Experimente n und die Erfolgswahrscheinlichkeit p ob in den Stau kommen ein Erfolg ist, darüber kann gestritten werden). Das Problem lässt sich also beschreiben mittels einer Binomialverteilung mit 6 Semester 95 Tage Experimenten und einer Erfolgswahrscheinlichkeit von.25. b) Berechne die Wahrscheinlichkeit, öfter als mal im Stau zu stehen. Lösung: Wir wollen W X > ) berechnen. In der Formelsammlung ist allerdings keine Tabelle für Binomialverteilung mit p.25 gegeben und schon gar nicht mit n 95). Wir nähern die Verteilung also zunächst über eine Normalverteilung an: Verteilung kann approximiert werden durch unter den Voraussetzungen Bn; p) N np; ) np p) np 5, n p) 5 n p n p) 95.25) Die Voraussetzungen sind erfüllt. Die Approximation ergibt: X B95;.25) N 27.75; ) ) N 27.75; 4.287) Aber auch für diese Verteilung findet sich keine Tabelle in der Formelsammlung. Wir nähern diese Verteilung wiederum durch eine Standardnormalverteilung Erwartungswert, Standardabweichung ) an. Y X µ N ; ) σ Y X N ; )
6 Nun können wir die Wahrscheinlichkeit berechnen W X > ) W X ) W Y.82) in Tabelle nachschlagen) Die Wahrscheinlichkeit beträgt also etwas über %. c) Berechne die Wahrscheinlichkeit, öfter als 256 mal im Stau zu stehen. W X > 256) W X 256) W Y.287) Nutze Symmetrie der Normalverteilung) W Y.287)) in Tabelle nachschlagen).8925).8925 d) Welche Anzahl an Staus wird Anne mit 9% Wahrscheinlichkeit nicht überschreiten? Lösung: Gefragt ist hier nach dem.9-fraktil. Wir haben die Verteilung auf eine N ; )-Verteilung reduziert, und von der sind die Fraktile bekannt. Φ.9).286 Dies ist aber eben nur das.9-fraktil der N ; )-Verteilung. Daher müssen wir diesen Wert nun auf die nicht-standardisierte Normalverteilung N 27.75; 4.287) zurück transformieren..286 X X Das.9-Fraktil ist also Anne Imberg wird mit 9%iger Wahrscheinlichkeit nicht mehr als Staus durchfahren müssen. 6
7 Stichproben Im Folgenden nehmen wir an, dass die Anzahl der Personen in einem öffentlichen Nahverkehrsfahrzeug normalverteilt ist. Die U-Bahnen der Bogestra vom Typ Tango fassen nominell 75 Personen. Da die Vermutung besteht, dass die Bahnen teilweise überladen fahren, soll in den Stoßzeiten eine Stichprobe durchgeführt werden, die die Nullhypothese testen soll, ob die Bahnen im Durchschnitt tatsächlich überfüllt sind. Die Varianz ist aus vorherigen Messungen bekannt und beträgt 225. a) Es soll ein Intervall für den Erwartungswert µ geschätzt werden, wobei wir uns zu 92% sicher sein wollen, dass der Erwartungswert dieses Intervall nicht verlässt. Das Intervall soll nicht länger als sein. Wie groß müssen wir den Stichprobenumfang n wählen? Lösung: Wir möchten den ) Stichprobenumfang n berechnen und σ 5 ist bekannt. 2 2c σ n muss mindestens groß sein, wobei L die Länge des Intervalls bezeichnet L und c das α )-Fraktil der N, )-Verteilung ist. α wiederum berechnet sich aus 2 der Gleichung Konfidenzniveau α. Konfidenzniveau α α Konfidenzniveau α.92 α.8 c ergibt sich zu c α ) -Fraktil 2 c.96-fraktil c.757 Nun können wir den Stichprobenumfang n anhand folgender Ungleichung bestimmen ) 2 2c σ n L Unsere Stichprobe muss also mindestens den Umfang 28 aufrunden!) haben. ) 2 b) Wie lautet der Name des Tests, der hier durchgeführt werden muss? Lösung: Einstichproben-GAUSS-Test, da Standardabweichung σ bekannt ist. 7
8 c) Mit einer Stichprobe von n wurde ein Mittelwert x 72 errechnet. Als Signifikanzniveau wählen wir α.4. Berechne den Testfunktionswert. Wie lautet die Testentscheidung? Lösung: Wir betrachten die Nullhypothese b): H : µ >) µ gegen H : µ < µ. Zunächst berechnen wir den Testfunktionswert z: z x µ n σ Als nächstes ist der Verwerfungsbereich B zu bestimmen mit x α als α)-fraktil der N, )-Verteilung: B b), x α ), x.4 ), x.96 ),.757) Wir stellen fest, dass der Testfunktionswert z.954 nicht im Intervall B ist. Somit verwerfen wir unsere Nullhypothese nicht. Die Bahnen sind tatsächlich im Durchschnitt überfüllt. d) Wie wäre unsere Entscheidung in Aufgabenteil c) ausgefallen, wenn die Stichprobe einen Mittelwert x 7 ergeben hätte? Lösung: Wir müssen nur den Testfunktionswert z neu berrechnen: 7 75 z Wir stellen fest, dass dieser im Verwerfungsintervall B liegt. Somit hätten wir bei diesem Mittelwert die Nullhypothese verworfen. 8
Fit for Abi & Study Stochastik
Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen
70 Wichtige kontinuierliche Verteilungen
70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche
Wahrscheinlichkeit und Statistik: Zusammenfassung
HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1
Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential
Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:
Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management
für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Testverteilungen Chi-Quadrat-Verteilung Sind X 1,..., X n iid N(0; 1)-verteilte
Zusammenfassung PVK Statistik
Zusammenfassung PVK Statistik (Diese Zusammenfassung wurde von Carlos Mora erstellt. Die Richtigkeit der Formeln ist ohne Gewähr.) Verteilungen von diskreten Zufallsvariablen Beschreibung Binomialverteilung
3 Grundlagen statistischer Tests (Kap. 8 IS)
3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung
Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=
Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)
Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management
für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt
5. Spezielle stetige Verteilungen
5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für
Wichtige Definitionen und Aussagen
Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge
Stellen Sie den Sachverhalt durch eine geeignete Vierfeldertafel mit relativen Häufigkeiten
Bei der Bearbeitung der Aufgabe dürfen alle Funktionen des Taschenrechners genutzt werden. Aufgabe 4: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein.
Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler
6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung
Kapitel VII. Einige spezielle stetige Verteilungen
Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,
Musterlösung zu Serie 8
Dr. Markus Kalisch Statistik I für Biol./Pharm. Wiss./HST) FS 15 Musterlösung zu Serie 8 1. a) Damit fx) eine Dichte ist, muss die Fläche des Dreiecks gleich 1 sein. Es muss also gelten c = 1. Daraus folgt
0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1
Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und
Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^2],{x,0,10}] 76
4. Normalverteilung Gauß'sche Glockenkurve: P(a X b) = b 1 x 1 a e dx 1 0.8 0.6 0.4 0. 4 6 8 10 Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^],{x,0,10}] 76 Zentraler Grenzwertsatz: Es sei X 1, X,... eine
Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL)
Prof. Dr. M. Maathuis ETH Zürich Winter 2010 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Schreiben Sie für Aufgabe 2-4 stets alle Zwischenschritte und -rechnungen sowie Begründungen auf. Aufgabe
Wahrscheinlichkeitstheorie und Statistik
Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter
(6.29) Z X. Die standardnormalverteilte Zufallvariable Z, Z ~ N(0,1), weist den Erwartungswert (6.30) E(Z) = 0 und die Varianz (6.31) V(Z) = 1 auf.
Standardnormalverteilung Da die arameter μ und σ beliebige reelle Zahlenwerte bw. beliebige positive reelle Zahlenwerte (σ >0) annehmen können, gibt es unendlich viele Normalverteilungen. Die Dichtefunktion
Auswertung und Lösung
Dieses Quiz soll Ihnen helfen, Kapitel 4.6 und 4.7 besser zu verstehen. Auswertung und Lösung Abgaben: 59 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.78 1 Frage
Chi-Quadrat-Verteilung
Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist
Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten:
Aufgabe 1 (8=2+2+2+2 Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Die Zufallsvariable X bezeichne die Note. 1443533523253. a) Wie groß ist h(x 5)? Kreuzen
Stochastik Serie 11. ETH Zürich HS 2018
ETH Zürich HS 208 RW, D-MATL, D-MAVT Prof. Marloes Maathuis Koordinator Dr. Marvin Müller Stochastik Serie. Diese Aufgabe behandelt verschiedene Themenbereiche aus dem gesamten bisherigen Vorlesungsmaterial.
Wirtschaftsmathematik
Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A
Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: k = n (n + 1) 2
Aufgabe 1. (5 Punkte) Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: n k = k=1 n (n + 1). 2 Aufgabe 2. (5 Punkte) Bestimmen Sie das folgende Integral mithilfe partieller
Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ).
Aufgaben 1. Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete Frage 1 Punkt und pro falsche Antwort 1/2 Punkt Abzug. Minimal erhält man für die gesamte
Mathematik 2 Probeprüfung 1
WWZ Wirtschaftswissenschaftliche Fakultät der Universität Basel Dr. Thomas Zehrt Bitte in Druckbuchstaben ausfüllen: Name Vorname Mathematik 2 Probeprüfung 1 Zeit: 90 Minuten, Maximale Punktzahl: 72 Zur
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir
Stichproben Parameterschätzung Konfidenzintervalle:
Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,
Die Normalverteilung. Mathematik W30. Mag. Rainer Sickinger LMM, BR. v 0 Mag. Rainer Sickinger Mathematik W30 1 / 51
Mathematik W30 Mag. Rainer Sickinger LMM, BR v 0 Mag. Rainer Sickinger Mathematik W30 1 / 51 Einführung Heute nehmen wir uns die Normalverteilung vor. Bis jetzt konnte unsere Zufallsvariable (das X in
Wahrscheinlichkeitsverteilungen
Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet
Stochastik Musterlösung 4
ETH Zürich HS 218 RW, D-MATL, D-MAVT Prof. Marloes H. Maathuis Koordinator Dr. Marvin S. Müller Stochastik Musterlösung 4 1. Die Zufallsvariable, die die Anzahl eingehender Telefonanrufe in einer Telefonzentrale
Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann
4. Übung Themenkomplex: Zufallsvariablen und ihre Verteilung Aufgabe 1 Für eine stetige Zufallsvariable gilt: a) P (x = t) > 0 b) P (x 1) = F (1) c) P (x = 1) = 0 d) P (x 1) = 1 F(1) e) P (x 1) = 1 F(1)
f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212
1.6.2 Poisson Verteilung Eine weitere wichtige diskrete Verteilung ist die Poisson-Verteilung. Sie modelliert die Anzahl (eher seltener) Ereignisse in einem Zeitintervall (Unfälle, Todesfälle; Sozialkontakte,
Biostatistik, Winter 2011/12
Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung
Standardnormalverteilung
Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative
DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr
2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X
Probeklausur zu Mathematik 3 für Informatik Lösungshinweise (ohne Garantie auf Fehlefreiheit)
Gunter Ochs 9. Juni 05 Probeklausur zu Mathematik für Informatik Lösungshinweise ohne Garantie auf Fehlefreiheit. Sei fx x x. a Bestimmen Sie den Grenzwert lim x fx. Da an der Stelle x Zähler Nenner Null
Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion
Kapitel 1 Stetige Zufallsvariablen 1.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig
Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.
Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment
WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.
Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im
Verteilung von Summen
Verteilung von Summen Beispiel: Würfelwurf Frage: Wie verhält sich die Verteilung der Augensumme von -Würfeln bei wachsendem? Zur Beantwortung führen wir ein Simulationseperiment durch. 6 Würfe mit 1 Würfel
Kapitel 3 Schließende Statistik
Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:
Kapitel VII - Funktion und Transformation von Zufallsvariablen
Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl
Vorlesung: Statistik II für Wirtschaftswissenschaft
Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2
Statistik II. Statistische Tests. Statistik II
Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen
Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60
WESTFÄLISCHE WILHELMS - UNIVERSITÄT MÜNSTER Wirtschaftswissenschaftliche Faktultät Prof. Dr. Bernd Wilfling Professur für VWL, insbesondere Empirische Wirtschaftsforschung Musterlösung zur Klausur im Fach
6.2 Approximation der Binomialverteilung
56 6.2 Approximation der Binomialverteilung Im Beispiel auf den Seiten 52 53 haben wir gesehen, dass die Wahrscheinlichkeiten P 50 (k) der dort betrachteten Binomialverteilung durch die Werte der Funktion
Stetige Verteilungen Rechteckverteilung
Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a
Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen
Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung
Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),
2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist
Wahrscheinlichkeit und Statistik BSc D-INFK
Prof. Dr. M. Schweizer ETH Zürich Sommer 4 Wahrscheinlichkeit und Statistik BSc D-INFK. a (iii b (ii c (iii d (i e (ii f (i g (iii h (iii i (i j (ii. a Die Anzahl der bestellten Weine in einem Monat kann
Erstellen Sie eine Vierfeldertafel, die diese Situation wiedergibt.
Bei der Bearbeitung der Aufgabe dürfen alle Funktionen des Taschenrechners genutzt werden. Aufgabe 4: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein.
Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002
Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002 1. Ein Chemiestudent hat ein Set von 10 Gefäßen vor sich stehen, von denen vier mit Salpetersäure Stoff A), vier mit Glyzerin Stoff
Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI
Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe
Klausur Statistik Lösungshinweise
Klausur Statistik Lösungshinweise Prüfungsdatum: 21. Januar 2016 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Punkte: 15, 15, 12, 14, 16, 18 ; Summe der Punkte: 90 Aufgabe 1 15 Punkte Bei
Handelt es sich bei den folgenden um diskrete oder stetige Zufallsvariablen?
1. Handelt es sich bei den folgenden um diskrete oder stetige Zufallsvariablen? a.) Anzahl der Kunden, die an der Kasse in der Schlange stehen. b.) Die Menge an Energie, die pro Tag von einem Energieversorgungsunternehmen
Übungsblatt 9 (25. bis 29. Juni)
Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell
Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung
Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die
5. Seminar Statistik
Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 17. November 2010 1 Gesetze Das Gesetz der seltenen Ereignisse Das schwache Gesetz der großen Zahl 2 Verteilungsfunktionen
8. Konfidenzintervalle und Hypothesentests
8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars
Normalverteilung. Erwartungswert, Median und Modus sind identisch. Symmetrieeigenschaft um den Erwartungswert
Normalverteilung Stetige Wahrscheinlichkeitsverteilung, die zahlreiche natur, wirtschafts und sozialwissenschaftliche Merkmalsausprägungen mit guter Näherung abbilden kann und somit von elementarer Bedeutung
Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen
Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung
Konkretes Durchführen einer Inferenzstatistik
Konkretes Durchführen einer Inferenzstatistik Die Frage ist, welche inferenzstatistischen Schlüsse bei einer kontinuierlichen Variablen - Beispiel: Reaktionszeit gemessen in ms - von der Stichprobe auf
Überblick Hypothesentests bei Binomialverteilungen (Ac)
Überblick Hypothesentests bei Binomialverteilungen (Ac) Beim Testen will man mit einer Stichprobe vom Umfang n eine Hypothese H o (z.b.p o =70%) widerlegen! Man geht dabei aus von einer Binomialverteilung
Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung
Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Stetige Zufalls-Variable Erweitert man den Begriff der diskreten Zufallsvariable
4. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017
4. Lösung weitere Übungsaufgaben Statistik II WiSe 016/017 1. Aufgabe: Eine sächsische Molkerei füllt Milch in Tetrapacks ab. Es wird vermutet, dass die Füllmenge normalverteilt ist mit einem Erwartungswert
0, t 0,5
XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz --------------------------------------------------------------------------------------------------------------
Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.
Veranstaltung: Statistik für das Lehramt 16.12.2016 Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm Erwartungswert Varianz Standardabweichung Die Wahrscheinlichkeitsverteilung
Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion
Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig
Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL)
Prof. Dr. M. Schweizer ETH Zürich Sommer 2018 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Bitte... Lege deine Legi auf den Tisch. Trage deine Daten in dieses Deckblatt ein, und schreibe auf jedes
Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne
Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr
Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne
Biostatistik, Sommer 2017
1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation
Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:
Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die
Probeklausur - Statistik II, SoSe 2017
Probeklausur - Statistik II, SoSe 2017 Aufgabe 1: Mehrdimensionale Zufallsvariablen (15 Punkte) Gegeben sei ein zweidimensionaler stetiger Zufallsvektor X = (X 1, X 2 ) T mit der gemeinsamen Dichtefunktion
Wahrscheinlichkeit und Statistik BSc D-INFK
Prof. Dr. P. Bühlmann ETH Zürich Winter 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete
1. Grundbegri e der Stochastik
Wiederholung von Grundwissen der Stochastik. Grundbegri e der Stochastik Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt
