0, t 0,5
|
|
|
- Ernst Flater
- vor 9 Jahren
- Abrufe
Transkript
1 XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz Standardisierung von B(4; 0,) : 0, t Standardisierung von B(8; 0,) : 0, t Lokaler Grenzwertsatz : Die Dichtefunktion ϕ n (= Treppenfunktion, die ein Histogramm oben berandet) der standardisierten Binomialverteilung B(n; p) geht mit wachsendem n gegen die Grenzfunktion ϕ(t) = π e t ϕ heißt deshalb Dichte der Standardnormalverteilung. Eigenschaften von ϕ :. Achsensymmetrie ϕ( t) = ϕ(t). lim ϕ(t) = 0 t ±
2 . ϕ(t)dt = 0, Anwendung : Für große n ( > 9) gilt : B(n; p; k) π e (k np) ( lokale Näherung) Begründung : Breite eines Histogrammrechtecks der standardisierten Binomialverteilung : t = σ = Höhe des zu k gehörenden Rechtecks : h ϕ(t) = ϕ( k np ) B(n; p; k) h t = e π k np Beispiel : Es ist B(00; 0,; 4) = 0,0480 Die lokale Näherung ergibt : B(00; 0,; 4) π 00 0, 0, e (4 0) 00 0, 0, 0,04 Bemerkung : Eine Wertetabelle von ϕ findet man in der Stochastik-Tabelle (S.9).
3 . Integraler Grenzwertsatz p k l ϕ( )t ) 0, t k l t Im Histogramm der Binomialverteilung B(n;p) ist die Flächensumme der Histogrammrechtecke von k bis l mit 0 k l n gleich der Wahrscheinlichkeit P(k X l) für die Trefferzahl X. Ist X S die Standardisierung von X und t k und t l die standardisierten Werte von k und l, dann gilt P(t k X s t l ) = P(k X l). Die Flächenberechnung lässt im Histogramm von durchführen. X S näherungsweise durch eine Integration P(k X l) = k i l B(n; p; i) ϕ(t)dt t k t l l µ+ σ k µ σ ϕ(t)dt Setzt man Φ(x) : = x ϕ(t)dt = x e t dt, π dann gilt
4 Satz : Für die Binomialverteilung gilt folgende Näherungsformel l np + 0, k np 0, P(k X l) Φ( ) Φ( ) Stellt man keine zu großen Ansprüche an die Genauigkeit, dann reicht aus P(k X l) Φ(( l-np k- np ) - Φ(( ) Spezialfall : l = k (integrale Näherungsformel bzw. Laplace - Näherung) k np + 0, k np 0, P( X = k) Φ( ) Φ( ) Bemerkungen und Beispiele :. Die Werte der Funktion Φ lassen sich nur numerisch berechnen. Als Graph ergibt sich Z(0; 0,) x. Es gilt lim Φ(x) = 0 und lim Φ(x) = x x. Der Graph von Φ ist punktsymmetrisch zu Z 0. Also ist Φ(x) = Φ( x) Φ( x) = Φ(x)
5 Daher findet man nur für positive x die Werte von Φ(x) in der Stochastiktabelle. So ist z.b. Φ(,) = Φ(,) 0,88877 = 0, Die Punktsmmetrie von Φ folgt aus der Achsensymmetrie von ϕ. 4. Φ ist streng monoton steigend und damit umkehrbar. Man findet Werte der Umkehrfunktion in der Stochastiktabelle. So ist z.b. Φ (0,0,9),6449 und Φ (0,97),9600. Für die Verteilungsfunktion F gilt : x np + 0, 0 np 0, x np + 0, F(x) = P( X x) Φ( ) Φ( ) ( )
6 Aufgabentypen : Berechnen von Wahrscheinlichkeiten Ein L-Würfel wird 600mal geworfen. Berechnen Sie näherungsweise die Wahrscheinlichkeit, dass a) mindestens 9mal und höchstens mal b) höchstens mal c) mindestens mal d) genau 99mal eine Sechs fällt. X : Anzahl der gewürfelten Sechsen Erwartungswert : E(X) = µ = np = = 0 Standardabweichung : σ = Var(X) = = = a) P(9 X ) φ( -0+ ) - φ( 9 0 ) Φ(,) Φ( 0,60) = Φ(,) Φ(0,60) 0, ,77 66,% bzw. P(9 X ) = P(X ) P(X 94) = F() F(94) = = Φ( -0+ ) - Φ( ) mit dem gleichen Ergebnis.
7 b) P(0 X ) = Φ( 0+ ) - Φ( ) Φ(0,60) Φ(,90) 0,77 7,6% 0 c) P(X ) = P(X ) Φ( -0+ ) Φ(0,7) 0,6064 9,4% d) P(X = 99) Φ(( ) Φ(( 99-0 ) Φ( 0,0) Φ(( 0,6) = Φ((0,6) Φ((0,0) 4,% Bestimmen von Intervallen Eine Laplace-Münze wird 400mal geworfen. In welchem möglichst kleinen Intervall symmetrisch zum Erwartungswert liegt mit mindestens 9% Wahrscheinlichkeit die Anzahl der Adler? X : Anzahl der Adler Erwartungswert : E(X) = 400 = 00 Standardabweichung : σ = 400 = Ansatz für das Intervall : I = 00 k; 00 + k Bedingung : P(00 k X 00 + k) 0,9 Φ( 00 + k 00+ ) Φ( 00 k 00 ) 0,9
8 Φ( k+ ) Φ( k ) 0,9 Φ( k+ ) Φ( k + ) 0,9 Φ( k+ ),9 Φ( k+ ) 0,97 ο φ k+,96 k 9, k min = 0 Mit mindestens 9% Wahrscheinlichkeit liegt die Anzahl der Adler im Intervall 80; 0. Bestimmen der Versuchsanzahl Aufgabe : In einer Urne beträgt der Anteil roter Kugeln 6%. Wie viele Kugeln muss man mindestens mit Zurücklegen ziehen, damit man mit mindestens 90%-iger Wahrscheinlichkeit mehr als 0 rote Kugeln darunter sind? Bedingung : P(X > 0) 0,9 - P(X 0) 0,90 P(X 0) 0, 0-0,6n+0, Φ( ) 0, n 0,6 0,64 0, 0,6n 0,48 n,86 0, 0,6n 0,668 n 0,6n 0,668 n 0, 0 Substitution u = n und Übergang zur Gleichung : 0,6u 0,668u 0, = 0 u 7,6 u,9 Rücksubstitution und Rundung : Man muss mindestens ziehen.
9 Bestimmen der Trefferwahrscheinlicheit Wie hoch muss der Anteil roter Kugeln in einer Urne mindestens sei, damit man beim Ziehen von 400 Kugeln mit Zurücklegen mit mindestens 90% Wahrscheinlichkeit mindestens 0 rote Kugeln erhält? P(X 0) 0,9 - P(X 99) 0,90 P(X 99) 0, p+0, Φ( ) 0, 400pq 99, 400p 0 p( p),86 99, 400p,6 p( p) 6066,9994p 806,9994p 9900, 0 Daraus ergibt sich, dass der Anteil mindestens 7,8% betragen muss. Normalverteilte Größen Die mittlere Lebensdauer eines Motors beträgt km mit einer Standardabweichung von km. Wie groß ist die Wahrscheinlichkeit, dass ein Motor eine Lebensdauer von mindestens 0000 km hat? P(X 0000) = P(X 0000) = Φ( ) = Φ(,),6% Definition : Hat eine Zufallsgröße X mit E(X) = µ und Var(X) = σ die Verteilungsfunktion dann heißt sie normalverteilt nach N(µ; σ). F(x) = Φ( x- µ, σ )
Stetige Standardverteilungen
Universität Basel Wirtschaftswissenschaftliches Zentrum Stetige Standardverteilungen Dr. Thomas Zehrt Inhalt: 1. Die stetige Gleichverteilung 2. Die Normalverteilung (a) Einstimmung (b) Standardisierung
Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments,
. Binomialverteilung ==================================================================.1 Bernoulli-Experimente und Bernoullikette -----------------------------------------------------------------------------------------------------------------
Die tatsächlichen Breiten und Höhen der Säulen und damit der Flächeninhalt bleiben unverändert:
Flächeninhalte als Wahrscheinlichkeiten Eine Zufallsvariable X kann die Werte, 2, 3, 4, 5 oder 6 annehmen. Die zugehörigen Wahrscheinlichkeiten sind rechts in einem Stabdiagramm dargestellt. k 2 3 4 5
Die tatsächlichen Breiten und Höhen der Säulen und damit der Flächeninhalt bleiben unverändert:
Flächeninhalte als Wahrscheinlichkeiten Eine Zufallsvariable X kann die Werte,, 3, 4, 5 oder 6 annehmen. Die zugehörigen Wahrscheinlichkeiten sind rechts in einem Stabdiagramm dargestellt. k 3 4 5 6 P
Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=
Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)
70 Wichtige kontinuierliche Verteilungen
70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche
STETIGE VERTEILUNGEN
STETIGE VERTEILUNGEN. Die Näherungsformel von Moivre Laplace Betrachtet man die Binomialverteilungen Bnp für wachsendes n bei konstantem p, so werden die Histogramme einer binomialverteilten Zufallsvariablen
Statistik für Ingenieure Vorlesung 5
Statistik für Ingenieure Vorlesung 5 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 28. November 2017 3.4 Wichtige stetige Verteilungen 3.4.1 Exponentialverteilung Parameter:
Normalverteilung und Standardisierung
Normalverteilung und Standardisierung N(0,1) z 0 z N(µ,) }{{}}{{} µ µ z z z µ+z Die Normalverteilungen N(µ, ) ergeben sich aus der Standardnormalverteilung N(0, 1) (Gaussche Glockenkurve) durch strecken
Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung
Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben
5. Spezielle stetige Verteilungen
5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für
Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential
Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:
Kapitel VII. Einige spezielle stetige Verteilungen
Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,
Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik
Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Statistik Dr. Thomas Zehrt Ausblick Motivation Wir werfen einen Würfel 000-mal und wir möchten die Wahrscheinlichkeit P bestimmen, dass zwischen
Wahrscheinlichkeit und Statistik: Zusammenfassung
HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1
Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s
X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------
Spezielle stetige Verteilungen
Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für
Fit for Abi & Study Stochastik
Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen
Einführung in Quantitative Methoden
Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 17. November 2010 1 Gesetze Das Gesetz der seltenen Ereignisse Das schwache Gesetz der großen Zahl 2 Verteilungsfunktionen
Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management
für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt
Wirtschaftsmathematik
Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A
Wenn es sich um ein faires Spiel handeln soll, muss der Einsatz 1 betragen (2) Weniger als 3 mal Wappen ( ) 32 (3) Mindestens 1 mal Wappen ( )
R. Brinkmann http://brinkmann-du.de Seite 7.09.0 Lösungen Stochastik vermischt II Ergebnisse: E E E E4 E E6 Ergebnis Wenn es sich um ein faires Spiel handeln soll, muss der Einsatz betragen. Ergebnisse
1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6
Inhaltsverzeichnis Vorbemerkungen 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 6 Bedingte
Stetige Verteilungen Rechteckverteilung
Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a
Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI
Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe
11. Approximation der Binomialverteilung durch die Normalverteilung
7. Approximation der Binomialverteilung durch die Normalverteilung Die Berechnung der Binomialverteilung ist wegen der Binomialkoeffizienten nicht unproblematisch. Man kann sie deshalb in gewissen Fällen
7.5 Erwartungswert, Varianz
7.5 Erwartungswert, Varianz Beispiel 7.5.1: Es werden drei ideale Münzen geworfen, und der Gewinn sei X := Anzahl von W. In Beispiel 7.4.1 hatten wir dazu eine Wahrscheinlichkeitverteilung ermittelt: X
5 Binomial- und Poissonverteilung
45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1
Vorlesung: Statistik II für Wirtschaftswissenschaft
Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2
Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^2],{x,0,10}] 76
4. Normalverteilung Gauß'sche Glockenkurve: P(a X b) = b 1 x 1 a e dx 1 0.8 0.6 0.4 0. 4 6 8 10 Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^],{x,0,10}] 76 Zentraler Grenzwertsatz: Es sei X 1, X,... eine
Von der Binomialverteilung zur Normalverteilung
Von der Binomialverteilung zur Normalverteilung Wir interessieren uns für Binomialverteilungen mit grossen Werten für n. Als Beispiele können wir uns das Experiment vorstellen, dass ein idealer Würfel
Stochastik Musterlösung 4
ETH Zürich HS 218 RW, D-MATL, D-MAVT Prof. Marloes H. Maathuis Koordinator Dr. Marvin S. Müller Stochastik Musterlösung 4 1. Die Zufallsvariable, die die Anzahl eingehender Telefonanrufe in einer Telefonzentrale
Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),
2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist
1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6
Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere
Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung
Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 15. Jänner 2017 Evelina Erlacher Inhaltsverzeichnis 1 Mengen 2 2 Wahrscheinlichkeiten 3 3 Zufallsvariablen 5 3.1 Diskrete Zufallsvariablen............................
6.2 Approximation der Binomialverteilung
56 6.2 Approximation der Binomialverteilung Im Beispiel auf den Seiten 52 53 haben wir gesehen, dass die Wahrscheinlichkeiten P 50 (k) der dort betrachteten Binomialverteilung durch die Werte der Funktion
Die Varianz (Streuung) Definition
Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 23. Dezember 2011 1 Stetige Zufallsvariable, Normalverteilungen Der zentrale Grenzwertsatz und die 3-Sigma Regel
1 Stochastische Konvergenz 2
Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere
f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212
1.6.2 Poisson Verteilung Eine weitere wichtige diskrete Verteilung ist die Poisson-Verteilung. Sie modelliert die Anzahl (eher seltener) Ereignisse in einem Zeitintervall (Unfälle, Todesfälle; Sozialkontakte,
Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler
6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung
Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen
Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind
Wahrscheinlichkeitstheorie und Statistik
Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter
Referenten: Gina Spieler, Beatrice Bressau, Laura Uhlmann Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn
8.5 Eindimensionale stetige Zufallsvariablen Eine Zufallsvariable X heißt stetig, wenn es eine Funktion f(x) gibt, sodass die Verteilungsfunktion von X folgende Gestalt hat: x F(x) = f(t)dt f(x) heißt
Probeklausur zu Mathematik 3 für Informatik
Gunter Ochs Juli 0 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immel ohne Galantie auf Fehreleiheit Sei f ln a Berechnen Sie die und die Ableitung f und f Mit der Produktregel erhält
Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse
Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Die Gamma-Verteilung 13.12.212 Diese Verteilung dient häufig zur Modellierung der Lebensdauer von langlebigen Industriegüstern. Die Dichte
Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion
Kapitel 1 Stetige Zufallsvariablen 1.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig
Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.
Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment
Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}.
Binomialverteilung Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder nicht. X = Häufigkeit, mit
KOMPETENZHEFT ZUR STOCHASTIK III
KOMPETENZHEFT ZUR STOCHASTIK III Inhaltsverzeichnis 1. Aufgabenstellungen 1 2. Von der Binomialverteilung zur Normalverteilung 10 3. Normalverteilung 13 4. Approximation: Binomialverteilung Normalverteilung
Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt
Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert
Biostatistik, Winter 2011/12
Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung
Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung
R. Brinkmann http://brinkmann-du.de Seite 5.05.0 Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung Erwartungswert binomialverteilter Zufallsgrößen Wird ein Bernoulli- Versuch, bei
6. Kontinuierliche Zufallsgrößen. Beispiel 1: Die Exponentialverteilungen Sei λ > 0. Setzen
6. Kontinuierliche Zufallsgrößen Definition: Eine Z. G. ξ ist absolut stetig mit (Wahrscheinlichkeits-) Dichte f : R R, wenn gilt: P ( a ξ < b ) = b a f(x) dx (a < b) allgem. Eigenschaften einer Dichte
Grundwissen Stochastik Leistungskurs 10. Februar 2008
GYMNSIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium WILHELM-VON-HUMBOLDT-STRSSE 7 91257 PEGNITZ FERNRUF 09241/48333 FX 09241/2564 Grundwissen Stochastik Leistungskurs 10. Februar 2008
3 Stetige Zufallsvariablen
3 Stetige Zufallsvariablen Eine Zufallsvariable heißt stetig, falls zu je zwei Werten a < b auch jeder Zwischenwert im Intervall [a, b] möglich ist Beispiele: X = Alter, X = Körpergröße, X = Temperatur,
Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.
XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------
Biostatistik, Sommer 2017
1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation
Korollar 116 (Grenzwertsatz von de Moivre)
Ein wichtiger Spezialfall das Zentralen Grenzwertsatzes besteht darin, dass die auftretenden Zufallsgrößen Bernoulli-verteilt sind. Korollar 116 (Grenzwertsatz von de Moivre) X 1,..., X n seien unabhängige
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 24. November 2010 1 Stetige Verteilungen Normalapproximation Gleichverteilung Exponentialverteilung Normalapproximation
Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.
Normalverteilung Diskrete Stetige f(x) = 1 2πσ 2 e 1 2 ((x µ)2 σ 2 ) Gauß 91 / 169 Normalverteilung Diskrete Stetige Satz: f aus (1) ist Dichte. Beweis: 1. f(x) 0 x R und σ > 0. 2. bleibt z.z. lim F(x)
1 Dichte- und Verteilungsfunktion
Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen [email protected] 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die
Vorlesung 6b. Von der Binomial-zur Normalverteilung
Vorlesung 6b 1 Vorlesung 6b Von der Binomial-zur Normalverteilung Binomialverteilungen mit großem n und großer Varianz npq sehen glockenförmig aus, wenn man sie geeignet ins Bild holt. 2 Binomialverteilungen
Wahrscheinlichkeitsrechnung und Statistik
5. Vorlesung Verteilungsfunktion (VF) Definition 9 Die Verteilungsfunktion (VF) einer Zufallsgröße X ist F : R R definiert als F (x) := P({ω Ω : X (ω) x}) = P( X x ) für jedes x R. Satz 9 - Eigenschaften
Kapitel VII - Funktion und Transformation von Zufallsvariablen
Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl
Stochastik. 1. Wahrscheinlichkeitsräume
Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.
ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)
ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels
Übungsblatt 9 (25. bis 29. Juni)
Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell
6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen
6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 1. Dezember 21 1 Integralrechnung Flächeninhalt Stammfunktion Rechenregeln 2 Dichten von Erwartungswert und Varianz
2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung
2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von
Übungsscheinklausur,
Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...
Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation
Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit
Stochastik Approximationen der Binomialverteilung
Stochastik Approximationen der Binomialverteilung Stefan Englert [email protected] 21. April 2007 Inhaltsverzeichnis 1 Approximation von n! und b n,p (k) 2 2 Der Satz von de Moivre-Laplace 6 3 Die
7.2 Moment und Varianz
7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p
Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung
Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n
1.5 Mehrdimensionale Verteilungen
Poisson eine gute Näherung, da np = 0 und 500p = 5 00 = n. Wir erhalten somit als Näherung Exakte Rechnung ergibt P(2 X 0) = k=2 0 k=2 π (k) = 0,26424. 0 ( ) 00 P(2 X 0) = 0,0 k 0,99 00 k = 0,264238. k.4.2.4
2.3 Intervallschätzung
2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau
Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen
Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol [email protected] Markus Höchstötter [email protected] Stetige Verteilungen Definition: Sei
1. Was ist eine Wahrscheinlichkeit P(A)?
1. Was ist eine Wahrscheinlichkeit P(A)? Als Wahrscheinlichkeit verwenden wir ein Maß, welches die gleichen Eigenschaften wie die relative Häufigkeit h n () besitzt, aber nicht zufallsbehaftet ist. Jan
DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr
1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir
(6.29) Z X. Die standardnormalverteilte Zufallvariable Z, Z ~ N(0,1), weist den Erwartungswert (6.30) E(Z) = 0 und die Varianz (6.31) V(Z) = 1 auf.
Standardnormalverteilung Da die arameter μ und σ beliebige reelle Zahlenwerte bw. beliebige positive reelle Zahlenwerte (σ >0) annehmen können, gibt es unendlich viele Normalverteilungen. Die Dichtefunktion
2. Übung zur Vorlesung Statistik 2
2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen
