1.5 Mehrdimensionale Verteilungen

Größe: px
Ab Seite anzeigen:

Download "1.5 Mehrdimensionale Verteilungen"

Transkript

1 Poisson eine gute Näherung, da np = 0 und 500p = 5 00 = n. Wir erhalten somit als Näherung Exakte Rechnung ergibt P(2 X 0) = k=2 0 k=2 π (k) = 0, ( ) 00 P(2 X 0) = 0,0 k 0,99 00 k = 0, k Bemerkung zur hypergeometrischen Verteilung Es lassen sich auch Grenzverteilungssätze für eine hypergeometrisch verteilte Zufallsgröße X H(n,N,M) formulieren. Wenn z.b. N, M und M N p für n gilt, so nutzt man die Näherung ( M N M ) ( ) P(X = k) = k)( n k n ( N p n) k ( p) n k, k d.h man ersetzt die hypergeometrische Verteilung näherungsweise durch eine entsprechende Binomialverteilung. Es gibt jedoch keine handhabbaren Faustregeln für die Nutzung dieser Approximation. Um die so erhaltene Binomialverteilung auszuwerten, kann man dann den Grenzverteilungssatz von Moivre/Laplace oder den Grenzverteilungssatz von Poisson verwenden..5 Mehrdimensionale Verteilungen Bisher wurden ausschließlich reellwertige, d.h. eindimensionale, Zufallsgrößen betrachtet. Wir haben also stets nur ein Merkmal des zu beobachtenden Objekts bei unseren Untersuchungen berücksichtigt. Häufig sind aber bei praktischen Modellierungsproblemen mehrere Merkmale der Beobachtungsobjekte gleichermaßen von Interesse. Somit benötigen wir mehrdimensionale Zufallsgrößen..5. Einführung Definition.5.. Sei X = (X,X 2,...,X n ) eine Zusammenfassung von n Zufallsgrößen X,X 2,...,X n. Dann heißt das Objekt X n-dimensionale Zufallsgröße oder zufälliger Vektor. Definition.5.2. Die durch F(x,...,x n ) := P(X < x,...,x n < x n ) für alle Vektoren (x,...,x n ) R n definierte reelle Funktion F heißt Verteilungsfunktion des zufälligen Vektors X = (X,...,X n ). Wir werden im Folgenden nicht immer den allgemeinen Fall X = (X,...,X n ) betrachten, sondern uns auf n = 2, d.h. X = (X,Y), beschränken, wenn dies das Verständnis erleichtert. Ein Großteil der Aussagen gilt dann analog für allgemeines n. 48

2 Definition.5.3. Für einen zufälligen Vektor X = (X, Y) heißen die Funktionen F X (x) := lim y F(x,y) und F Y(y) := lim x F(x,y) Randverteilung von X bzw. Y. Die zu einer Randverteilung gehörende Wahrscheinlichkeitsbzw. Dichtefunktion bezeichnen wir ebenfalls als Randverteilung. Eigenschaften der Verteilungsfunktion 0 F(x,y) x,y R. lim F(x,y) = 0 y R, lim x F(x,y) = 0 x R. y Die Randverteilungen F X und F Y sind die Verteilungsfunktionen der eindimensionalen Zufallsgrößen X und Y, d.h. lim x y F X (x) = P(X < x) x R und F Y (y) = P(Y < y) y R. F(x,y) =. F(x, y) ist in beiden Komponenten monoton wachsend, d.h. x < x 2 F(x,y) F(x 2,y) y R, y < y 2 F(x,y ) F(x,y 2 ) x R. F(x,y) ist in beiden Komponenten linksseitig stetig, d.h. lim F(x h,y) = F(x,y) = lim F(x,y h) x,y R. h 0 h>0.5.. Kovarianz und Korrelationskoeffizient Für einen zufälligen Vektor (X,Y) bezeichnen wir mit µ X := EX den Erwartungswert und mit σ 2 X := D2 X die Varianz der Randverteilung von X. Analog µ Y := EY und σ 2 Y := D2 Y für die Randverteilung von Y. h 0 h>0 Definition.5.4. Seien X und Y zwei Zufallsgrößen. Dann heißt die Größe σ XY := Cov(X,Y) := E(X EX)(Y EY) Kovarianz der Zufallsgrößen X und Y. Die Kovarianz ist ein Maß für das stochastische Verhalten der Zufallsgrößen zueinander. Die Zufallsgrößen X und Y heißen unkorreliert, wenn Cov(X,Y) = 0 gilt. Eigenschaften der Kovarianz Cov(X,Y) = E(XY) EXEY = Cov(Y,X), Cov(a+bX,c+dY) = bdcov(x,y), 49

3 Cov(X,X) = D 2 X. Satz.5.5. Existieren die zweiten Momente der Randverteilungen von X und Y, so existiert auch die Kovarianz Cov(X,Y). Definition.5.6. Besitzen die beiden Zufallsgrößen X und Y endliche Streuungen, so heißt die Größe ρ XY := σ XY σ X σ Y Korrelationskoeffizient von X und Y. Satz.5.7. Für den Korrelationskoeffizienten zweier Zufallsgrößen X und Y gilt ρ XY = ρ YX. Der Korrelationskoeffizient ρ XY zweier Zufallsgrößen X und Y ist also ein normiertes Maß für das stochastische Verhalten beider Zufallsgrößen zueinander. X und Y sind offensichtlich genau dann unkorreliert, wenn ρ XY = 0 gilt. ρ XY drückt starke negative Korrelation und ρ XY starke positive Korrelation aus Diskrete Verteilungen Definition.5.8. Ein zufälliger Vektor X = (X,...,X n ) heißt diskret verteilt, wenn alle eindimensionalen Randverteilungen diskrete Verteilungen sind. Die Komponenten eines diskret verteilten zufälligen Vektors X = (X,...,X n ) nehmen die Werte X = x i,...,x n = x nin an, wobei für endliches X j i j {,...,l j } =: I Xj mit l j N und für abzählbar unendliches X j i j N =: I Xj gilt. Die Wahrscheinlichkeitsfunktion von X lässt sich als n-dimensionales Feld schreiben: p i...i n = P(X = x i,...,x n = x nin ). Im Fall n = 2 bezeichnen wir die Werte der beiden Komponenten X und Y des zufälligen Vektors X mit x j und y k, wobei j I X und k I Y. Die Wahrscheinlichkeitsfunktion von X lässt sich dann als endliche oder unendliche Matrix mit Einträgen der Form p jk = P(X = x j,y = y k ) schreiben. Für die Randverteilungen von X und Y erhalten wir p j = p jk und p k = p jk. k I Y j I X Für Erwartungswert, Varianz und Kovarianz von X und Y gilt: EX = µ X = x j p j, EY = µ Y = y k p k, j I X k I Y D 2 X = σ 2 X = j I X (x j µ X ) 2 p j, Cov(X,Y) = σ XY = j I X D 2 Y = σ 2 Y = k I Y (x j µ X )(y k µ Y )p jk. k I Y (y k µ Y ) 2 p k, 50

4 Beispiel. In einer Urne befinden sich 2 Lose: 2 Geldgewinne, 4 Freilose und 6 Nieten. Es werden ohne Zurücklegen 2 Lose gezogen. Wir bezeichnen mit X die Anzahl der gezogenen Geldgewinne und mit Y die Anzahl der gezogenen Freilose. Gesucht werden die Wahrscheinlichkeitsfunktion p jk = P(X = x j,y = y k ) des zufälligen Vektors (X,Y) und die zugehörigen Randverteilungen p j und p k seiner Komponenten X und Y. Aus kombinatorischen Überlegungen ergibt sich: ( 2 x j )( 4 6 y k )( 2 x j y k ), 0 x p jk = ( 2 j +y k 2 2). 0, x j +y k > 2 Die Wahrscheinlichkeitsfunktion lässt sich zusammen mit den Randverteilungen wie folgt als Tabelle darstellen: y j 4 2 p j 5 22 x k p k = 0 33 Die Randverteilung p j bzw. p k von X bzw. Y erhält man dabei aus den Spalten- bzw. Zeilensummen der 3 3-Matrix. Da die Randverteilungen eindimensionale Wahrscheinlichkeitsfunktionen sind, sind die Summen der Werte der Randverteilungen stets Stetige Verteilungen Definition.5.9. Ein zufälliger Vektor X = (X,...,X n ) heißt stetig verteilt mit der Verteilungsfunktion F, wenn es eine integrierbare Dichtefunktion f gibt mit F(x,...,x n ) = P(X < x,...,x n < x n ) = x x n f(t,...,t n )dt dt n. Definition.5.0. Sei g eine reelle Funktion von n reellen Veränderlichen und sei X = (X,...,X n ) eine stetig verteilte n-dimensionale Zufallsgröße. Dann ist der Erwartungswert Eg(X) gegeben durch Eg(X) := g(x,...,x n )f(x,...,x n )dx dx n. Definition.5.. Sei(X, Y) ein stetig verteilter zufälliger Vektor und f seine Dichtefunktion. Dann heißen die Funktionen f X (x) = Randdichten der Komponenten X und Y. f(x,y)dy und f Y (y) = f(x,y)dx 5

5 Die Randdichten sind eindimensionale Dichtefunktionen. Für Erwartungswert, Varianz und Kovarianz von X und Y erhalten wir: EX = µ X = xf X (x)dx, EY = µ Y = yf Y (y)dy, D 2 X = σ 2 X = Cov(X,Y) = σ XY = (x µ X ) 2 f X (x)dx, D 2 Y = σ 2 Y = (x µ X )(y µ Y )f(x,y)dxdy. (y µ Y ) 2 f Y (y)dy, Beispiel. Als Beispiel für eine mehrdimensionale Verteilung betrachten wir die zweidimensionale Normalverteilung. Ein zufälliger Vektor (X, Y) ist normalverteilt, wenn er die Dichtefunktion ( [ (x µx ) 2 ( )( ( ) ]) 2 exp 2( ρ 2 ) σ X 2ρ x µx y µy σ X σ Y )+ y µy σ Y f(x,y) = 2πσ X σ Y ρ 2 mit den Parametern σ X > 0, σ Y > 0 und < ρ < besitzt. Als Randdichten ergeben sich die Funktionen f X (x) = exp ( (x µ X) 2 ) und f Y (y) = exp ( (y µ Y) 2 ), 2πσX 2πσY 2σ 2 X d.h. die Randverteilungen sind eindimensionale Normalverteilungen. Der Parameter ρ = ρ XY = σ XY σ X σ Y ist der Korrelationskoeffizient und somit ist Cov(X,Y) = σ XY = ρσ X σ Y. Ist ρ = 0, so sind X und Y also unkorreliert und für die Dichtefunktion f gilt die Produktdarstellung f(x,y) = exp ( (x µ X) 2 2πσ X σ Y.5..4 Stochastische Unabhängigkeit 2σ 2 X (y µ Y) 2 2σ 2 Y ) = f X (x)f Y (y). Definition.5.2. Zwei Zufallsgrößen X und Y heißen stochastisch unabhängig, wenn für den zufälligen Vektor (X, Y) gilt: F(x,y) = F X (x)f Y (y) x,y R. Bemerkung. Handelt es sich bei den stochastisch unabhängigen Zufallsgrößen X und Y um diskrete Verteilungen, so gilt p jk = p j p k x,y R. Im stetigen Fall gilt analog f(x,y) = f X (x)f Y (y) x,y R. Satz.5.3. Seien X und Y stochastisch unabhängige Zufallsgrößen mit D 2 X < und D 2 Y <. Dann gilt Cov(X,Y) = 0, d.h. aus der stochastischen Unabhängigkeit folgt stets die Unkorreliertheit. 2σ 2 Y 52

6 Beweis (für stetige Zufallsgrößen). Da X und Y stochastisch unabhängig sind, gilt: Cov(X,Y) = (x µ X )(y µ Y )f(x,y)dxdy = (x µ X )(y µ Y )f X (x)f Y (y)dxdy = (x µ X )f X (x)dx (y µ Y )f Y (y)dx = (E(X µ X ))(E(Y µ Y )) = (µ X µ X )(µ Y µ Y ) = 0 Wie wir am vorhergehenden Beispiel gesehen haben, folgt im Falle einer zweidimensionalen Normalverteilung aus der Unkorreliertheit der beiden Komponenten deren stochastische Unabhängigkeit. Zusammen mit dem vorhergehenden Satz erhalten wir also die nachfolgende Aussage. Satz.5.4. Sei (X, Y) ein (zweidimensional) normalverteilter zufälliger Vektor. Dann sind die Komponenten X und Y genau dann stochastisch unabhängig, wenn sie unkorreliert sind..5.2 Bedingte Verteilungen In diesem Abschnitt betrachten wir nur den Fall n = 2, d.h. zufällige Vektoren der Form X = (X,Y). X und Y seien dabei stetig verteilte Zufallsgrößen. Bei bedingten Verteilungen wird nur eine der beiden Komponenten eines zufälligen Vektors betrachtet, d.h. die andere Komponente bleibt konstant. Wir erhalten also z.b. Aussagen über die Verteilung der Zufallsgröße X, wenn Y einen festen Wert hat. Definition.5.5. Seien X und Y stetig verteilte Zufallsgrößen mit den Randdichten f X und f Y, wobei f X (x) > 0 und f Y (y) > 0 für alle x,y R. Dann heißen die Funktionen f X Y=y (x) = f(x,y) f Y (y) und f Y X=x (y) = f(x,y) f X (x) bedingte Dichten. Bemerkung. f X Y=y (x) ist eine eindimensionale Dichtefunktion, da f X Y=y (x) 0 und f X Y=y (x)dx = f(x,y) f Y (y) dx = f Y (y) f(x,y)dx = f Y(y) f Y (y) =. f X Y=y ist also die Dichtefunktion der Zufallsgröße X unter der Bedingung Y = y. Analoges gilt für f Y X=x (y) 53

7 Definition.5.6. Die Größe E(X Y = y) = xf X Y=y (x)dx heißt bedingter Erwartungswert der Zufallsgröße X unter der Bedingung, dass Y den Wert y annimmt. Beispiel. Wir betrachten nochmals einen normalverteilten Zufallsvektor (X,Y). Als bedingte Dichte haben wir ( ) f X Y=y (x) = f(x,y) f Y (y) = exp x 2 µ X +ρ σ X σy (y µ Y ) 2πσX ρ 2 2 σ X ρ 2. Daraus ergibt sich der bedingte Erwartungswert E(X Y = y) = µ X +ρ σ X σ Y (y µ Y ). Die Gerade x = E(X Y = y) heißt Regressionsgerade im (x, y)-koordinatensystem und gibt für jedes y den Wert (x,y) des Zufallsvektors an, für den X den Erwartungswert unter der Bedingung Y = y annimmt. Ist ρ = 0, d.h. X und Y sind unkorreliert und damit stochastisch unabhängig, so ist die Regressionsgerade x = µ x parallel zur y-achse und es gilt f X Y=y (x) = f X (x)..5.3 Erwartungswertevektor, Kovarianzmatrix, Normalverteilung Da wir in diesem Abschnit mit Matrizen rechnen, schreiben wir Vektoren immer als Spaltenvektoren. Wir betrachten den n-dimensionalen Fall, d.h. Definition.5.7. Den Vektor X = µ = EX = µ. µ n X. X n. = EX. der Erwartungswerte der Komponenten X,...,X n eines zufälligen Vektors X nennen wir Erwartungswertevektor von X. Definition.5.8. Sei X ein zufälliger Vektor mit den Komponenten X,...,X n. Dann heißt die Matrix ( ) Σ = CovX = Cov(X i,x j ) = E(X EX)(X EX)T i,j=...n Kovarianzmatrix von X. EX n 54

8 Satz.5.9. Existiert die Kovarianzmatrix Σ des Zufallsvektors X, so ist sie symmetrisch, d.h. Σ = Σ T, und positiv semidefinit, d.h. für alle v R n gilt (Σv,v) = v T Σv 0. Beweis. Die Symmetrie der Kovarianzmatrix folgt direkt aus Cov(X i,x j ) = Cov(X j,x i ) und es gilt v T Σv = v T ( E(X EX)(X EX) T) v = E ( v T (X EX) ) 2 0. Definition Ein Zufallsvektor X mit den Komponenten X,...,X n heißt nichtsingulär n-dimensional normalverteilt mit den Parametern µ = EX und Σ = Cov(X), geschrieben X N(µ,Σ), wenn Σ symmetrisch und positiv definit ist und die Dichtefunktion f die Form f(x) = Σ (2π) n 2 exp ( 2 (x µ)t Σ (x µ) ) besitzt, wobei Σ die Determinante der Inversen der Kovarianzmatrix bezeichnet. Falls für X N(µ,Σ) die Komponenten X i N(µ i,σi 2 ) paarweise disjunkt sind, d.h. so gilt Σ = σ σ n und f(x) = Σ = n i= σ σ 2 n 2πσi exp, ( (x i µ i ) 2 Die Dichte f des Zufallsvektors X ist also in diesem Fall gleich dem Produkt der Randdichten seiner Komponenten X i. 2σ 2 i ). 55

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Oktober 2018 Prof. Dr. Hans-Jörg

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung SS 18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung SS 18: Woche vom Übungsaufgaben 12. Übung SS 18: Woche vom 2. 7. 6. 7. 2018 Stochastik VI: Zufallsvektoren; Funktionen von ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Kapitel 8: Zufallsvektoren

Kapitel 8: Zufallsvektoren Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse 03.12.2015 Kapitel 8: Zufallsvektoren Statt einem Merkmal werden häufig mehrere Merkmale gleichzeitig betrachtet, z.b. Körpergröße und

Mehr

Übungsrunde 10, Gruppe 2 LVA , Übungsrunde 10, Gruppe 2, Markus Nemetz, TU Wien,

Übungsrunde 10, Gruppe 2 LVA , Übungsrunde 10, Gruppe 2, Markus Nemetz, TU Wien, Übungsrunde, Gruppe 2 LVA 7.369, Übungsrunde, Gruppe 2, 9..27 Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 9..27 Anmerkung: Viele dieser Lösungsvorschläge stammen aus dem Informatik-Forum, Subforum

Mehr

Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse

Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Die Gamma-Verteilung 13.12.212 Diese Verteilung dient häufig zur Modellierung der Lebensdauer von langlebigen Industriegüstern. Die Dichte

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung SS 18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung SS 18: Woche vom Übungsaufgaben 11. Übung SS 18: Woche vom 25. 6. 29. 6. 2016 Stochastik V: ZG; Momente von ZG; Zufallsvektoren Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren. Definition Ist X X,...,X p ein p-dimensionaler Zufallsvektor mit E X j < für alle j, so heißt

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung SS 13: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung SS 13: Woche vom Übungsaufgaben 11. Übung SS 13: Woche vom 24. 6. 13-28. 6. 2013 Stochastik V: ZG Momente von ZG; Grenzverteilungssätze Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II Statistik II 1. Ergänzungen zur Wahrscheinlichkeitstheorie Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen Statistik II 1. Ergänzungen zur

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte Kapitel 8 Parameter multivariater Verteilungen 8.1 Erwartungswerte Wir können auch bei mehrdimensionalen Zufallsvariablen den Erwartungswert betrachten. Dieser ist nichts anderes als der vektor der Erwartungswerte

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Zusatzmaterial zur Vorlesung Statistik II

Zusatzmaterial zur Vorlesung Statistik II Zusatzmaterial zur Vorlesung Statistik II Dr. Steffi Höse Professurvertretung für Ökonometrie und Statistik, KIT Wintersemester 2011/2012 (Fassung vom 15.11.2011, DVI- und PDF-Datei erzeugt am 15. November

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 15. Jänner 2017 Evelina Erlacher Inhaltsverzeichnis 1 Mengen 2 2 Wahrscheinlichkeiten 3 3 Zufallsvariablen 5 3.1 Diskrete Zufallsvariablen............................

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

4.2 Moment und Varianz

4.2 Moment und Varianz 4.2 Moment und Varianz Def. 2.10 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: EX p

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Die n-dimensionale Normalverteilung

Die n-dimensionale Normalverteilung U. Mortensen Die n-dimensionale Normalverteilung Es wird zunächst die -dimensionale Normalverteilung betrachtet. Die zufälligen Veränderlichen X und Y seien normalverteilt. Gesucht ist die gemeinsame Verteilung

Mehr

Sind f X bzw. f Y die wie auf Folie 242 definierten Dichtefunktionen zur N(µ X, σx 2 )- bzw. N(µ Y, σy 2 )-Verteilung, so gilt (genau) im Fall ρ = 0

Sind f X bzw. f Y die wie auf Folie 242 definierten Dichtefunktionen zur N(µ X, σx 2 )- bzw. N(µ Y, σy 2 )-Verteilung, so gilt (genau) im Fall ρ = 0 Beispiel: Zweidimensionale Normalverteilung I Beispiel: Zweidimensionale Normalverteilung II Wichtige mehrdimensionale stetige Verteilung: mehrdimensionale multivariate Normalverteilung Spezifikation am

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

2.1 Gemeinsame-, Rand- und bedingte Verteilungen

2.1 Gemeinsame-, Rand- und bedingte Verteilungen Kapitel Multivariate Verteilungen 1 Gemeinsame-, Rand- und bedingte Verteilungen Wir hatten in unserer Datenmatrix m Spalten, dh m Variablen Demnach brauchen wir jetzt die wichtigsten Begriffe für die

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik . Grundbegri e der Stochastik Raum der Ereignisse. Die einelementigen Teilmengen f!g heißen auch Elementarereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. A ist ein geeignetes System von Teilmengen

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

Kapitel 12 Erwartungswert und Varianz

Kapitel 12 Erwartungswert und Varianz Kapitel 12 Erwartungswert und Varianz Vorlesung Wahrscheinlichkeitsrechnung I vom 4/10. Juni 2009 Lehrstuhl für Angewandte Mathematik 1 FAU 12.1 Der Erwartungswert Der Erwartungswert einer Zufallsvariablen

Mehr

4 MEHRDIMENSIONALE VERTEILUNGEN

4 MEHRDIMENSIONALE VERTEILUNGEN 4 MEHRDIMENSIONALE VERTEILUNGEN 4.14 Stochastische Vektoren 1. Der Merkmalraum des stochastischen Vektors (X, Y ) sei M = R 2. Betrachten Sie die folgenden Ereignisse und ihre Wahrscheinlichkeiten: A 1

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt.

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt. . Grundbegri e Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. ist auch das sichere Ereignis,

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Einführung in die angewandte Stochastik

Einführung in die angewandte Stochastik Einführung in die angewandte Stochastik Fabian Meyer 5. April 2018 Inhaltsverzeichnis 1 Wahrscheinlichkeitsrechnung 3 1.1 Definitionen................................... 3 1.2 Wahrscheinlichkeitsmaß, Wahrscheinlichkeitsverteilung,

Mehr

Stochastik Musterlösung 7

Stochastik Musterlösung 7 ETH Zürich HS 216 RW, D-MATL, D-MAVT Prof. Dr. Martin Schweizer Koordinator Calypso Herrera Stochastik Musterlösung 7 1. a) Es sind folgende zwei Eigenschaften zu zeigen: f X,Y (x, y) für alle (x, y) R

Mehr

11 Mehrdimensionale Zufallsvariablen

11 Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen. Begriffe Def. 34 Es seien X i, i =,...,p reellwertige, zufällige Variablen auf dem Wahrscheinlichkeitsraum (Ω, E,P). Dann heißt X = (X,...,X p ) T : Ω R p, zufälliger

Mehr

Stochastik. Frank Eckert und. Thomas Huppertz Letzte Änderung:

Stochastik. Frank Eckert und. Thomas Huppertz Letzte Änderung: Stochastik getext von Frank Eckert Frank.Eckert@post.rwth-aachen.de und Thomas Huppertz thuppert@fh-niederrhein.de Letzte Änderung: 4.Juli.2000 INHALTSVERZEICHNIS Inhaltsverzeichnis Kombinatorische Grundformeln

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Multivariate Verteilungen. Gerhard Tutz LMU München

Multivariate Verteilungen. Gerhard Tutz LMU München Multivariate Verteilungen Gerhard Tutz LMU München INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Multivariate Normalverteilung 3 Wishart Verteilung 7 3 Hotellings T Verteilung 11 4 Wilks Λ 14 INHALTSVERZEICHNIS

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer«

Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer« Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer«Werner Linde WS 2008/09 Inhaltsverzeichnis 1 Wahrscheinlichkeiten 2 1.1 Wahrscheinlichkeitsräume...........................

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

i =1 i =2 i =3 x i y i 4 0 1

i =1 i =2 i =3 x i y i 4 0 1 Aufgabe (5+5=0 Punkte) (a) Bei einem Minigolfturnier traten 6 Spieler gegeneinander an. Die Anzahlen der von ihnen über das gesamte Turnier hinweg benötigten Schläge betrugen x = 24, x 2 = 27, x = 2, x

Mehr

Übungsblatt 9 (25. bis 29. Juni)

Übungsblatt 9 (25. bis 29. Juni) Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung Vorlesung 7b Unabhängigkeit bei Dichten und die mehrdimensionale Standardnormalverteilung 0. Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4 4

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) 1 Diskrete Zufallsvariablen (Random variables) Eine Zufallsvariable X(c) ist eine Variable (genauer eine Funktion), deren Wert vom Ergebnis c

Mehr

Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de

Mehr

Vorlesung 8b. Kovarianz, Korrelation und Regressionsgerade

Vorlesung 8b. Kovarianz, Korrelation und Regressionsgerade Vorlesung 8b Kovarianz, Korrelation und Regressionsgerade 1 1. Die Kovarianz und ihre Eigenschaften 2 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und

Mehr

Anhang aus Statistik-III-Skript: p-dimensionale Zufallsvariablen

Anhang aus Statistik-III-Skript: p-dimensionale Zufallsvariablen Kapitel 9 Anhang aus Statistik-III-Skript: p-dimensionale Zufallsvariablen 9 Definitionen, Eigenschaften Wir betrachten jetzt p Zufallsvariablen X, X 2,, X p Alle Definitionen, Notationen und Eigenschaften

Mehr

Vorlesung 5a. Die Varianz

Vorlesung 5a. Die Varianz Vorlesung 5a Die Varianz 1 1. Varianz und Standardabweichung: Elementare Eigenschaften (Buch S. 24) 2 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist definiert

Mehr

2. Zufallsvektoren. Zufallsvektoren allgemein. Diskreter Fall. Multivariate Verteilungsfunktion. Stetige Zufallsvektoren

2. Zufallsvektoren. Zufallsvektoren allgemein. Diskreter Fall. Multivariate Verteilungsfunktion. Stetige Zufallsvektoren 2 Zufallsvektoren 2. Zufallsvektoren Zufallsvektoren allgemein Diskreter Fall Multivariate Verteilungsfunktion Stetige Zufallsvektoren Unabhängigkeit von Zufallsvariablen Korrelationskoeffizienten Dr.

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

Diskrete Strukturen II

Diskrete Strukturen II SS 2004 Diskrete Strukturen II Ernst W. Mayr Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2004ss/ds/index.html.de 18. Juni 2004 Exponentialverteilung als Grenzwert der geometrischen

Mehr

Vorlesung 9b. Kovarianz und Korrelation

Vorlesung 9b. Kovarianz und Korrelation Vorlesung 9b Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X,Y]:= E [ (X EX)(Y EY) ] Insbesondere ist

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Vorlesung 5a. Varianz und Kovarianz

Vorlesung 5a. Varianz und Kovarianz Vorlesung 5a Varianz und Kovarianz 1 1. Varianz und Standardabweichung: Elementare Eigenschaften (Buch S. 24) 2 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist

Mehr

2.Tutorium Multivariate Verfahren

2.Tutorium Multivariate Verfahren 2.Tutorium Multivariate Verfahren - Multivariate Verteilungen - Hannah Busen: 27.04.2015 und 04.05.2015 Nicole Schüller: 28.04.2015 und 05.05.2015 Institut für Statistik, LMU München 1 / 21 Gliederung

Mehr

Vorlesung 4b. Die Varianz

Vorlesung 4b. Die Varianz Vorlesung 4b Die Varianz 1 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ Die Varianz von X ist definiert als Var[X] := E[(X µ) 2 ], die erwartete quadratische Abweichung der Zufallsvariablen

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient 11.4 Korrelation Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient (X 1,X 2 ) = cov (X 1,X 2 ) σ X1 σ X2 Korrelationskoeffizient der Zufallsgrößen

Mehr

Referenten: Gina Spieler, Beatrice Bressau, Laura Uhlmann Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn

Referenten: Gina Spieler, Beatrice Bressau, Laura Uhlmann Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn 8.5 Eindimensionale stetige Zufallsvariablen Eine Zufallsvariable X heißt stetig, wenn es eine Funktion f(x) gibt, sodass die Verteilungsfunktion von X folgende Gestalt hat: x F(x) = f(t)dt f(x) heißt

Mehr

A. Grundlagen der Stochastik

A. Grundlagen der Stochastik A. Grundlagen der Stochastik Satz A.1 (Axiome der Wahrscheinlichkeit). Folgende Axiome der Wahrscheinlichkeit können definiert werden: (1) Die Wahrscheinlichkeit P(A) eines Ergebnisses A bei einem Experiment

Mehr

A. Grundlagen der Stochastik

A. Grundlagen der Stochastik A. Grundlagen der Stochastik Satz A.1 (Axiome der Wahrscheinlichkeit). Folgende Axiome der Wahrscheinlichkeit können definiert werden: (1) Die Wahrscheinlichkeit P(A) eines Ergebnisses A bei einem Experiment

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Marcel Thoms Mathematik Online Herbst 211 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge

Mehr

5 Zufallsvariablen, Grundbegriffe

5 Zufallsvariablen, Grundbegriffe II. Zufallsvariablen 5 Zufallsvariablen, Grundbegriffe Def. 12 Es seien (Ω 1, E 1,P 1 ) und (Ω 2, E 2,P 2 ) Wahrscheinlichkeitsräume. Eine Abbildung X : Ω 1 Ω 2 heißt E 1 E 2 meßbar, falls für alle Ereignisse

Mehr

Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Mehr

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2.

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Lineare Korrelation Annahme: var(x 1 ),var(x 2 ) (0, ). Der Koeffizient

Mehr

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit Übung 2 24..23 Ü b u n g 2 Aufgabe Die Poissonverteilung P(λ) hat die Wahrscheinlichkeitsfunktion p(x) = λx e λ (x ) x! Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung

Mehr

Wahrscheinlichkeitstheorie Kapitel XIII - Funktion und Transformation Mehrdimensionaler Zufallsvariablen

Wahrscheinlichkeitstheorie Kapitel XIII - Funktion und Transformation Mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Kapitel XIII - Funktion und Transformation Mehrdimensionaler Zufallsvariablen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 7. Vorlesung - 2018 Bemerkung: Sei X = X 1,..., X n Zufallsvektor. Der n dimensionale Vektor EX = EX 1,..., EX n ist der Erwartungswert des Zufallsvektors X. Beispiel: Seien X, Y N0, 1. X, Y sind die Koordinaten

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}.

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}. Binomialverteilung Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder nicht. X = Häufigkeit, mit

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastik, 5.5. Wir gehen stets von einem Maßraum (Ω, A, µ) bzw. einem Wahrscheinlichkeitsraum (Ω,A,P) aus. Die Borel σ-algebra auf R n wird mit B n bezeichnet, das Lebesgue Maß auf

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 05. 04. 004 Prof. Dr. G. Last Klausur zur Vorlesung Stochastik II Dauer: 90 Minuten Name: Vorname: Matrikelnummer: Diese Klausur hat

Mehr

Übungsblatt 11 zur Vorlesung Statistische Methoden - freiwilliger Teil

Übungsblatt 11 zur Vorlesung Statistische Methoden - freiwilliger Teil Dr. Christof Luchsinger Übungsblatt zur Vorlesung Statistische Methoden - freiwilliger Teil Rechnen mit Matrizen, Multivariate Normalverteilung Herausgabe des Übungsblattes: Woche 0, Abgabe der Lösungen:

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist:

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist: Multivariate elliptische Verteilungen a) Die multivariate Normalverteilung Definition 2 Der Zufallsvektor (X 1, X 2,..., X d ) T hat eine multivariate Normalverteilung (oder eine multivariate Gauss sche

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

x p 2 (x )dx, Hinweis: es ist nicht erforderlich, zu integrieren!

x p 2 (x )dx, Hinweis: es ist nicht erforderlich, zu integrieren! Aufgabe T- Gegeben seien zwei normalverteilte Zufallsvariablen X N(µ, σ) 2 und X 2 N(µ 2, σ2) 2 mit pdf p (x) bzw. p 2 (x). Bestimmen Sie x (als Funktion der µ i, σ i, sodass x p (x )dx = + x p 2 (x )dx,

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis Vorbemerkungen 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 6 Bedingte

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 5. Vorlesung Verteilungsfunktion (VF) Definition 9 Die Verteilungsfunktion (VF) einer Zufallsgröße X ist F : R R definiert als F (x) := P({ω Ω : X (ω) x}) = P( X x ) für jedes x R. Satz 9 - Eigenschaften

Mehr

Multivariate Zufallsvariablen

Multivariate Zufallsvariablen Kapitel 7 Multivariate Zufallsvariablen 7.1 Diskrete Zufallsvariablen Bisher haben wir immer nur eine Zufallsvariable betrachtet. Bei vielen Anwendungen sind aber mehrere Zufallsvariablen von Interesse.

Mehr

Statistik für Ingenieure Vorlesung 5

Statistik für Ingenieure Vorlesung 5 Statistik für Ingenieure Vorlesung 5 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 28. November 2017 3.4 Wichtige stetige Verteilungen 3.4.1 Exponentialverteilung Parameter:

Mehr

Kapitel XIII - Funktion und Transformation mehrdimensionaler Zufallsvariablen

Kapitel XIII - Funktion und Transformation mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - Funktion und Transformation mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D.

Mehr