Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2.

Größe: px
Ab Seite anzeigen:

Download "Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2."

Transkript

1 Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Lineare Korrelation Annahme: var(x 1 ),var(x 2 ) (0, ). Der Koeffizient der linearen Korrelation ρ L (X 1,X 2 ) ist folgendermaßen gegeben: ρ L (X 1,X 2 ) = cov(x 1,X 2 ) var(x1 )var(x 2 ) X 1 und X 2 sind unabhängig ρ L (X 1,X 2 ) = 0 ρ L (X 1,X 2 ) = 0 impliziert nicht, dass X 1 und X 2 unabhängig sind Beispiel 2 Sei X 1 N(0,1) und X 2 = X 2 1. Es gilt ρ L(X 1,X 2 ) = 0 aber X 1 und X 2 sind klarerweise abhängig. Weiters gilt: ρ L (X 1,X 2 ) = 1 α,β IR, β 0, sodass X 2 d = α+βx1 und signum(β) = signum(ρ L (X 1,X 2 )) 4

2 Der lineare Korrelationskoeff. ist eine Invariante unter streng monoton steigende lineare Transformationen. D.h. für zwei Zufallsvariablen X 1 und X 2 und reellen Konstanten α 1,α 2,β 1,β 2 IR, β 1 > 0 und β 2 > 0 gilt: ρ L (α 1 +β 1 X 1,α 2 +β 2 X 2 ) = ρ L (X 1,X 2 ). Der lineare Korrelationskoeffizient ist jedoch keine Invariante unter streng monoton steigende nicht-lineare Transformationen. Beispiel 3 Seien X Exp(λ), X 2 = X 1, und T 1, T 2 zwei streng monoton steigende Transformationen: T 1 (X 1 ) = X 1 und T 2 (X 1 )) = X 2 1. Dann gilt: ρ L (X 1,X 1 ) = 1 und ρ L (T 1 (X 1 ),T 2 (X 1 )) =

3 Rang Korrelation Die Koeffizienten der Rang Korrelation (Spearmans Rho und Kendalls Tau) sind Maße für die Übereinstimmung von bivariaten Zufallsvektoren. Seien (x 1,x 2 ) und ( x 1, x 2 ) zwei Punkte in IR 2. Die zwei Punkte heißen übereinstimmend wenn (x 1 x 1 )(x 2 x 2 ) > 0 und nicht übereinstimmend wenn (x 1 x 1 )(x 2 x 2 ) < 0. Seien (X 1,X 2 ) T und ( X 1, X 2 ) T zwei unabhängige Zufallsvektoren mit identischer bivariater Verteilung. Die Kendall s Tau ρ τ ist definiert als ρ τ (X 1,X 2 ) = P ( (X 1 X 1 )(X 2 X 2 ) > 0 ) P ( (X 1 X 1 )(X 2 X 2 ) < 0 ) Sei ( ˆX 1, ˆX 2 ) ein dritter von (X 1,X 2 ) und ( X 1, X 2 ) unahängiger Zufallsvektor mit derselben Verteilung wie (X 1,X 2 ) und ( X 1, X 2 ). Die Spearman s Rho ρ S ist definiert als ρ S (X 1,X 2 ) = 3 { P ( (X 1 X 1 )(X 2 ˆX 2 ) > 0 ) P ( (X 1 X 1 )(X 2 ˆX 2 ) < 0 )} 6

4 Einige Eigenschaften von ρ τ und ρ S : ρ τ (X 1,X 2 ) [ 1,1] und ρ S (X 1,X 2 ) [ 1,1]. Wenn X 1 und X 2 unabhängig, dann ρ τ (X 1,X 2 ) = ρ S (X 1,X 2 ) = 0. Die Umkehrung gilt i.a. nicht. Sei T:IR IR eine streng monoton steigende Funktion. Dann gilt: ρ τ (T(X 1 ),T(X 2 )) = ρ τ (X 1,X 2 ) ρ S (T(X 1 ),T(X 2 )) = ρ S (X 1,X 2 ) Beweis: 1) und 2) sind trivial. Beweis von 3) erfolgt mit Hilfe von Copulas, später... 7

5 Tail-Abhängigkeit Definition 1 Sei (X 1,X 2 ) T ein Zufallsvektor mit Randverteilungen F 1 und F 2. Der Koeffizient der oberen Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert: λ U (X 1,X 2 ) = lim P(X u 1 2 > F2 (u) X 1 > F1 (u)) vorausgesetzt der Limes existiert. Der Koeffizient der unteren Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert: λ L (X 1,X 2 ) = lim P(X u F2 (u) X 1 F1 (u)) vorausgesetzt der Limes existiert. Wenn λ U > 0 (λ L > 0) heißt es, (X 1,X 2 ) T hat eine obere (untere) Tail-Abhängigkeit. (Siehe Joe 1997, Schmidt und Stadtmüller 2002) Übung 1 Sei X 1 Exp(λ) und X 2 = X 2 1. Bestimmen Sie λ U(X 1,X 2 ), λ L (X 1,X 2 ) und zeigen Sie, dass (X 1,X 2 ) T eine obere und eine untere Tail-Abhängigkeit hat. Berechnen Sie auch den linearen Korrelationskoeffizienten ρ L (X 1,X 2 ). 8

6 Multivariate elliptische Verteilungen a) Die multivariate Normalverteilung Definition 2 Der Zufallsvektor (X 1,X 2,...,X d ) T hat eine multivariate Normalverteilung (oder eine multivariate Gauss sche Verteilung) wenn X d = µ + AZ, wobei Z = (Z 1,Z 2,...,Z k ) T ein Vektor von i.i.d. normalverteilten ZV (Z i N(0,1), i = 1,2,...,k), A IR d k ist eine konstante Matrix und µ IR d ist ein konstanter Vektor. Für so einen Zufallsvektor X gilt: E(X) = µ, cov(x) = Σ = AA T (Σ positiv semidefinit). Notation: X N d (µ,σ). Theorem 1 (Multivariate Normalverteilung: äquiv. Definitionen) 1. X N d (µ,σ) für einen Vektor µ IR d und eine positiv semidefinite Matrix Σ IR d d, dann und nur dann wenn a IR d, a = (a 1,a 2,...,a d ) T, die Zufallsvariable a T X normal verteilt ist. 2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist: φ X (t) = E(exp{it T X}) = exp{it T µ 1 2 tt Σt} für einen Vektor µ IR d und eine positiv semidefinite Matrix Σ IR d d. 9

7 3. Ein Zufallsvektor X IR d mit E(X) = µ und cov(x) = Σ, wobei die Determinante von Σ positiv ist (det(σ) := Σ > 0), ist normal verteilt, d.h. X N d (µ,σ), dann und nur dann wenn seine Dichtefunktion folgendermaßen gegeben ist { } 1 f X (x) = (2π) d Σ exp (x µ)t Σ 1 (x µ). 2 Beweis: (siehe zb. Gut 1995) Theorem 2 (Eigenschaften der multivariaten Normalverteilung) Für X N d (µ,σ) gilt: Lineare Kombinationen: Für B IR k d und b IR k. Es gilt dann BX+b N k (Bµ+b,BΣB T ). Randverteilungen: ( Setze X T = X (1)T,X (2)T) für X (1)T = (X 1,X 2,...,X k ) T und X (2)T = (X k+1,x k+2,...,x d ) T und analog ( ( ) µ T = µ (1)T,µ (2)T) Σ (1,1) Σ und Σ = (1,2) Σ (2,1) Σ (2,2). ( ) ( Es gilt dann X (1) N k µ (1),Σ (1,1) und X (2) N d k µ (2),Σ ). (2,2) 10

8 Bedingte Verteilungen: Wenn Σ regulär, dann ist auch der bedingte Z.Vektor X (2) X (1) = x (1) multivariat normal verteilt X (2) X (1) = x (1) N d k ( µ (2,1),Σ (22,1) ) wobei µ (2,1) = µ (2) +Σ (2,1) ( Σ (1,1) ) 1 ( x (1) µ (1) ) und Σ (22,1) = Σ (2,2) Σ (2,1) (Σ (1,1) ) 1Σ (1,2). Quadratische Formen: Wenn Σ regulär, dann gilt D 2 = (X µ) T Σ 1 (X µ) χ 2 d. Die Zufallsvariable D heißt Mahalanobis Distanz. Faltung: Seien X N d (µ,σ) und Y N d ( µ, Σ) zwei unabhängige Zufallsvektoren. Es gilt dann X +Y N d (µ+ µ,σ+ Σ). 11

9 b) Varianz-gemischte Normalverteilungen Definition 3 Ein Zufallsvektor X IR d hat eine multivariate Varianzgemischte Normalverteilung wenn X d = µ+waz wobei: Z N k (0,I), W 0 ist eine von Z unabhängige positive Zufallsvariable, µ IR d ist ein konstanter Vektor, A IR d k ist eine konstante Matrix, und I ist die Einheitsmatrix. Unter der Bedingung W = w ist X normalverteilt: X N d (µ,w 2 Σ), wobei Σ = AA T. E(X) = µ und cov(x) = E(W 2 AZZ T A T ) = E(W 2 )Σ falls E(W 2 ) < Beispiel 4 Die multivariate t α -Verteilung Sei Y IG(α, β) (Inverse Gamma-Verteilung) mit Dichtefunktion: f α,β (x) = βα Γ(α) x (α+1) exp( β/x) x > 0,α > 0,β > 0 Dann gilt: E(Y) = β α 1 für α > 1, var(y) = β 2 (α 1) 2 (α 2) für α > 2 Sei W 2 IG(α/2,α/2). Dann ist die Verteilung von X = µ + WAZ eine multivariate t α Verteilung mit α Freiheitsgraden: X t d (α,µ,σ). cov(x) = E(W 2 )Σ = α α 2 Σ 12

10 c) Sphärische Verteilungen Definition 4 Ein Zufallsvektor X = (X 1,X 2,...,X d ) T hat eine sphärische Verteilung wenn für jede orthogonale Matrix U IR d d die Gleichung UX d = X gilt. Theorem 3 Die folgenden Aussagen sind äquivalent. 1. Der Zufallsvektor X IR d hat eine sphärische Verteilung. 2. Es existiert eine Funktion ψ: IR IR, sodass die charakteristische Funktion von X folgendermaßen gegeben wird: φ X (t) = ψ(t T t) = ψ(t 2 1 +t t2 d ) 3. Für jeden Vektor a IR d gilt a t X d = a X 1 wobei a 2 = a 2 1 +a a2 d. 4. X lässt sich als X d = RS repräsentieren, wobei der Zufallsvektor S IR d gleichmäßig verteilt auf der Einheitskugel S d 1, S d 1 = {x IR d : x = 1}, ist, und R 0 eine von S unabhängige ZV ist. Notation einer sphärischen Verteilung: X S d (ψ) 13

11 Beispiel 5 Die standard Normalverteilung ist eine sphärische Verteilungen. Sei X N d (0,I). Dann X S d (ψ) mit ψ = exp( x/2). Tatsächlich: φ X (t) = exp{it T tt It} = exp{ t T t/2} = ψ(t T t). Sei X = RS die stochastische Darstellung von X N d (0,I). Es gilt X 2 d = R 2 χ 2 d ; Simulation einer sphärischen Verteilung: (i) Simuliere s aus einer gleichmäßig verteilten Zufallsvektor in S d 1 (zb. in dem y aus einer multivariaten Standard Normalverteilung Y N d (0,I) simuliert und s = y/ y gesetzt wird). (ii) Simuliere r aus R. (iii) Setze x = rs. 14

12 d) Elliptische Verteilungen Definition 5 Ein Zufallsvektor X IR d hat eine elliptische Verteilung wenn X d = µ+ay, wobei Y S k (ψ), µ IR d ist ein konstanter Vektor und A IR d k ist eine konstante Matrix. Die charakteristische Funktion: φ X (t) = E(exp{it T X}) = E(exp{it T (µ+ay)}) = exp{it T µ}e(exp{i(a T t) T Y}) wobei Σ = AA T. = exp{it T µ}ψ(t T Σt), Notation elliptische Verteilungen: X E d (µ,σ,ψ) µ heißt Positionsparameter (location parameter), Σ heißt Dispersionsparameter (dispersion parameter), ψ heißt charakteristischer Generator der elliptischen Verteilung. Falls A IR d d regulär, dann gilt folgende Relation zwischen elliptischen und sphärischen Verteilungen: X E d (µ,σ,ψ) A 1 (X µ) S d (ψ), A IR d d,aa T = Σ 15

13 Theorem 4 ( Stochastische Darstellung der elliptischen Verteilung) Sei X IR d ein d-dimensinaler Zufallsvektor. X E d (µ,σ,ψ) dann und nur dann wenn X d = µ+ras, wobei S IR k ist ein auf der Einheitskugel S k 1 gleichverteilter Zufallsvektor, R 0 ist eine von S unahängige nicht negative Zufallsvariable, A IR d k ist eine konstante Matrix (Σ = AA T ) und µ IR d ist ein konstanter Vektor. Simulation einer elliptischen Verteilung: (i) Simuliere s aus einer gleichmäßig verteilten Zufallsvektor in S d 1 (zb. in dem y aus einer multivariaten Standard Normalverteilung Y N d (0,I) simuliert und s = y/ y gesetzt wird). (ii) Simuliere r aus R. (iii) Setze x = µ+ras. 16

14 Beispiel 6 (Multivariate Normalverteilung) Sei X N(µ,Σ). Es existiert eine Matrix A IR d k, sodass X d = µ+az wobei Z N k (0,I) und AA T = Σ. Weiters gilt Z = RS wobei S ein gleichmäßig verteilter Zufallsvektor in S k 1 ist und R 2 χ 2 k. Daraus folgt X d = µ+ras und daher X E d (µ,σ,ψ) mit ψ(x) = exp{ x/2}. Beispiel 7 (Multivariate normal variance mixture) Sei Z N d (0,I) ein normal-verteilter Zufallsvektor. Z ist sphärischverteilt mit stochastischer Darstellung Z d = VS wobei V 2 = Z 2 χ 2 d. Sei X = µ+w AZ eine Varianz-gemischte Normalverteilung. Dann gilt X = d µ + VWAS wobei V 2 χ 2 d und VW eine nicht-negative von S unabhängige ZV ist. D.h., X ist elliptisch verteilt mit R = VW. 17

15 Theorem 5 (Eigenschaften der elliptischen Verteilung) Sei X E k (µ,σ,ψ). X hat folgende Eigenschaften: Lineare Kombinationen: Für B IR k d und b IR k gilt: Randverteilungen: ( Setze X T = X (1)T,X (2)T) für BX +b E k (Bµ+b,BΣB T,ψ). X (1)T = (X 1,X 2,...,X n ) T und X (2)T = (X n+1,x n+2,...,x k ) T und analog ( ( ) µ T = µ (1)T,µ (2)T) Σ (1,1) Σ sowie Σ = (1,2) Σ (2,1) Σ (2,2). Es gilt dann ) ) X 1 N n (µ (1),Σ (1,1),ψ und X 2 N k n (µ (2),Σ (2,2),ψ. 18

16 Bedingte Verteilungen: Wenn Σ regulär, dann ist auch die bedingte Verteilung X (2) X (1) = x (1) elliptisch verteilt: X (2) X (1) = x (1) N k n ( µ (2,1),Σ (22,1), ψ ) wobei µ (2,1) = µ (2) +Σ (2,1) ( Σ (1,1) ) 1 ( x (1) µ (1) ) und Σ (22,1) = Σ (2,2) Σ (2,1) (Σ (1,1) ) 1Σ (1,2). Typischerwise sind ψ und ψ unterschiedlich (siehe Fang, Katz und Ng 1987). 19

17 Quadratische Formen: Wenn Σ regulär, dann gilt D 2 = (X µ) T Σ 1 (X µ) R 2. wobei R die nicht-negative ZV aus der stochastischen Darstellung ) Y = RS der spherischen Verteilung Y mit S U (S (d 1) und X = µ+ay ist. Die Zufallsvariable D heißt Mahalanobis Distanz. Faltung: Seien X E k (µ,σ,ψ) und Y E k ( µ,σ, ψ) zwei unabhängige Zufallsvektoren. Es gilt dann X +Y E k (µ+ µ,σ, ψ) wobei ψ = ψ ψ. Achtung: Σ muss i.a. dieselbe für X und Y sein. Anmerkung: Aus X E k (µ,i k,ψ) folgt nicht, dass die Komponenten von X unabhängig sind. Die Komponenten von X sind dann und nur dann unabhängig wenn X multivariat normalverteilt mit der Einheitsmatrix als Kovarianzmatrix ist. 20

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist:

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist: Multivariate elliptische Verteilungen a) Die multivariate Normalverteilung Definition 2 Der Zufallsvektor (X 1, X 2,..., X d ) T hat eine multivariate Normalverteilung (oder eine multivariate Gauss sche

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

Beispiel 6 (Multivariate Normalverteilung)

Beispiel 6 (Multivariate Normalverteilung) Beispiel 6 (Multivariate Normalverteilung) Sei X N(µ,Σ). Es existiert eine Matrix A IR d k, sodass X d = µ+az wobei Z N k (0,I) und AA T = Σ. Weiters gilt Z = RS wobei S ein gleichmäßig verteilter Zufallsvektor

Mehr

Copula Funktionen. Eine Einführung. Nils Friewald

Copula Funktionen. Eine Einführung. Nils Friewald Copula Funktionen Eine Einführung Nils Friewald Institut für Managementwissenschaften Abteilung Finanzwirtschaft und Controlling Favoritenstraße 9-11, 1040 Wien friewald@imw.tuwien.ac.at 13. Juni 2005

Mehr

Theorem 19 Sei (X 1,X 2 ) T ein normalverteilter Zufallsvektor. Dann gilt: λ U (X 1,X 2 ) = λ L (X 1,X 2 ) = 0.

Theorem 19 Sei (X 1,X 2 ) T ein normalverteilter Zufallsvektor. Dann gilt: λ U (X 1,X 2 ) = λ L (X 1,X 2 ) = 0. Theorem 19 Sei (X 1,X 2 ) T ein normalverteilter Zufallsvektor. Dann gilt: λ U (X 1,X 2 ) = λ L (X 1,X 2 ) = 0. Korollar 2 Sei (X 1,X 2 ) T ein Zufallsvektor mit stetigen Randverteilungen und einer Gauss

Mehr

+ 2 F2 (u) X 1 F1 (u)) Der Koeffizient der unteren Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert:

+ 2 F2 (u) X 1 F1 (u)) Der Koeffizient der unteren Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert: Tail Abhängigkeit Definition 12 Sei (X 1,X 2 ) T ein Zufallsvektor mit Randverteilungen F 1 und F 2. Der Koeffizient der oberen Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert: λ U (X

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren. Definition Ist X X,...,X p ein p-dimensionaler Zufallsvektor mit E X j < für alle j, so heißt

Mehr

Quantitatives Risikomanagement

Quantitatives Risikomanagement Quantitatives Risikomanagement Korrelation und Abhängigkeit im Risikomanagement: Eigenschaften und Irrtümer von Jan Hahne und Wolfgang Tischer -Korrelation und Abhängigkeit im Risikomanagement: Eigenschaften

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

6.1 Definition der multivariaten Normalverteilung

6.1 Definition der multivariaten Normalverteilung Kapitel 6 Die multivariate Normalverteilung Wir hatten die multivariate Normalverteilung bereits in Abschnitt 2.3 kurz eingeführt. Wir werden sie jetzt etwas gründlicher behandeln, da die Schätzung ihrer

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

2.1 Gemeinsame-, Rand- und bedingte Verteilungen

2.1 Gemeinsame-, Rand- und bedingte Verteilungen Kapitel Multivariate Verteilungen 1 Gemeinsame-, Rand- und bedingte Verteilungen Wir hatten in unserer Datenmatrix m Spalten, dh m Variablen Demnach brauchen wir jetzt die wichtigsten Begriffe für die

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 5. Vorlesung Verteilungsfunktion (VF) Definition 9 Die Verteilungsfunktion (VF) einer Zufallsgröße X ist F : R R definiert als F (x) := P({ω Ω : X (ω) x}) = P( X x ) für jedes x R. Satz 9 - Eigenschaften

Mehr

2 Multivariate Normalverteilung

2 Multivariate Normalverteilung 2 Multivariate Normalverteilung 2. Multivariate Normalverteilung Definition 2.. Normalverteilung Eine univariat normalverteilte Zufallsvariable X besitzt ie Dichte ) (x µ)2 f (x) = exp ( x R. 2π σ 2σ 2

Mehr

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte Kapitel 8 Parameter multivariater Verteilungen 8.1 Erwartungswerte Wir können auch bei mehrdimensionalen Zufallsvariablen den Erwartungswert betrachten. Dieser ist nichts anderes als der vektor der Erwartungswerte

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Prof. Dr. Fred Böker

Prof. Dr. Fred Böker Statistik III WS 2004/2005; 8. Übungsblatt: Lösungen 1 Prof. Dr. Fred Böker 07.12.2004 Lösungen zum 8. Übungsblatt Aufgabe 1 Die Zufallsvariablen X 1 X 2 besitzen eine gemeinsame bivariate Normalverteilung

Mehr

Stetige Standardverteilungen

Stetige Standardverteilungen Universität Basel Wirtschaftswissenschaftliches Zentrum Stetige Standardverteilungen Dr. Thomas Zehrt Inhalt: 1. Die stetige Gleichverteilung 2. Die Normalverteilung (a) Einstimmung (b) Standardisierung

Mehr

Übungsblatt 11 zur Vorlesung Statistische Methoden - freiwilliger Teil

Übungsblatt 11 zur Vorlesung Statistische Methoden - freiwilliger Teil Dr. Christof Luchsinger Übungsblatt zur Vorlesung Statistische Methoden - freiwilliger Teil Rechnen mit Matrizen, Multivariate Normalverteilung Herausgabe des Übungsblattes: Woche 0, Abgabe der Lösungen:

Mehr

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung Vorlesung 7b Unabhängigkeit bei Dichten und die mehrdimensionale Standardnormalverteilung 0. Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4 4

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Einführung und Grundlagen

Einführung und Grundlagen Kapitel 1 Einführung und Grundlagen Generelle Notation: Ω, A, P sei ein W-Raum im Hintergrund nie weiter spezifiziert Die betrachteten Zufallsvariablen seien auf Ω definiert, zb X : Ω, A M, A, wobei M,

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

OLS-Schätzung: asymptotische Eigenschaften

OLS-Schätzung: asymptotische Eigenschaften OLS-Schätzung: asymptotische Eigenschaften Stichwörter: Konvergenz in Wahrscheinlichkeit Konvergenz in Verteilung Konsistenz asymptotische Verteilungen nicht-normalverteilte Störgrößen zufällige Regressoren

Mehr

3 Satz von Fisher Tippett

3 Satz von Fisher Tippett Theorem 3.1 (Satz von Fisher Tippett; extremal types theorem). Eine Verteilung G ist eine Extremwertverteilung genau dann, wenn es c > 0, d R und γ R gibt mit G(t) = G γ (ct + d). { } Dabei ist G γ eine

Mehr

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Stetige Verteilungen Definition: Sei

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient 11.4 Korrelation Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient (X 1,X 2 ) = cov (X 1,X 2 ) σ X1 σ X2 Korrelationskoeffizient der Zufallsgrößen

Mehr

Quantitatives Risikomanagement

Quantitatives Risikomanagement Quantitatives Risikomanagement Korrelation und Abhängigkeit im Risikomanagement: Eigenschaften und Irrtümer von Jan Hahne und Wolfgang Tischer Bergische Universität Wuppertal Dozent: M.Sc. Brice Hakwa

Mehr

2.Tutorium Multivariate Verfahren

2.Tutorium Multivariate Verfahren 2.Tutorium Multivariate Verfahren - Multivariate Verteilungen - Hannah Busen: 27.04.2015 und 04.05.2015 Nicole Schüller: 28.04.2015 und 05.05.2015 Institut für Statistik, LMU München 1 / 21 Gliederung

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Mathematische Ökonometrie

Mathematische Ökonometrie Mathematische Ökonometrie Ansgar Steland Fakultät für Mathematik Ruhr-Universität Bochum, Germany ansgar.steland@ruhr-uni-bochum.de Skriptum zur LV im SoSe 2005. Diese erste Rohversion erhebt keinen Anspruch

Mehr

Unabhängigkeit von Zufallsvariablen

Unabhängigkeit von Zufallsvariablen Unabhängigkeit von Zufallsvariablen Seminar Gegenbeispiele in der Wahrscheinlichkeitstheorie Pascal Beckedorf 12. November 2012 Pascal Beckedorf Unabhängigkeit von Zufallsvariablen 12. November 2012 1

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

1.4 Stichproben aus einer Normalverteilung

1.4 Stichproben aus einer Normalverteilung 1.4 Stichproben aus einer Normalverteilung Die Normalverteilung ist wohl das am stärksten verbreitete Modell. Stichproben daraus führen zu nützlichen Eigenschaften der Statistiken und ergeben bekannte

Mehr

Nachteile: STD existiert nur für Verteilungen mit E(FL 2 ) <, d.h. nicht ansetzbar bei leptokurtischen ( fat tailed ) Verlustverteilungen;

Nachteile: STD existiert nur für Verteilungen mit E(FL 2 ) <, d.h. nicht ansetzbar bei leptokurtischen ( fat tailed ) Verlustverteilungen; Risikomaße basierend auf die Verlustverteilung Sei F L := F Ln+1 die Verteilung der Verlust L n+1. Die Parameter von F Ln+1 werden anhand von historischen Daten entweder direkt oder mit Hilfe der Risikofaktoren

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

2 Stationarität. Strikte Stationarität

2 Stationarität. Strikte Stationarität 2 Stationarität. Strikte Stationarität Die in 1 benutzten Begriffe sind noch zu präzisieren : Definition 2.1. a) Ein stochastischer Prozess {X t } t T heißt strikt stationär, falls für je endlich viele

Mehr

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0).

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0). 5 Quadriken Kegelschnitte Ein Kegelschnitt ist eine Teilmenge K R 2, welche durch eine quadratische Gleichung in zwei Unbestimmten beschrieben werden kann: x K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f =

Mehr

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik . Grundbegri e der Stochastik Raum der Ereignisse. Die einelementigen Teilmengen f!g heißen auch Elementarereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. A ist ein geeignetes System von Teilmengen

Mehr

Solvency II und die Standardformel

Solvency II und die Standardformel Fakultät Mathematik und Naturwissenschaften Institut für Mathematische Stochastik Solvency II und die Standardformel Festkolloquium 20 Jahre (neue) Versicherungsmathematik an der TU Dresden Sebastian Fuchs

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Grundlagen der Ökonometrie (für Wirtschaftsmathematikstudenten und mathematisch orientierte Volkswirtschaftsstudenten) Prof. Dr.

Grundlagen der Ökonometrie (für Wirtschaftsmathematikstudenten und mathematisch orientierte Volkswirtschaftsstudenten) Prof. Dr. Grundlagen der Ökonometrie (für Wirtschaftsmathematikstudenten und mathematisch orientierte Volkswirtschaftsstudenten) Prof Dr Enno Mammen 0 Exkurs: Orthogonaltransformationen, Projektionen im R n In diesem

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

6. Multivariate Verfahren Übersicht

6. Multivariate Verfahren Übersicht 6. Multivariate Verfahren 6. Multivariate Verfahren Übersicht 6.1 Korrelation und Unabhängigkeit 6.2 Lineare Regression 6.3 Nichtlineare Regression 6.4 Nichtparametrische Regression 6.5 Logistische Regression

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h.

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h. Konvexe Menge Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, dh Kapitel Extrema konvex: h x + h y D für alle h [0, ], und x,

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Gaußsche Felder und Simulation

Gaußsche Felder und Simulation 3 2 data_2d_1.dat data_2d_2.dat data_2d_64.dat data_2d_128.dat 1-1 -2-3 1 2 3 4 5 6 7 Gaußsche Felder und Simulation Benedikt Jahn, Aaron Spettl 4. November 28 Institut für Stochastik, Seminar Zufällige

Mehr

Übungsblatt 9 (25. bis 29. Juni)

Übungsblatt 9 (25. bis 29. Juni) Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell

Mehr

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten Kapitel 2 Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten 2.1 Stochastische Unabhängigkeit von Ereignissen Gegeben sei ein W-Raum (Ω, C, P. Der Begriff der stochastischen Unabhängigkeit von

Mehr

Seminar stabile Zufallsprozesse

Seminar stabile Zufallsprozesse Definitionen und Eigenschaften stabiler Verteilungen 2. November 2011 Inhalt 1 Definitionen Definitionen Beweis der Äquivalenz Beispiele 2 Eigenschaften 3 Charakteristische Funktion 4 Laplace Transformation

Mehr

Kapitel 12 Erwartungswert und Varianz

Kapitel 12 Erwartungswert und Varianz Kapitel 12 Erwartungswert und Varianz Vorlesung Wahrscheinlichkeitsrechnung I vom 4/10. Juni 2009 Lehrstuhl für Angewandte Mathematik 1 FAU 12.1 Der Erwartungswert Der Erwartungswert einer Zufallsvariablen

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Weihnachtsaufgaben. a) Welche Urnenmodelle gibt es? Stelle zu jedem Modell ein konkretes Beispiel auf, welches durch dieses Modell beschrieben wird.

Weihnachtsaufgaben. a) Welche Urnenmodelle gibt es? Stelle zu jedem Modell ein konkretes Beispiel auf, welches durch dieses Modell beschrieben wird. Weihnachtsaufgaben Diese Aufgaben dienen dazu die in der Vorlesung und den Übungen eingeführten Begriffe zu verstehen und zu vertiefen, die Bearbeitung ist freiwillig Das Blatt wurde von den Übungsleitern

Mehr

Stochastik für Studierende der Informatik

Stochastik für Studierende der Informatik Wiederholungs-/Fragestunde Peter Czuppon Uni Freiburg, 05. September 2016 Diese Zusammenfassung wurde mit Hilfe des Skriptes von Prof. Dr. Pfaffelhuber aus dem Sommersemester 2016 erstellt. Ferner deckt

Mehr

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt. Normalverteilung Diskrete Stetige f(x) = 1 2πσ 2 e 1 2 ((x µ)2 σ 2 ) Gauß 91 / 169 Normalverteilung Diskrete Stetige Satz: f aus (1) ist Dichte. Beweis: 1. f(x) 0 x R und σ > 0. 2. bleibt z.z. lim F(x)

Mehr

VERTEILUNGEN VON FUNKTIONEN EINER ZUFALLSVARIABLEN

VERTEILUNGEN VON FUNKTIONEN EINER ZUFALLSVARIABLEN KAPITEL 15 VETEILUNGEN VON FUNKTIONEN EINE ZUFALLSVAIABLEN In diesem Kapitel geht es darum, die Verteilungen für gewisse Funktionen von Zufallsvariablen zu bestimmen. Wir werden uns auf den Fall absolut

Mehr

1.3 Wiederholung der Konvergenzkonzepte

1.3 Wiederholung der Konvergenzkonzepte 1.3 Wiederholung der Konvergenzkonzepte Wir erlauben nun, dass der Stichprobenumfang n unendlich groß wird und untersuchen das Verhalten von Stichprobengrößen für diesen Fall. Dies liefert uns nützliche

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

Mathematik 2 Probeprüfung 1

Mathematik 2 Probeprüfung 1 WWZ Wirtschaftswissenschaftliche Fakultät der Universität Basel Dr. Thomas Zehrt Bitte in Druckbuchstaben ausfüllen: Name Vorname Mathematik 2 Probeprüfung 1 Zeit: 90 Minuten, Maximale Punktzahl: 72 Zur

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben

Mehr

Mathematische Statistik Aufgaben zum Üben. Schätzer

Mathematische Statistik Aufgaben zum Üben. Schätzer Prof. Dr. Z. Kabluchko Wintersemester 2016/17 Philipp Godland 14. November 2016 Mathematische Statistik Aufgaben zum Üben Keine Abgabe Aufgabe 1 Schätzer Es seien X 1,..., X n unabhängige und identisch

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung Zusammenfassung: diskrete und stetige Verteilungen Woche 4: Verteilungen Patric Müller diskret Wahrscheinlichkeitsverteilung p() stetig Wahrscheinlichkeitsdichte f ()

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y]

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y] Gedächtnislosigkeit Satz 105 (Gedächtnislosigkeit) Eine (positive) kontinuierliche Zufallsvariable X mit Wertebereich R + ist genau dann exponentialverteilt, wenn für alle x, y > 0 gilt, dass Pr[X > x

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik SS 06 Prof. Dr. J-D Deuschel 0. Juli 006 Juli Klausur Stochastik für Informatiker Name:... Vorname:... Matr. Nr.:... Studiengang:... Als

Mehr

1 (2π) m/2 det (Σ) exp 1 ]

1 (2π) m/2 det (Σ) exp 1 ] Multivariate Normalverteilung: m=1: Y N(µ; σ 2 ) Erwartungswert: µ Varianz: σ 2 f Y (y) = f Y1 Y 2...Y m (y 1,y 2,...,y m ) = [ 1 exp 1 ] 2πσ 2 2 (y µ)2 /σ 2 Σ: m m-matrix, symmetrisch, positiv definit.

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastik, 10.10.14 Wir gehen stets von einem Maßraum (Ω, A, µ) bzw. einem Wahrscheinlichkeitsraum (Ω,A,P) aus. Die Borel σ-algebra auf R n wird mit B n bezeichnet, das Lebesgue Maß

Mehr

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2 Bsp. 72 (BOX MÜLLER Transformation) Es seien U 1 und U 2 zwei unabhängige, über dem Intervall [0, 1[ gleichverteilte Zufallsgrößen (U i R(0, 1), i = 1, 2), U = (U 1,U 2 ) T ein zufälliger Vektor. Wir betrachten

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : ) 1/γ. G γ,ν,β = 1 (1 + γ x ν β

Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : ) 1/γ. G γ,ν,β = 1 (1 + γ x ν β Die POT Methode (Peaks over Threshold) Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : G γ (x) = { 1 (1 + γx) 1/γ für γ 0 1 exp{ x} für γ = 0 wobei x D(γ) D(γ) = { 0

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik

Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. C. Löh/M. Blank 27. Juli 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen

Mehr

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt.

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt. . Grundbegri e Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. ist auch das sichere Ereignis,

Mehr