4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

Größe: px
Ab Seite anzeigen:

Download "4 Absolutstetige Verteilungen und Zufallsvariablen 215/1"

Transkript

1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

2 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral (Walther, Analysis II, Springer, 1990, 7.20). Spezialfall: Für abgeschlossene Intervalle B i R und B := B 1 B d R d sei f B stetig. Setze B (K) := B [ K, K] d. Falls sup K N B f(x) dx < (K), so gilt f(x) dx = lim f(x) dx. B K } B (K) {{} Berechnung als iteriertes Integral 216/1

3 24. Definition f : R d R + Wahrscheinlichkeitsdichte, kurz Dichte, falls f (Lebesgue)-integrierbar mit R d f(x) dx = Satz Jede Dichte f definiert durch P (A) := ein Wahrscheinlichkeitsmaß auf B d. A f(x) dx, A B d, Vgl. Satz III.3 über Wahrscheinlichkeitsfunktionen. Ausblick: singuläre Verteilungen, ÜBUNG. 217/1

4 Beweis von Satz 25. Klar: P 0 und P (R d ) = 1. Für A 1, A 2,... B d p.d. und A := i=1 A i gilt P (A) = 1 A (x) f(x) dx = 1 Ai (x) f(x) dx R d R d i=1 = 1 Ai (x) f(x) dx = P (A i ) R d i=1 i=1 aufgrund des Satzes von der monotonen Konvergenz. 218/1

5 Zur Eindeutigkeit von Dichten: 26. Lemma Seien f, g : R d R integrierbar. Dann sind äquivalent: (i) A B d : f(x) dx = A (ii) λ d ({x R d : f(x) g(x)}) = 0 A g(x) dx Beweis. Folgt aus Meintrup, Schäffler (2005, Satz 2.15). 219/1

6 Im folgenden: X = (X 1,..., X d ) d-dimensionaler Zufallsvektor auf (Ω, A, P ). 27. Definition X absolutstetig verteilt, falls P X eine Dichte besitzt. Diese wird ggf. mit f X bezeichnet. Nun: Modellierung von Verteilungen durch Vorgabe ihrer Dichten. 220/1

7 28. Definition Sei B B d mit Lebesgue-Maß (Länge, Flächeninhalt, Volumen) λ d (B) ]0, [. Zufallsvektor (bzw. -variable) X mit Dichte heißt gleichverteilt auf B. Bez.: X U(B). f X (x) = 1 λ d (B) 1 B(x) 29. Bemerkung Für X U(B) und A B d : P X (A) = 1 λ d (B) 1 B (x) dx = λ d(a B) λ d (B) A 221/1

8 30. Beispiel Dichte und Verteilungsfunktion von X U([a, b]) mit a < b: 1 b a, falls x [a, b] f X (x) = F X (x) = Vgl. Definition IV.25. 0, sonst 0, falls x < a x a b a, falls x [a, b] 1, sonst 222/1

9 31. Beispiel X U(B) zur Modellierung von Pfeiltreffer auf Dartscheibe, Glücksrad. Anwendung: Zufallszahlen und stochastische Simulation, siehe Kapitel IV. 223/1

10 32. Definition Zufallsvariable X mit Dichte f X (x) = λ exp( λx), falls x 0 0, sonst für λ > 0 heißt exponentialverteilt mit Parameter λ. Bez.: X Exp(λ) 33. Bemerkung Für X Exp(λ) und x > 0: F X (x) = λ x 0 exp( λy) dy = 1 exp( λx) Klar: F X (x) = 0, falls x /1

11 34. Beispiel Dichten exponentialverteilter ZVen Exp(0.5) Exp(2) /1

12 35. Beispiel Verteilungsfunktionen exponentialverteilter ZVen Exp(0.5) Exp(2) /1

13 36. Satz Charakterisierung der Exp verteilung durch Gedächtnislosigkeit Für ZV X mit P ({X > 0}) = 1 und t > 0 : P ({X > t}) > 0 sind äquivalent: (i) λ > 0 : X Exp(λ) (ii) s, t > 0 : P ({X > t + s} {X > t}) = P ({X > s}) Beweis. ÜBUNG Vgl. ÜBUNG M:H13 und WInf:H /1

14 37. Beispiel X Exp(λ) zur Modellierung von Lebensdauern, Wartezeiten. Hier: radioaktiver Zerfall, X Zerfallszeitpunkt. Halbwertszeit h > 0 definiert als Median, P ({X h}) = 1 2. Man erhält h = ln(2)/λ. 228/1

15 38. Beispiel (X i ) i N iid, X 1 Exp(λ) mit unbekanntem λ > 0. Problem: Schätze λ bzw. h = ln(2)/λ. Gem. Kap. IV.9 gilt fast sicher lim n 1 n n i=1 1 ],h] (X i ) = 1 2. Auf Basis von Realisierungen x i = X i (ω) schätzt man h durch den Median der empirischen Verteilungsfunktion (empirischer Median). Siehe Beispiel IV.24. Warnung. 229/1

16 39. Lemma Für µ R und σ > 0 gilt ) (x µ)2 exp ( dx = 2πσ 2σ /1

17 Beweis. OBdA µ = 0 und σ = 1 (Substitutionsregel). Es gilt: ( ) ) 2 exp ( x2 dx 2 = exp ( x2 + y 2 ) d(x, y) R 2 2 2π ) = exp ( r2 r dr dϕ ( )) = 2π exp ( r2 2 = 2π 0 231/1

18 40. Definition Zufallsvariable X mit Dichte f X (x) = ( 1 exp (x µ)2 2πσ 2 2σ 2 für µ R und σ > 0 heißt normalverteilt mit Parametern µ und σ 2. Bez.: X N(µ, σ 2 ) Standard-Normalverteilung als Spezialfall: µ = 0 und σ = 1. ) 232/1

19 41. Beispiel Dichten normalverteilter ZVen N(0,1) N(2,2) /1

20 42. Beispiel Verteilungsfunktionen normalverteilter ZVen N(0,1) N(2,2) /1

21 43. Beispiel X N(µ, σ 2 ) zur Modellierung (Meß)Fehlern. Siehe auch Kap. VI Bemerkung Keine explizite Formel für Verteilungsfunktion F X, falls X N(µ, σ 2 ). Bez.: Φ = F X, falls X N(0, 1), also Φ(x) = 1 2π x exp ( y2 2 ) dy. Zur Berechnung von Φ und entsprechender Quantile: Numerik, Tabellen, Plots. 235/1

22 Nun speziell: mehrdimensionale Dichten. Analytisches Hilfsmittel: Satz von Fubini. 45. Lemma Falls f X Dichte von P X, so besitzt P Xi die Dichte f Xi (x i ) = f X (x 1, x i, x 2 ) d(x 1, x 2 ) R d 1 mit x 1 = (x 1,..., x i 1 ), x 2 = (x i+1,..., x d ). 236/1

23 Beweis. Für A i B 1 sei A := R i 1 A i R d i. Dann P ({X i A i }) = P ({X A}) = f X (x) dx A = f X (x 1,..., x d ) dx d... dx 1 R R A i R R = f X (x 1, x i, x 2 ) d(x 1, x 2 ) dx i, A i R } d 1 {{} =:g(x i ) und g ist eine Dichte. 237/1

24 46. Beispiel Pfeiltreffer auf Dartscheibe. Hier f X (x 1, x 2 ) := 1 πr 2 1 K(x 1, x 2 ) mit K := {(x 1, x 2 ) R 2 : x x 2 2 r 2 } 238/1

25 Also für x 1 [ r, r] f X1 (x 1 ) = f X (x 1, x 2 ) dx 2 = 1 R πr 2 = 2 πr r 2 2 x 2 1 sowie f X1 (x 1 ) = 0, falls x 1 > r. Klar: r 2 x 2 1 r 2 x dx 2 f X1 = f X2 239/1

26 47. Definition Tensorprodukt f 1... f d : R d R von Abbildungen f i : R R definiert durch f 1... f d (x) := f 1 (x 1 )... f d (x d ). Vgl. Abschnitt III Lemma Falls f 1,..., f d Dichten auf R, so ist f 1... f d Dichte auf R d. Beweis. Klar. Vgl. Lemma III /1

27 49. Satz (i) Falls X 1,..., X d unabhängig mit Dichten f Xi, so besitzt X die Dichte (ii) Falls X die Dichte f X = f X1... f Xd. f X = f 1... f d mit eindimensionalen Dichten f i besitzt, so sind X 1,..., X d unabhängig mit Dichten f Xi = f i. 241/1

28 Beweis. Ad (i): Gemäß Satz 25 und Lemma 48 defi niert Q(A) := A f X1... f Xd (x) dx, A B d, ein W maß auf B d. Speziell für A := A 1 A d mit A i := ], b i ] d d P ({X A}) = P ({X i A i }) = f Xi (x i ) dx i A i Satz 9 zeigt P X = Q. i=1 =... A 1 A d i=1 d f Xi (x i ) dx d... dx 1 = Q(A). i=1 242/1

29 Ad (ii): Für A 1,..., A d B 1 und A := A 1 A d P ({X A}) = f X (x) dx = f 1 (x 1 ) dx 1 f d (x d ) dx d. A A 1 A d Insbesondere P ({X i A i }) = d.h. f i ist Dichte von X i, und weiter ( d ) P {X i A i } = i=1 f i (x i ) dx i, A i d P ({X i A i }). i=1 243/1

30 50. Bemerkung Mit Satz 49: Modellierung der unabhängigen Hintereinanderausführung von Einzelexperimenten, deren Verteilungen Dichten besitzen. 51. Beispiel Pfeiltreffer auf Dartscheibe, siehe Bsp. 46. Satz 49 zeigt: X 1, X 2 nicht unabhängig. 52. Definition d-dimensionaler Zufallsvektor X mit Dichte ( f X (x) = (2π) d/2 exp 1 2 heißt standard-normalverteilt (in R d ). d i=1 x 2 i ) 244/1

31 53. Beispiel Dichte einer 2-dim. normalverteilten ZV /1

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 1 3.34 1.1 Angabe Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 U sei auf dem Intervall (0, 1) uniform verteilt. Zeigen

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Copulas und Abhängigkeit Johannes Paschetag Mathematisches Institut der Universität zu Köln Wintersemester 2009/10 Betreuung: Prof. Schmidli, J. Eisenberg i Inhaltsverzeichnis

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

Mini-Skript Wahrscheinlichkeitstheorie und Statistik

Mini-Skript Wahrscheinlichkeitstheorie und Statistik Mini-Skript Wahrscheinlichkeitstheorie und Statistik Peter Bühlmann Georg Grafendorfer, Lukas Meier Inhaltsverzeichnis 1 Der Begriff der Wahrscheinlichkeit 1 1.1 Rechenregeln für Wahrscheinlichkeiten........................

Mehr

Statistik - Fehlerrechnung - Auswertung von Messungen

Statistik - Fehlerrechnung - Auswertung von Messungen 2013-11-13 Statistik - Fehlerrechnung - Auswertung von Messungen TEIL I Vorbereitungskurs F-Praktikum B (Physik), RWTH Aachen Thomas Hebbeker Literatur Eindimensionaler Fall: Grundbegriffe Wahrscheinlichkeitsverteilungen:

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr

Einführung in die Stochastik für Informatiker Sommersemester 2000 Prof. Mathar

Einführung in die Stochastik für Informatiker Sommersemester 2000 Prof. Mathar Einführung in die Stochastik für Informatiker Sommersemester 2000 Prof. Mathar getext von René Wörzberger rene@woerzberger.de Bilder Thorsten Uthke Review Diego Biurrun diego@pool.informatik.rwth-aachen.de

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Monte Carlo Methoden in Kreditrisiko-Management

Monte Carlo Methoden in Kreditrisiko-Management Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n i=1 L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen

Mehr

Grundlagen der Monte-Carlo-Simulation. Dr. Sebastian Lück 7. Februar 2012

Grundlagen der Monte-Carlo-Simulation. Dr. Sebastian Lück 7. Februar 2012 Grundlagen der Monte-Carlo-Simulation Dr. Sebastian Lück 7. Februar 2012 page 2 Contents Motivation Erzeugung von SPZZ Software Transformation von SPZZ Akzeptanz- und Verwerfungsmethode Monte-Carlo-Integration

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

1 Stochastische Prozesse in stetiger Zeit

1 Stochastische Prozesse in stetiger Zeit 1 Stochastische Prozesse in stetiger Zeit 1.1 Grundlagen Wir betrachten zufällige Prozesse, definiert auf einem Wahrscheinlichkeitsraum (Ω, F, P), welche Werte in einen fest gewählten Zustandsraum annehmen.

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Michael Unrau HS WS 08/09 14 November 2008 HS 08/09 Monte-Carlo Methoden 14 November 2008 1 / 24

Mehr

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/536 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist Frage Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist k a F (x) =1 k>0,x k x Finden Sie den Erwartungswert und den Median der Dichte für a>1. (Bei

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Solvency II und die Standardformel

Solvency II und die Standardformel Fakultät Mathematik und Naturwissenschaften Institut für Mathematische Stochastik Solvency II und die Standardformel Festkolloquium 20 Jahre (neue) Versicherungsmathematik an der TU Dresden Sebastian Fuchs

Mehr

Einführung in die. Wahrscheinlichkeitstheorie und Statistik

Einführung in die. Wahrscheinlichkeitstheorie und Statistik Institut für Mathematische Stochastik Einführung in die Wahrscheinlichkeitstheorie und Statistik (Kurzskript zur Vorlesung Wintersemester 2014/15 von Prof. Dr. Norbert Gaffke Inhaltsverzeichnis 1 Wahrscheinlichkeitsräume

Mehr

Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K.

Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K. Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K. Wert der Call Option zum Zeitpunkt T: max{s T K,0} Preis der ECO zum Zeitpunkt t < T: C = C(t,

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 2014 INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP) KIT Universität des Landes Baden-Württemberg und

Mehr

STOCHASTISCHE PROZESSE. Vorlesungsskript

STOCHASTISCHE PROZESSE. Vorlesungsskript STOCHASTISCHE PROZESSE II: Martingale und Brownsche Bewegung Wolfgang König Vorlesungsskript Universität Leipzig Wintersemester 2005/6 Inhaltsverzeichnis 1 Theorie der Martingale 3 1.1 Definition und

Mehr

Die Binomialverteilung

Die Binomialverteilung Fachseminar zur Stochastik Die Binomialverteilung 23.11.2015 Referenten: Carolin Labrzycki und Caroline Kemper Gliederung Einstieg Definition der Binomialverteilung Herleitung der Formel an einem Beispiel

Mehr

Computational Finance

Computational Finance Computational Finance Kapitel 2.1: Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

2.1 Berechnung gleichverteilter Zufallszahlen. (Linearer Kongruenz-Generator)

2.1 Berechnung gleichverteilter Zufallszahlen. (Linearer Kongruenz-Generator) Seydel: Skript umerische Finanzmathematik, Kap. 2 (Version 20) 33 ¾º Ö ÒÙÒ ÚÓÒ Ù ÐÐ Þ Ð Ò Definition (Stichprobe einer Verteilung) Eine Folge von Zahlen heißt Stichprobe (sample) von einer Verteilungsfunktion

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Lebensdauer eines x-jährigen

Lebensdauer eines x-jährigen Lebensdauer eines x-jährigen Sabrina Scheriau 20. November 2007, Graz 1 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis 1 Einleitung 3 2 Sterbewahrscheinlichkeiten 4 2.1 Definition und Ermittlung....................

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Statistische Methoden

Statistische Methoden Statistische Methoden Dr. C.J. Luchsinger 3 Grundlagen der Statistik Literatur Kapitel 3: Lindgren: Kapitel 7 3.1 Überblick Die Statistik ist ein ausuferndes Wissensgebiet. Man könnte problemlos 20 Semester

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Analyse von Extremwerten

Analyse von Extremwerten Analyse von Extremwerten Interdisziplinäres Seminar: Statistische Verfahren in den Geowissenschaften Anna Hamann betreut durch Prof. Dr. Helmut Küchenhoff, Institut für Statistik Ludwig Maximilians Universität

Mehr

Aufgabe 1 10 ECTS. y i x j gering mittel hoch n i Hausrat 200 25 0 225 KFZ 0 10 75 85 Unfall 20 35 90 145 Reiserücktritt 40 5 0 45 n j 260 75 165 500

Aufgabe 1 10 ECTS. y i x j gering mittel hoch n i Hausrat 200 25 0 225 KFZ 0 10 75 85 Unfall 20 35 90 145 Reiserücktritt 40 5 0 45 n j 260 75 165 500 Aufgabe 1 Für die Securance-Versicherung liegen Ihnen die gemeinsamen absoluten Häugkeiten der Merkmale X: Schadenshöhe und Y : Versicherungsart für die letzten 500 gemeldeten Schäden vor. 1. Interpretieren

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Credit Metrics. Wird in erster Linie für die Evaluierung von Bond Portfolios verwendet. (Siehe Crouhy et al. (2000), J.P.Morgan Inc.

Credit Metrics. Wird in erster Linie für die Evaluierung von Bond Portfolios verwendet. (Siehe Crouhy et al. (2000), J.P.Morgan Inc. Wurde bei J.P.Morgan entwickelt. Credit Metrics Wird in erster Linie für die Evaluierung von Bond Portfolios verwendet. (Siehe Crouhy et al. (2000), J.P.Morgan Inc. (1997)) Basiert auf ein Bonität-Einstufungssystem

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

MA Projekt: Langfristige Kapitalmarktsimulation

MA Projekt: Langfristige Kapitalmarktsimulation MA Projekt: Langfristige Kapitalmarktsimulation Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring

Mehr

Statistik II. Universität Ulm Abteilung Stochastik. Vorlesungsskript Prof. Dr. Volker Schmidt Stand: Wintersemester 2007/08

Statistik II. Universität Ulm Abteilung Stochastik. Vorlesungsskript Prof. Dr. Volker Schmidt Stand: Wintersemester 2007/08 CURANDO UNIVERSITÄT ULM SCIENDO DOCENDO Statistik II Universität Ulm Abteilung Stochastik Vorlesungsskript Prof Dr Volker Schmidt Stand: Wintersemester 2007/08 Ulm, im Februar 2008 INHALTSVERZEICHNIS 2

Mehr

Jan Kallsen. Mathematical Finance Eine Einführung in die zeitdiskrete Finanzmathematik

Jan Kallsen. Mathematical Finance Eine Einführung in die zeitdiskrete Finanzmathematik Jan Kallsen Mathematical Finance Eine Einführung in die zeitdiskrete Finanzmathematik AU zu Kiel, WS 13/14, Stand 10. Februar 2014 Inhaltsverzeichnis 1 Mathematische Hilfsmittel 4 1.1 Absolutstetigkeit

Mehr

Monty Hall-Problem. Wochen 3 und 4: Verteilungen von Zufallsvariablen. Lernziele. Diskrete Verteilungen

Monty Hall-Problem. Wochen 3 und 4: Verteilungen von Zufallsvariablen. Lernziele. Diskrete Verteilungen Monty Hall-Problem Wochen 3 und 4: Verteilungen von Zufallsvariablen US-amerikanische Fernseh-Show Let s make a deal, moderiert von Monty Hall: WBL 15/17, 04.05.2015 Alain Hauser

Mehr

Tutorial 2: Simulationen

Tutorial 2: Simulationen Tutorial 2: Simulationen Andrea Wiencierz Institut für Statistik, LMU München Andrea.Wiencierz@stat.uni-muenchen.de Abschlussarbeiten-Kolloquium, AG Augustin A. Wiencierz (LMU Munich) Literature & LATEX

Mehr

Einführung und Beispiele

Einführung und Beispiele Kapitel 1 Einführung und Beispiele Inhalt: Anwendungsbeispiele erste Definition eines stochastischen Prozesses einige spezielle stochastische Prozesse Ziel: Aufzeigen der Vielfalt stochastischer Prozesse

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer

Mehr

Genexpression. Expression eines einzelnen Gens. Expressionsmessung. Genexpressionsmessung. Transkription (Vorgang) Genexpression

Genexpression. Expression eines einzelnen Gens. Expressionsmessung. Genexpressionsmessung. Transkription (Vorgang) Genexpression Genexpressionsmessung Genexpression Transkription (Vorgang) Genexpression (quantitativ) Wieviele m-rna Moleküle eines bestimmten Gens sind in den Zellen? Genomische Datenanalyse 8. Kapitel Wie mißt man

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 5. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Glossar Portfolio: In der Ökonomie bezeichnet der Begriff Portfolio ein Bündel von Investitionen, das

Mehr

Gaußsche Prozesse - ein funktionalanalytischer Zugang

Gaußsche Prozesse - ein funktionalanalytischer Zugang Universität Ulm Fakultät für Mathematik und Wirtschaftswissenschaften Gaußsche Prozesse - ein funktionalanalytischer Zugang Bachelorarbeit in Wirtschaftsmathematik vorgelegt von Clemens Kraus am 31. Mai

Mehr

Hierarchische Archimedische Copulas

Hierarchische Archimedische Copulas Hierarchische Archimedische Copulas Bachelorarbeit im Studiengang Wirtschaftsmathematik am Fachbereich Mathematik und Informatik der Philipps-Universität Marburg eingereicht von Yuriy Pinkhasik Marburg,

Mehr

Stochastische Prozesse Gliederung zur Vorlesung im Sommersemester 2006

Stochastische Prozesse Gliederung zur Vorlesung im Sommersemester 2006 Stochastische Prozesse Gliederung zur Vorlesung im Sommersemester 26 Markus Reiß Universität Heidelberg reiss@statlab.uni-heidelberg.de VORLÄUFIGE FASSUNG: 28. Juli 26 Inhaltsverzeichnis 1 Der Poissonprozess

Mehr

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada Stochastische Analysis für Zufallsmatrizen Roland Speicher Queen s University Kingston, Kanada Was ist eine Zufallsmatrix? Zufallsmatrix = Matrix mit zufälligen Einträgen A : Ω M N (C) Was ist eine Zufallsmatrix?

Mehr

Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem

Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem Inauguraldissertation zur Erlangung des Doktorgrades der Mathematisch Naturwissenschaftlichen

Mehr

Unsupervised Kernel Regression

Unsupervised Kernel Regression 9. Mai 26 Inhalt Nichtlineare Dimensionsreduktion mittels UKR (Unüberwachte KernRegression, 25) Anknüpfungspunkte Datamining I: PCA + Hauptkurven Benötigte Zutaten Klassische Kernregression Kerndichteschätzung

Mehr

Grundlagen der Stochastischen Analysis. Egbert Dettweiler

Grundlagen der Stochastischen Analysis. Egbert Dettweiler Grundlagen der Stochastischen Analysis Egbert Dettweiler Vorwort Der erste Teil des vorliegenden Manuskripts ist im wesentlichen eine Vorlesungsausarbeitung einer im Sommersemester 23 an der Universität

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 8.1 Schätzer für Lage- und Skalenparameter und Verteilungsmodellwahl Lageparameter (l(x + a) = l(x) + a): Erwartungswert EX Median von X

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Klaus Pötzelberger Department of Statistics and Mathematics Wirtschaftsuniversität Wien

Klaus Pötzelberger Department of Statistics and Mathematics Wirtschaftsuniversität Wien Interdisziplinäres Vertiefungsfach Grundkurs I: Stochastische Grundlagen der Finanzmathematik Wahlfach Mathematical Methods: Wahrscheinlichkeitsrechnung Klaus Pötzelberger Department of Statistics and

Mehr

3 Monte-Carlo-Simulationen

3 Monte-Carlo-Simulationen 3 Monte-Carlo-Simulationen In diesem Kapitel soll mit der so genannten Monte-Carlo-Methode ein wichtiges Anwendungsgebiet des in Kapitel 2 erarbeiteten Begriffs- und Methodenapparats detaillierter beleuchtet

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Michael Schaeer 3.04.03 Abstract This seminar is about convex functions and several imortant ineualities. At the beginning the term

Mehr

ZUFALLSZAHLEN. WPG Informatik / Mathematik. BG/BRG Bad Ischl. A. Lindner

ZUFALLSZAHLEN. WPG Informatik / Mathematik. BG/BRG Bad Ischl. A. Lindner ZUFALLSZAHLEN WPG Informatik / Mathematik BG/BRG Bad Ischl A. Lindner 1 BEDEUTUNG VON ZUFALLSZAHLEN Beispiel: Computertip für Lotto in einer Trafik. Wie kann ein (elektronisches) Gerät, das nach einem

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Zahlreiche Vorgänge in der Natur werden durch stochastische Prozesse bestimmt. Beispiele: Diffusion Spin-Spin-Wechselwirkung (Magnetisierung eines Ferromagneten, Ising-Modell)

Mehr

Nichtlebenversicherungsmathematik Aus welchen Teilen besteht eine Prämie Zufallsrisiko, Parameterrisiko, Risikokapital Risikomasse (VaR, ES) Definition von Kohärenz Zusammengesetze Poisson: S(i) CP, was

Mehr

Asymptotische Eigenschaften einer neuen Klasse von nichtparametrischen Zwei-Stichproben-Tests

Asymptotische Eigenschaften einer neuen Klasse von nichtparametrischen Zwei-Stichproben-Tests Asymptotische Eigenschaften einer neuen Klasse von nichtparametrischen Zwei-Stichproben-Tests Vom Fachbereich Mathematik der Universität Hannover zur Erlangung des Grades Doktor der Naturwissenschaften

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Analytische Methoden und die Black-Scholes Modelle

Analytische Methoden und die Black-Scholes Modelle Analytische Methoden und die Black-Scholes Modelle Diplomverteidigung Universität Rostock Institut für Mathematik 20.01.2011 Agenda 1 Das Ornstein-Uhlenbeck Volatilitätsmodell 2 in L 2 (R 2 ) 3 4 Problem

Mehr

Stetige Verteilungsmodelle

Stetige Verteilungsmodelle Stetige Verteilungsmodelle Worum geht es in diesem Modul? Stetige Verteilungsfunktionen Quantile Dichtefunktion Maßzahlen stetiger Verteilungen Stetige Gleichverteilung Exponentialverteilung Überprüfung

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 7. November 2013 6 L p -Räume Mit Hilfe der Masstheorie können wir nun die sog. L p -Räume einführen. Diese Räume sind wichtig in vielen

Mehr

Stochastische Risikotheorie

Stochastische Risikotheorie Stochastische Risikotheorie Vorlesungsskript Prof. Dr. Evgeny Spodarev Universität Ulm 28 Vorwort Dieses Skript entstand aus einer Vorlesung über stochastische Risikotheorie, die ich in den Jahren 22-24

Mehr

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Rückwärtsgleichung P (t) = QP (t), P (0) = E eine minimale nicht negative Lösung (P (t) : t 0). Die Lösung bildet eine Matrix Halbgruppe, d.h. P (s)p

Mehr

Die Weibullanalyse mit Excel Kenngrößen für Zuverlässigkeit und Lebensdauer

Die Weibullanalyse mit Excel Kenngrößen für Zuverlässigkeit und Lebensdauer QUALITY-APPS Applikationen für das Qualitätsmanagement Die Weibullanalyse mit Excel Kenngrößen für Zuverlässigkeit und Lebensdauer Autor: Dr. Konrad Reuter Die Weibull-Verteilung ist ein statistisches

Mehr

Risikomessung und Value at Risk Wintersemester 2013/14

Risikomessung und Value at Risk Wintersemester 2013/14 Risikomessung und Value at Risk Wintersemester 2013/14 Walter Sanddorf-Köhle Statistik und Ökonometrie Foliensatz Nr. 11 Version vom 24. Januar 2014 1 / 45 6.5.1 Bisherige Vorgehensweise zur Berechnung

Mehr

Grundlagen der Variationsrechnung

Grundlagen der Variationsrechnung Universität des Saarlandes Fachrichtung 6.1 Mathematik /home/lehrstuhl/ag-fuchs/olli/work/texstyles/eule-eps-conv Grundlagen der Variationsrechnung Eine anwendungsorientierte Einführung in die lineare

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

Einführung in die Wahrscheinlichkeitsrechnung und Statistik

Einführung in die Wahrscheinlichkeitsrechnung und Statistik Materialien zu Stochastik 1 Einführung in die Wahrscheinlichkeitsrechnung und Statistik Dr. Christian Kredler WS 2003/04 Inhaltsverzeichnis Teil 1: Wahrscheinlichkeitsrechnung 1 1 Grundlagen der Wahrscheinlichkeitsrechnung

Mehr

Beispiele zur UE Wirtschaftsstatistik 1 bei Nagel

Beispiele zur UE Wirtschaftsstatistik 1 bei Nagel Beispiele zur UE Wirtschaftsstatistik 1 bei Nagel 1 Ereignisse und Wahrscheinlichkeiten 1. Ein Würfel wird zweimal geworfen, der Stichprobenraum Ω ist Ihnen nicht neu. Versuchen Sie, den Stichprobenraum

Mehr

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? BINARY CHOICE MODELS 1 mit Pr( Y = 1) = P Y = 0 mit Pr( Y = 0) = 1 P Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? Y i = X i β + ε i Probleme: Nonsense Predictions

Mehr

Diplomarbeit. Arbitragefreies Bewerten von Schadenversicherungen. von Ingmar Schiltz

Diplomarbeit. Arbitragefreies Bewerten von Schadenversicherungen. von Ingmar Schiltz Diplomarbeit Arbitragefreies Bewerten von Schadenversicherungen von Ingmar Schiltz Universität Siegen Fachbereich Mathematik Juni 2005 ARBITRAGEFREIES BEWERTEN VON SCHADENVERSICHERUNGEN 2 Betreuer und

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 Inhaltsverzeichnis Vorbemerkungen

Mehr

Modellgestützte Analyse und Optimierung Übungsblatt 4

Modellgestützte Analyse und Optimierung Übungsblatt 4 Fakultät für Informatik Lehrstuhl 4 Peter Buchholz, Jan Kriege Sommersemester 2015 Modellgestützte Analyse und Optimierung Übungsblatt 4 Ausgabe: 27.04.2015, Abgabe: 04.05.2015 (12 Uhr) Aufgabe 4.1: Verteilungsfunktionen

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

Wahrscheinlichkeitstheoretische Grundlagen für False Discovery Rate-kontrollierende multiple Testprozeduren

Wahrscheinlichkeitstheoretische Grundlagen für False Discovery Rate-kontrollierende multiple Testprozeduren Wahrscheinlichkeitstheoretische Grundlagen für False Discovery Rate-kontrollierende multiple Testprozeduren Thorsten Dickhaus Universität des Saarlandes, 06. Juli 2009 Übersicht Einführung: Multiples Testen

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr