Monte Carlo Simulationen
|
|
|
- Jörn Wolfgang Esser
- vor 10 Jahren
- Abrufe
Transkript
1 Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 2014 INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP) KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
2 Gliederung 1 Was sind Monte Carlo Simulationen? 2 Zufallszahlen 3 Erzeugung gleichverteilter Zufallszahlen 4 Monte Carlo Integration 5 Erzeugung beliebig verteilter Zufallszahlen 6 Anwendungsgebiete in und außerhalb der Physik Stefan Wunsch Monte Carlo Simulationen 31. Mai
3 Was sind Monte Carlo Simulationen? Stefan Wunsch Monte Carlo Simulationen 31. Mai
4 Was sind Monte Carlo Simulationen? Simulationen bzw. Methoden, die auf Zufallszahlen beruhen Name ist abgeleitet vom Monte Carlo Casino in Monaco Hauptanwendungsgebiete sind Optimierungsprobleme, numerische Integration von hochdimensionalen Integralen und Erzeugung von Wahrscheinlichkeitsverteilungen wichtige Personen: Stanislaw Ulam, Nicholas Metropolis und John von Neumann Entwicklung am Los Alamos National Laboratory im Manhatten Project (ca. 1940) Eng verbunden mit den ersten vollprogrammierbaren Computern: Z3 (1941) und ENIAC (1946) Stefan Wunsch Monte Carlo Simulationen 31. Mai
5 Zufallszahlen Stefan Wunsch Monte Carlo Simulationen 31. Mai
6 Zufallszahlen echter Zufall nur über stochastische Prozesse, z. B. radioaktive Zerfälle, Umgebungsrauschen aus Gerätetreibern UNIX: /dev/random, Entropiepool aus Umgebungsrauschen, Zufallszahlen sehr hoher Qualität Probleme: standardmäßig maximal 4096 Bit, füllt sich zu langsam, blockiert Zugriff bei leerem Pool Andere Quelle: QRNG (Quantum Randomness) Service der HU Berlin, gleichverteilte Zufallszahlen mit bis zu MByte/s zum Download Pseudozufallszahlen: Zahlen aus deterministischer Folge Stefan Wunsch Monte Carlo Simulationen 31. Mai
7 Erzeugung gleichverteilter Zufallszahlen Stefan Wunsch Monte Carlo Simulationen 31. Mai
8 Erzeugung gleichverteilter Zufallszahlen Basis für alle Monte Carlo Anwendungen Mögliche deterministische Zufallsgeneratoren nicht-periodische Generatoren, z. B. Nachkommastellen von π Problem: lange, aber feste Folge, Verteilung nicht wirklich bekannt periodisch-rekursive Generatoren, im Folgenden behandelt Periodenlänge als guter Anhaltspunkt für die Qualität eines Generators Geschwindigkeit der Implementierung beschränkt Simulation Reproduzierbarkeit der Folge ist erwünscht Stefan Wunsch Monte Carlo Simulationen 31. Mai
9 Linear Congruential Generator X n+1 = (ax n + c) mod (m) Modulo m: m > 0 Multiplier a: 0 < a < m Increment c: 0 c < m Seed X 0 : 0 X 0 < m Gleichverteilung auf [0, 1) über Transformation U = X m Periodenlängen in der Größenordnung Stefan Wunsch Monte Carlo Simulationen 31. Mai
10 Linear Congruential Generator Mögliche Ausbildung von Hyperebenen bei ungünstiger Wahl der Parameter. LCG nie für stochastische Simulationen benutzen. Stefan Wunsch Monte Carlo Simulationen 31. Mai
11 Mersenne-Twister Algorithmus h = Y i N Y i N mod ( 2 31) + Y i N+1 mod ( 2 31) ( ) h Y i = Y i 227 floor [(hmod (2)) 0x9908b0df)] 2 meist benutzter Pseudozufallszahlengenerator N = Bit Integer als Eingabeparameter (Seed) Periodenlänge von (Mersenne Primzahl) gleichverteilt auf bis zu 623 Dimensionen implementiert in ROOT in TRandom3, Standard in Python, Maple, MATLAB, Ruby,... in C++ seit C++11 und in Boost Libraries und Glib vorhanden Stefan Wunsch Monte Carlo Simulationen 31. Mai
12 Anwendungsbeispiel: Pi Erstelle zufälliges Tuple mit r 1, r 2 [0, 1] ( ) r1 x = r 2 Akzeptiere Punkt für x < 1 Nehme Anzahl akzeptierte Punkte N A und Gesamtanzahl Punkte N G Berechne π mit π = 4 NA N G. Stefan Wunsch Monte Carlo Simulationen 31. Mai
13 Monte Carlo Integration Stefan Wunsch Monte Carlo Simulationen 31. Mai
14 MC Integration: Verfahren Definition Erwartungswert: x = xϕ(x)dx Erwartungswert f (x): f = f (x)ϕ(x)dx zentrale Grenzwertsatz der Wahrscheinlichkeitsrechnung f = 1 N N i f (x i ) mit x i nach ϕ(x) verteilt Fehler des Mittelwerts: σ N = f (x)2 f (x) 2 N b a f (x)ϕ(x)dx = 1 b b a a f (x)dx 1 N f (x) N i f (x i ) ± 2 f (x) 2 N Stefan Wunsch Monte Carlo Simulationen 31. Mai
15 MC Integration: Fehler f(x) Fehler Trapezverfahren: ɛ 1 N d 2 Fehler MC Integration: ɛ 1 N 1 2 MC Integration hat geringeren Fehler für d > 4 Dimensionen. x Trapezverfahren Stefan Wunsch Monte Carlo Simulationen 31. Mai
16 MC Integration: Laufzeitverhalten MC Integration: Berechnungspunkte N unabhängig von der Dimension d bei konstantem Fehler ɛ. Trapezverfahren: Berechnungspunkte N steigen exponentiell mit der Dimension mit exp ( ) d 2 bei konstantem Fehler ɛ. N d Stefan Wunsch Monte Carlo Simulationen 31. Mai
17 Erzeugung beliebig verteilter Zufallszahlen Stefan Wunsch Monte Carlo Simulationen 31. Mai
18 Neumann sches Rückweisungsverfahren x i = x min + r 2i x φ(x) y i = r 2i+1 ϕ max Akzeptiere Wert, wenn y i < ϕ(x i ) Nachteil: Bei steilen Verteilungen müssen sehr viele Zahlen verworfen werden. x Stefan Wunsch Monte Carlo Simulationen 31. Mai
19 Transformationsmethode φ(x) Φ(x) 1 y x 0 x Stefan Wunsch Monte Carlo Simulationen 31. Mai
20 Transformationsmethode ϕ(x) ϕ(y) mit x = f (y) x ϕ(x )dx = y ϕ(y )dy Φ(x ) x = Φ(y ) y mit Φ(y) = y x = Φ 1 (y) Vorteil: Direktes Abbilden ohne Verwerfen von Zufallszahlen. Nachteil: Wahrscheinlichkeitsdichte muss integrierbar und invertierbar sein für analytische Transformation. Stefan Wunsch Monte Carlo Simulationen 31. Mai
21 Majorantenverfahren x i = M 1 (r 2i ) y i = r 2i+1 m(x i ) Akzeptiere Wert, wenn y i < ϕ(x i ) φ(x) m(x) f (x) Vorteil: Nur f (x) Werte werden in einem Punkt x verworfen. x Stefan Wunsch Monte Carlo Simulationen 31. Mai
22 Box-Müller Verfahren Erzeugung von standardnormalverteilten Zufallszahlen z. B. Simulation mittelwertfreies weißes Rauschen exp( x 2 )dx nicht analytisch lösbar Transformationsmethode x 1 nur voll numerisch nutzbar Lösung: Methode in zwei Dimensionen benutzen ( ( )) 1 x 2 x 2 2π exp 1 + x2 2 dx 1 dx 2 = 2 r mit x 1 = r cos(θ) und x 2 = r sin(θ) θ 1 2π exp ( r ) 2 rdrdθ 2 Stefan Wunsch Monte Carlo Simulationen 31. Mai
23 Box-Müller Verfahren θ 0 1 r 2π dθ exp ( r ) 2 r dr = y 1 y y 1 = θ 2π θ = 2πy 1 ( ) r 2 y 2 = 1 exp r = 2 log (1 y 2 ) = 2 log (y 2 ) 2 x 1 = r cos(θ) = 2 log (y 2 ) cos(2πy 1 ) x 2 = r sin(θ) = 2 log (y 2 ) sin(2πy 1 ) Stefan Wunsch Monte Carlo Simulationen 31. Mai
24 Anwendungsbeispiele Stefan Wunsch Monte Carlo Simulationen 31. Mai
25 Metropolis Algorithmus: Energieniveaus Simulation von System mit diskreten Energieniveaus Wahrscheinlichkeit für ein Teilchen im Zustand X folgt Boltzmannverteilung ( 1 p(x) = ( ) exp E ) X expi E i k B T k B T Suche Besetzung der Niveaus für gegebene Temperatur T und Anfangszustand X 0 Stefan Wunsch Monte Carlo Simulationen 31. Mai
26 Metropolis Algorithmus: Energieniveaus Wähle zufälligen Zustand Y aus. Dieser wird vom aktuellen Zustand X aus angenommen mit der Akzeptanzwahrscheinlichkeit ) A(X Y ) = min ( 1, p(y ) p(x) = min Entscheide über die Akzeptanz mit r [0, 1) und ( ( r < min 1, exp E )). k B T ( ( 1, exp E )). k B T Histogrammiere angenommene Zustände bei N-facher Ausführung Stefan Wunsch Monte Carlo Simulationen 31. Mai
27 Mehrteilchensystem im Kasten Mehrteilchensystem mit N Teilchen und gegenseitig abstoßender Kraft (Coulombpotential) und Anfangspositionen x 0,i V( x) = N i=0 c x x i Ermittle neue Position eines Teilchens mit ( cos(2πr1 ) x n = x n 1 + a r 2 sin(2πr 1 ) [ ( Akzeptiere neue Position für r < min 1, exp r [0, 1) und innerhalb Kasten. ). V( x n 1) V( x n) k B T )] mit Stefan Wunsch Monte Carlo Simulationen 31. Mai
28 Aktienmarkt Gute Näherung für das Verhalten von Aktienmärkten ist ein Random Walk Beschreibung über Diffusionsgleichung der Form mit den Eigenschaften ds = µsdt + σɛ dt µ : const., Drift σ : const., Variation ɛ : normalverteilt Stefan Wunsch Monte Carlo Simulationen 31. Mai
Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt
Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 014 Inhaltsverzeichnis Inhaltsverzeichnis 1 Was sind Monte Carlo Simulationen? 3 Zufallszahlen 3
Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen
Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen Marco A. Harrendorf Hauptseminar Methoden der experimentellen Teilchenphysik WS 2011/2012 Karlsruhe Institut für Technologie (KIT) 25.11.2011
Statistische Thermodynamik I Lösungen zur Serie 1
Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen
Monte-Carlo- Simulation. Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA
Monte-Carlo- Simulation Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA Übersicht Einleitung Simulation mit Geant4 generierte Daten Zusammenfassung 2 Simulation Mathematische Modellierung
Monte-Carlo-Simulation
Modellierung und Simulation Monte-Carlo-Simulation Universität Hamburg Johannes Schlundt 7. Januar 2013 Monte-Carlo-Simulation Johannes S. 1/31 Inhalt Motivation Geschichtliche Entwicklung Monte-Carlo-Simulation
Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin
Mathematik des Hybriden Monte-Carlo Marcus Weber Zuse Institute Berlin Statistische Thermodynamik Ziel: Am Computer ein Ensemble samplen. Messung im Gleichgewicht (zeitunabhängige Verteilung π der Systemzustände
Hauptseminar. Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit. Robert John 2.11.2011
Hauptseminar Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit Robert John 1 Inhalt Herkunft Stochastische Schätzung Monte-Carlo-Methode Varianzreduktion Zufallszahlen Anwendungsgebiete
Grundlagen der Monte Carlo Simulation
Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte
Was können Schüler anhand von Primzahltests über Mathematik lernen?
Was können Schüler anhand von Primzahltests über Mathematik lernen? Innermathematisches Vernetzen von Zahlentheorie und Wahrscheinlichkeitsrechnung Katharina Klembalski Humboldt-Universität Berlin 20.
Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren
Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Michael Unrau HS WS 08/09 14 November 2008 HS 08/09 Monte-Carlo Methoden 14 November 2008 1 / 24
Computational Finance
Computational Finance Kapitel 2.2: Monte Carlo Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4 / WiWi-Gebäude
q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678
Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [
Monte Carlo Simulationen
Monte Carlo Simulationen Zahlreiche Vorgänge in der Natur werden durch stochastische Prozesse bestimmt. Beispiele: Diffusion Spin-Spin-Wechselwirkung (Magnetisierung eines Ferromagneten, Ising-Modell)
Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge
2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten
Monte-Carlo Simulation
Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung
Ausarbeitung des Seminarvortrags zum Thema
Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung
Grundlagen der Monte-Carlo-Methode
Probieren geht über studieren Institut für experimentelle Kernphysik Karlsruher Institut für Technologie 16. November 2009 Übersicht Definitionen und Motivation 1 Definitionen und Motivation Typische Problemstellung
W-Rechnung und Statistik für Ingenieure Übung 11
W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz ([email protected]) Mathematikgebäude Raum 715 Christoph Kustosz ([email protected]) W-Rechnung und Statistik
Seminar Finanzmathematik
Seminar Finanzmathematik Simulationen zur Black-Scholes Formel von Christian Schmitz Übersicht Zufallszahlen am Computer Optionspreis als Erwartungswert Aktienkurse simulieren Black-Scholes Formel Theorie
Fotios Filis. Monte-Carlo-Simulation
Fotios Filis Monte-Carlo-Simulation Monte-Carlo-Methoden??? Spielcasino gibt Namen Monte Carlo war namensgebend für diese Art von Verfahren: Erste Tabellen mit Zufallszahlen wurden durch Roulette-Spiel-Ergebnisse
Zufallszahlen. Inhaltsüberblick
Veranstaltung: Chipkartensysteme 1, SS 2005 Prof. Dr. Martin Leischner Bearbeitet von Christian Linke Inhaltsüberblick generatoren Nicht-Deterministisch Deterministisch Güte von Erzeugung von für Chipkarten
Probabilistisches Tracking mit dem Condensation Algorithmus
Probabilistisches Tracking mit dem Condensation Algorithmus Seminar Medizinische Bildverarbeitung Axel Janßen Condensation - Conditional Density Propagation for Visual Tracking Michael Isard, Andrew Blake
Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975)
Dass das Problem, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen zu den wichtigsten und nützlichsten der ganzen Arithmetik gehört und den Fleiss
Grundlagen der Verschlüsselung und Authentifizierung (2)
Grundlagen der Verschlüsselung und Authentifizierung (2) Benjamin Klink Friedrich-Alexander Universität Erlangen-Nürnberg [email protected] Proseminar Konzepte von Betriebssystem-Komponenten
Die Monte-Carlo-Methode mit Pseudound Quasi-Zufallszahlen
Hauptseminar Methoden der experimentellen Teilchenphysik WS 2011/2012 Die Monte-Carlo-Methode mit Pseudound Quasi-Zufallszahlen Marco A. Harrendorf Karlsruhe Institut für Technologie, Bachelor Physik Vortrag
Binäre abhängige Variablen
Binäre abhängige Variablen Thushyanthan Baskaran [email protected] Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen
R ist freie Software und kann von der Website. www.r-project.org
R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird
Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011
Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit
Kapitel 3: Etwas Informationstheorie
Stefan Lucks 3: Informationstheorie 28 orlesung Kryptographie (SS06) Kapitel 3: Etwas Informationstheorie Komplexitätstheoretische Sicherheit: Der schnellste Algorithmus, K zu knacken erfordert mindestens
SOFTWARE FÜR PRG-APPLIKATIONEN
SOFTWARE FÜR PRG-APPLIKATIONEN Autor: Frank Bergmann Letzte Änderung: 04.12.2014 09:09 1 1 Inhaltsverzeichnis 1 Inhaltsverzeichnis... 2 2 Allgemeines... 3 3 Installation und Programmaufruf... 3 4 Einstellungen...
Statistik I für Betriebswirte Vorlesung 5
Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition
Computational Finance
Computational Finance Kapitel 2.1: Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4
Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist
Frage Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist k a F (x) =1 k>0,x k x Finden Sie den Erwartungswert und den Median der Dichte für a>1. (Bei
Simulation von Zinsentwicklungen und Bewertung von gängigen Finanzprodukten
Simulation von Zinsentwicklungen und Bewertung von gängigen Finanzprodukten Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 1. Februar 2010 1 / 7 Gliederung 1 Was ist Finanzmathematik
Seminar Finanzmathematik
Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung
Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau
1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank
Digitale Signaturen. Sven Tabbert
Digitale Signaturen Sven Tabbert Inhalt: Digitale Signaturen 1. Einleitung 2. Erzeugung Digitaler Signaturen 3. Signaturen und Einweg Hashfunktionen 4. Digital Signature Algorithmus 5. Zusammenfassung
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de
Informatik Aufgaben. 1. Erstelle ein Programm zur Berechnung der Summe der Zahlen von 1 bis n, z.b. n = 100.
Informatik Aufgaben 1. Erstelle ein Programm zur Berechnung der Summe der Zahlen von 1 bis n, z.b. n = 100. 2. Erstelle ein Programm, das die ersten 20 (z.b.) ungeraden Zahlen 1, 3, 5,... ausgibt und deren
Algorithmische Methoden für schwere Optimierungsprobleme
Algorithmische Methoden für schwere Optimierungsprobleme Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund
6.2 Perfekte Sicherheit
04 6.2 Perfekte Sicherheit Beweis. H(B AC) + H(A C) = H(ABC) H(AC) + H(AC) H(C) Wegen gilt Einsetzen in die Definition gibt = H(AB C). H(A BC) = H(AB C) H(B C). I(A; B C) = H(A C) H(AB C) + H(B C). Da
ZUFALLSZAHLEN. WPG Informatik / Mathematik. BG/BRG Bad Ischl. A. Lindner
ZUFALLSZAHLEN WPG Informatik / Mathematik BG/BRG Bad Ischl A. Lindner 1 BEDEUTUNG VON ZUFALLSZAHLEN Beispiel: Computertip für Lotto in einer Trafik. Wie kann ein (elektronisches) Gerät, das nach einem
FC1 - Monte Carlo Simulationen
FC1 - Monte Carlo Simulationen 16. Oktober 2007 Universität Paderborn - Theoretische Physik Autor: Simone Sanna, Stephan Blankenburg Datum: 16. Oktober 2007 FC1 - Monte Carlo Simulationen 3 1 Das Monte
Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff
Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer
Kompetitive Analysen von Online-Algorithmen
Kompetitive Analysen von Online-Algorithmen jonas echterhoff 16. Juli 004 1 Einführung 1.1 Terminologie Online-Algorithmen sind Algorithmen, die Probleme lösen sollen, bei denen Entscheidungen getroffen
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse
Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Yannik Behr Gliederung 1 Stochastische Prozesse Stochastische Prozesse Ein stochastischer Prozess ist ein Phänomen, dessen
Erstellen von x-y-diagrammen in OpenOffice.calc
Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei
Was ist PDF? Portable Document Format, von Adobe Systems entwickelt Multiplattformfähigkeit,
Was ist PDF? Portable Document Format, von Adobe Systems entwickelt Multiplattformfähigkeit, Wie kann ein PDF File angezeigt werden? kann mit Acrobat-Viewern angezeigt werden auf jeder Plattform!! (Unix,
Step by Step Webserver unter Windows Server 2003. von Christian Bartl
Step by Step Webserver unter Windows Server 2003 von Webserver unter Windows Server 2003 Um den WWW-Server-Dienst IIS (Internet Information Service) zu nutzen muss dieser zunächst installiert werden (wird
Monte Carlo Methoden
Monte Carlo Methoden im Verstärkungslernen [Spink] Bryan Spink 2003 Ketill Gunnarsson [ [email protected] ], Seminar zum Verstärkungslernen, Freie Universität Berlin [ www.inf.fu-berlin.de ] Einleitung
Monte-Carlo Simulation
Monte-Carlo Simulation Dolga Olena Otto-von-Guericke-Universität Fakultät für Informatik Seminar-Das virtuelle Labor Inhaltsverzeichnis Überblick Geschichte Anwendung -Bereiche -Spezielle Methoden Mathematische
Diana Lange. GENERATIVE GESTALTUNG Arten des Zufalls
Diana Lange GENERATIVE GESTALTUNG Arten des Zufalls RANDOM int index = 0; while (index < 200) { float x = random(0, width); float y = random(0, height); float d = random(40, 100); ellipse(x, y, d, d);
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8
. Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8
6.2 Scan-Konvertierung (Scan Conversion)
6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik
Steganographie mit Rastergrafiken
Steganographie mit Rastergrafiken Lars Herrmann [email protected] PG Stego p. 1 Übersicht Rastergrafiken Steganographische Verfahren LSB Stochastische Modulation Verfahren für S/W Bilder Stegoanalyse
Simulation mit modernen Tools - runde und spitze Berechnung von π -
Simulation mit modernen Tools - runde und spitze Berechnung von π - Prof. Dr. rer. nat. Stefan Ritter Fakultät EIT 7. April 01 Gliederung 1. Wozu Simulation?. Moderne Tools zur Simulation 1. Maple, Geogebra
Die Black-Scholes-Gleichung
Die Black-Scholes-Gleichung Franziska Merk 22.06.2012 Outline Optionen 1 Optionen 2 3 Optionen Eine Kaufoption ist ein Recht, eine Aktie zu einem heute (t=0) festgelegten Preis E an einem zukünftigen Zeitpunkt
Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über
Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion
Informatik für Schüler, Foliensatz 12 Pseudo-Zufallszahlen
rof. G. Kemnitz Institut für Informatik, Technische Universität Clausthal 14. April 2010 1/14 Informatik für Schüler, Foliensatz 12 Pseudo-Zufallszahlen Prof. G. Kemnitz Institut für Informatik, Technische
Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), [email protected] Michael Roers (Übung), roers@pik-potsdam.
Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), [email protected] Michael Roers (Übung), [email protected] 1 Gliederung 7 Weitere Krigingverfahren 7.1 Simple-Kriging 7.2 Indikator-Kriging
WEBINAR@LUNCHTIME THEMA: "SAS STORED PROCESSES - SCHNELL GEZAUBERT" HELENE SCHMITZ
WEBINAR@LUNCHTIME THEMA: "SAS STORED PROCESSES - SCHNELL GEZAUBERT" HELENE SCHMITZ HERZLICH WILLKOMMEN BEI WEBINAR@LUNCHTIME Moderation Anne K. Bogner-Hamleh SAS Institute GmbH Education Consultant Training
Analytische Methoden und die Black-Scholes Modelle
Analytische Methoden und die Black-Scholes Modelle Diplomverteidigung Universität Rostock Institut für Mathematik 20.01.2011 Agenda 1 Das Ornstein-Uhlenbeck Volatilitätsmodell 2 in L 2 (R 2 ) 3 4 Problem
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen
2. Aufgabe (3 Punkte) Errechne anhand der angegebenen Daten den Abschreibungssatz der linearen Abschreibung in Prozent. Erklärung:
Beschreibung zu den Aufgaben 1. bis 3. Im Zuge der Einführung des neuen Warenwirtschaftssystems hat die Marktplatz GmbH auch den Fuhrpark erweitert. Es wurden neue Lieferwagen, Pkw und Gabelstapler gekauft.
Data Mining: Einige Grundlagen aus der Stochastik
Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener
Beweisbar sichere Verschlüsselung
Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit [email protected] 6
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in
6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)
6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden
Fachhochschule Düsseldorf Wintersemester 2008/09
Fachhochschule Düsseldorf Wintersemester 2008/09 Teilfachprüfung Statistik im Studiengang Wirtschaft Prüfungsdatum: 26.01.2009 Prüfer: Prof. Dr. H. Peters, Diplom-Vw. Lothar Schmeink Prüfungsform: 2-stündige
Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015
Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet
Markov-Ketten-Monte-Carlo-Verfahren
Markov-Ketten-Monte-Carlo-Verfahren Anton Klimovsky 21. Juli 2014 Strichprobenerzeugung aus einer Verteilung (das Samplen). Markov- Ketten-Monte-Carlo-Verfahren. Metropolis-Hastings-Algorithmus. Gibbs-Sampler.
Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten
Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es
Physik 1 für Ingenieure
Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm [email protected] Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#
Monte Carlo Simulation (Grundlagen)
Der Titel des vorliegenden Beitrages wird bei den meisten Lesern vermutlich Assoziationen mit Roulette oder Black Jack hervorrufen. Allerdings haben das heutige Thema und die Spieltische nur den Namen
Aufgabe 6 Excel 2013 (Fortgeschrittene) Musterlösung
- 1 - Aufgabe 6 Excel 2013 (Fortgeschrittene) Musterlösung 1. Die Tabelle mit den Werten und Gewichten der Gegenstände, sowie die Spalte mit der Anzahl ist vorgegeben und braucht nur eingegeben zu werden
Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum
Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume
Theoretische Grundlagen der Informatik WS 09/10
Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3
Programmiertechnik II
Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen
$ % + 0 sonst. " p für X =1 $
31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses
Programmierung Weichenmodul S/D Tafel 1
Programmierung Weichenmodul S/D Tafel 1 Voraussetzungen: Fahrspannung ist abgeschalten (rote Taste an MC 2004 oder Einfrieren im Traincontroller) Programmiertaste am Modul ist gedrückt (rote LED leuchtet),
B 2. " Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!!
Das folgende System besteht aus 4 Schraubenfedern. Die Federn A ; B funktionieren unabhängig von einander. Die Ausfallzeit T (in Monaten) der Federn sei eine weibullverteilte Zufallsvariable mit den folgenden
Statistik. R. Frühwirth. Statistik. [email protected]. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536
[email protected] VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/536 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung
Spin-Modelle und Monte-Carlo Simulationen
Spin-Modelle und Monte-Carlo Simulationen Ralf Gamillscheg Technische Universität Graz 12. 1. 2006 Ralf Gamillscheg (TUG) Monte Carlo Simulationen 12. 1. 2006 1 / 22 Einleitung Spins uä. Statistische Physik
Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10
Computer Vision: AdaBoost D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Idee Gegeben sei eine Menge schwacher (einfacher, schlechter) Klassifikatoren Man bilde einen guten durch eine geschickte Kombination
7.3 Anwendungsbeispiele aus Physik und Technik
262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit
Mechanismus Design Auktionen
Mechanismus Design Auktionen Universität Hohenheim Alexander Staus Mechanismus Design Universität Hohenheim 1/25 Welche Auktionen kennen Sie? traditionelle Auktionshäuser ebay Immobilien Fahrräder Blumen
R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007
R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 SG15/25D NAME: Lösungen 1. In einer Packung sind Glühbirnen, davon sind zwei
MATHEMATISCHE ANALYSE VON ALGORITHMEN
MATHEMATISCHE ANALYSE VON ALGORITHMEN Michael Drmota Institut für Diskrete Mathematik und Geometrie, TU Wien [email protected] www.dmg.tuwien.ac.at/drmota/ Ringvorlesung SS 2008, TU Wien Algorithmus
Modellbildungssysteme: Pädagogische und didaktische Ziele
Modellbildungssysteme: Pädagogische und didaktische Ziele Was hat Modellbildung mit der Schule zu tun? Der Bildungsplan 1994 formuliert: "Die schnelle Zunahme des Wissens, die hohe Differenzierung und
Abitur 2007 Mathematik GK Stochastik Aufgabe C1
Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2007 Mathematik GK Stochastik Aufgabe C1 Eine Werbeagentur ermittelte durch eine Umfrage im Auftrag eines Kosmetikunternehmens vor Beginn einer Werbekampagne
Gase, Flüssigkeiten, Feststoffe
Gase, Flüssigkeiten, Feststoffe Charakteristische Eigenschaften der Aggregatzustände Gas: Flüssigkeit: Feststoff: Nimmt das Volumen und die Form seines Behälters an. Ist komprimierbar. Fliesst leicht.
Physik 4, Übung 8, Prof. Förster
Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls
Tritt beim Aufruf ein Fehler aus, so wird eine MessageBox mit dem Fehlercode und der Kommandozeile angezeigt.
WinCC UniAddIn Motivation Add-ins für WinCC können in VBA und VB6 programmiert werden. Andere Entwicklungsumgebungen werden nicht standardmäßig unterstützt. Die Entwicklung in VBA hat den Nachteil, dass
Funktionen (linear, quadratisch)
Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)
Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung
Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung ρ p ( x) + Uδ ( x) = const Damit kann die Druckänderung in Strömungsrichtung auch durch die
Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln):
Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes
