Einführung in die Maximum Likelihood Methodik
|
|
|
- Carl Krause
- vor 9 Jahren
- Abrufe
Transkript
1 in die Maximum Likelihood Methodik Thushyanthan Baskaran Alfred Weber Institut Ruprecht Karls Universität Heidelberg
2 Gliederung / 31
3 Maximum Likelihood (ML) ist in der Ökonomie nach OLS das wohl beliebteste Verfahren, um die Parameter eines empirischen Modells zu schätzen Hat eine Reihe von guten, aber auch viele problematische Eigenschaften Güte der Schätzung hat viel mit der Größe der Stichprobe und den richtigen Verteilungsannahmen zu tun 3 / 31
4 Vorteile Nichtlineare Modelle können relativ einfach geschätzt werden Normalverteilungsannahme bzgl. des Fehlerterms nicht essentiell Konsistent und asymptotisch effizient unter relativ schwachen Annahmen Flexibler als OLS 4 / 31
5 Nachteile Die Likelihood-Funktion muss explizit berechnet werden Oft müssen numerische Verfahren verwendet werden, um Maxima zu finden Sensitiv gegenüber Startwerten Kann in kleinen Samples extrem verzerrt sein Viele wünschenswerte Eigenschaften gelten nur asymptotisch 5 / 31
6 Gliederung / 31
7 Idee Man nimmt an, dass man ein Sample mit N Beobachtungen über eine Zufallsvariable hat Man hat also für i = 1,..., N Einheiten konkrete Werte der Variablen x i Dise Variable könnte beispielsweise sein Das Einkommen eines Individuums Wieviele Patienten in einem bestimmten Krankenhaus in letzten Jahr gestorben sind... 7 / 31
8 Idee Da jede dieser Beobachtungen per Annahme eine Zufallsvariable ist, hat jede auch eine stochastische Verteilung Also gibt es prinzipiell eine Wahrscheinlichkeit, mit der die i te Beobachtung, i = 1,.., N, genau den Wert x i annimmt Bei kontinuierlichen ZV hat kann man einem konkreten x i den entsprechenden Werte der Dichtefunktion zuordnen Wir machen im folgenden zur terminologischen Vereinfachung keinen Unterschied zwischen Wahrscheinlichkeits- und Dichtefunktionen 8 / 31
9 Beispiel Wenn x i Bernoulli-verteilt ist mit p = 0.3, dann nimmt x i den Wert 1 mit Wahrscheinlichkeit 0.3 und den Wert 0 mit Wahrscheinlichkeit 0.7 an Wenn x i Standardnormalverteilt ist, nimmt x i den Wert 2 mit Wahrscheinlichkeit an 9 / 31
10 Die i.i.d. Annahme Wir machen jetzt eine entscheidende Annahme: Alle x i sind identisch und unabhängig verteilt (i.i.d.) Konkret bedeutet das, dass alle x i derselben Verteilung entstammen, wie immer sie auch aussehen mag... Und die Wahrscheinlichkeit, die wir einem konkreten x i zuordnen, nicht davon abhängt, welche Werte alle anderen x j i angenommen haben Wie realistisch sind diese Annahmen? Warum machen wir sie? 10 / 31
11 Likelihoodfunktion Unter der i.i.d-annahme können wir nun einen einfachen Ausdruck für die Wahrscheinlichkeit angeben, mit der wir ein beliebiges Sample erhalten Lass also f (x i Θ) die Wahrscheinlichkeit sein, mit der die i te Beobachtung den Wert x i annimmt Die Wahrscheinlichkeit ergibt sich aus einer Wahrscheinlichkeitsfunktion, die von bestimmten Parametern Θ abhängt Bei Bernoulli also p, Bei Normalverteilung µ und σ 11 / 31
12 Likelihoodfunktion Die so genannte Likelihoodfunktion ist also Die Likelihoodfunktion L =f (x 1 Θ) f (x 2 Θ) f (x 3 Θ)... f (x N Θ) (1) N = f (x i Θ) (2) i=1 12 / 31
13 Maximum Die Idee ist nun, die Parameter so zu wählen, dass die Likelihoodfunktion maximal ist Man wählt also die Parameter so, dass die Wahrscheinlichkeit für das tatsächlich vorhandene Sample maximal ist Ein ziemlich indirektes Argument... Denn man kann die Wahrscheinlichkeit nicht beobachten, sondern nur die konkrete Ausprägung des Samples 13 / 31
14 Log-Likelihood Da man schwerer mit Produkten als mit Summen rechnen kann, transformiert man die Likelihoodfunktion Unter einer monotonen Transformation ändert sich das Maximum einer Funktion nicht Daher wird mit dem Logarithmus der Likelihoodfunktion gerechnet 14 / 31
15 Log-Likelihood Die Log-Likelihoodfunktion ist Die Log-Likelihoodfunktion ln L = ln (f (x 1 Θ) f (x 2 Θ) f (x 3 Θ)... f (x N Θ)) = ln (f (x 1 Θ)) + ln(f (x 2 Θ)) + ln(f (x 3 Θ)) f (x N Θ)) N = ln (f (x i Θ)) i 15 / 31
16 Gliederung / 31
17 Likelihoodfunktionen Im folgenden werden wir konkrete Likelihoodfunktionen herleiten Das Ziel ist zunächst nur, Parameter einer Wahrscheinlichkeitsfunktion zu schätzen Wir schätzen also hier noch nicht lineare Modelle Aber enger Zusammenhang / 31
18 Normalverteilung Wir fangen mit der Normalverteilung an Die Wahrscheinlichkeitsfunktion ist f (x i µ, σ) = 1 σ (x i µ) 2 2π exp 2σ 2 (3) Die Likelihoodfunktion ist ( ) 1 N Ni L = σ exp (x i µ) 2 2σ (4) 2π Warum? 18 / 31
19 Normalverteilung Die Log-Likelihoodfunktion ist ln L = N ln(1) N ln(σ ( N ) i (x i µ) 2 2π) 2σ 2 (5) Viel einfacher zu differenzieren als die Likelihoodfunktion / 31
20 Der Mittelwert Ableiten nach µ ergibt: d ln L N dµ : 2 i (x i µ) 2σ 2 = 0 (6) N µ = x i /N (7) Der Erwartungswert µ wird also unverzerrt mit dem Stichprobenmittelwert geschätzt i 20 / 31
21 Sum of Squares Ableiten nach σ ergibt: d ln L dσ : N N σ + 4σ i (x i µ) 2 4σ 4 = 0 (8) N σ 2 = (x i µ) 2 /N (9) Die Varianz wird konsistent, aber nicht erwartungstreu geschätzt Der Schätzer ist also nur asymptotisch effizient i 21 / 31
22 Bernoulli Jetzt schätzen wir die Parameter einer Bernoulli-Verteilung Es gibt nur einen: p Die Likelihoodfunktion kann man folgendermaßen schreiben n L = p x i (1 p) 1 x i (10) i=1 p i x i (1 p) N i x i (11) 22 / 31
23 Bernoulli Die Log-Likelihoodfunktion ist ln L = i x i ln(p) + (N i x i ) ln(1 p) (12) 23 / 31
24 Der Mittelwert, schon wieder Ableiten ergibt: d ln L dp : i x i p p = i N i x i 1 p = 0 (13) x i /N (14) Der Parameter p wird also mit dem Stichprobenmittelwert geschätzt Was ist dann der geschätzte Erwartungswert, was die geschätzte Varianz einer Bernoulli-Verteilung? 24 / 31
25 Gliederung / 31
26 Der Fehlerterm Die Parameter im linearen Modell werden nach demselben Prinzip geschätzt y i = a + bx i + ɛ i (15) Entscheidend ist hier, welche Verteilungsannahme man über den Fehlerterm macht Illustration des Sachverhaltes anhand eines normalverteilten Fehlerterms im linearen Modell 26 / 31
27 Normalverteilung Wir nehmen also an, dass der Fehlerterm normalverteilt ist Ausserdem nehmen wir wie immer an, dass E(ɛ i ) = 0 Die Wahrscheinlichkeit für ein konkretes ɛ i ist also f (ɛ i µ, σ) = 1 σ ɛ 2 2π exp i 2σ 2 (16) Also ergibt sich für die Likelihoodfunktion L = i ( ) 1 N f (ɛ i µ, σ) = σ exp i ɛ2 i 2σ 2 (17) 2π 27 / 31
28 Normalverteilung Bekanntlich gilt ɛ i = y i a bx i Also: ( ) 1 N L = σ exp i (y i a bx i )2 2σ 2 (18) 2π Das Aufstellen der Log-Likelihoodfunktion und das Ableiten nach a, b und σ funktioniert wie in dem Beispiel, wo wir µ bestimmt haben 28 / 31
29 a und b Man erhält Cov(x, y) a =ȳ x Var(x) (19) Cov(x, y) b = Var(x) (20) Also identisch zu den OLS Schätzern, von denen wir wissen, dass sie erwartungstreu sind 29 / 31
30 Die Varianz Für die Varianz ergibt sich aber σ 2 = i (y i a bx i ) 2 Zwar konsistent, aber nicht erwartungstreu N = i e2 i N (21) 30 / 31
31 Hausaufgabe Herleitung der Log-Likelihoodfunktion für das Probit-Modell!!!
Die Stochastischen Eigenschaften von OLS
Die Stochastischen Eigenschaften von OLS Das Bivariate Modell Thushyanthan Baskaran [email protected] Alfred Weber Institut Ruprecht Karls Universität Heidelberg Wiederholung
Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"
Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen
Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38
Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate
die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen
Kapitel 8 Schätzung von Parametern 8.1 Schätzmethoden Gegeben seien Beobachtungen Ü Ü ¾ Ü Ò die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen ¾ Ò auffassen. Die Verteilung
Binäre abhängige Variablen
Binäre abhängige Variablen Thushyanthan Baskaran [email protected] Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen
Wahrscheinlichkeitsrechnung und Statistik
10. Vorlesung - 2018 Grundbegriffe der Statistik statistische Einheiten = Objekte an denen interessierende Größen erfaßt werden z.b. Bevölkerung einer Stadt; Schüler einer bestimmten Schule; Patienten
Modellanpassung und Parameterschätzung. A: Übungsaufgaben
7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit
Einführung in Panel-Verfahren
Einführung in Panel-Verfahren Thushyanthan Baskaran [email protected] Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Drei Arten von Datensätzen Cross-Section
Fortgeschrittene Ökonometrie: Maximum Likelihood
Universität Regensburg, Lehrstuhl für Ökonometrie Sommersemester 202 Fortgeschrittene Ökonometrie: Maximum Likelihood Poissonverteilung Man betrachte die poisson-verteilten Zufallsvariablen y t, t =, 2,...,
Statistik I für Betriebswirte Vorlesung 13
Statistik I für Betriebswirte Vorlesung 13 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 4. Juli 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung
Wahrscheinlichkeitsverteilungen
Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet
Beispiel 6 (Einige Aufgaben zur Gleichverteilung)
Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß
Wichtige Definitionen und Aussagen
Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge
4. Verteilungen von Funktionen von Zufallsvariablen
4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten
OLS-Schätzung: asymptotische Eigenschaften
OLS-Schätzung: asymptotische Eigenschaften Stichwörter: Konvergenz in Wahrscheinlichkeit Konvergenz in Verteilung Konsistenz asymptotische Verteilungen nicht-normalverteilte Störgrößen zufällige Regressoren
0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1
Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x
5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)
5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte
Mehrdimensionale Zufallsvariablen
Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,
Kapitel 3 Schließende Statistik
Motivation Grundgesamtheit mit unbekannter Verteilung F Stichprobe X 1,...,X n mit Verteilung F Realisation x 1,...,x n der Stichprobe Rückschluss auf F Dr. Karsten Webel 160 Motivation (Fortsetzung) Kapitel
Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen
Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe
Wahrscheinlichkeitstheorie und Statistik vom
INSTITUT FÜR STOCHASTIK SS 2010 Karlsruher Institut für Technologie Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheinlichkeitstheorie und Statistik vom 14.9.2010 Musterlösungen Aufgabe 1: Gegeben sei eine Urliste
7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9.
7. Übung: Aufgabe 1 b), c), e) Aufgabe a), c), e) Aufgabe 3 c), e) Aufgabe 4 b) Aufgabe 5 a) Aufgabe 6 b) Aufgabe 7 e) Aufgabe 8 c) Aufgabe 9 a), c), e) Aufgabe 10 b), d) Aufgabe 11 a) Aufgabe 1 b) Aufgabe
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 8. Dezember 2010 Teil V Schließende Statistik 1 Parameterschätzung Erwartungstreue und Konsistenz Maximum-Likelihood
Lineare Regression. Kapitel Regressionsgerade
Kapitel 5 Lineare Regression 5 Regressionsgerade Eine reelle Zielgröße y hänge von einer reellen Einflussgröße x ab: y = yx) ; zb: Verkauf y eines Produkts in Stückzahl] hängt vom Preis in e] ab Das Modell
Nachklausur Mathematik für Biologen WS 08/09
Aufgabe 1: (5 Punkte) In einer diploiden Population beobachten wir die Ausprägung eines bestimmten Gens, das zwei Allele V und W annimmt. Somit besitzt jedes Individuum V V, V W oder W W als Genotyp. Die
Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management
Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)
Übungen zur Vorlesung Statistische Methoden Kapitel 1-2
TECHNISCHE UNIVERSITÄT DORTMUND Sommersemester 2011 FAKULTÄT STATISTIK Dr. M. Arnold Dipl.-Stat. R. Walter Übungen zur Vorlesung Statistische Methoden Kapitel 1-2 Aufgabe 1: Gegeben ist eine diskrete Zufallsvariable
Zulassungsprüfung Stochastik,
Zulassungsprüfung Stochastik, 5.5. Wir gehen stets von einem Maßraum (Ω, A, µ) bzw. einem Wahrscheinlichkeitsraum (Ω,A,P) aus. Die Borel σ-algebra auf R n wird mit B n bezeichnet, das Lebesgue Maß auf
DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr
2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X
Varianzkomponentenschätzung
Qualitas AG Varianzkomponentenschätzung Peter von Rohr Qualitas AG Peter von Rohr Folien ZL I+II LFW C11 October 29, 2015 2 / 23 Multiple Lineare Regression Annahmen Modell y = Xb + e Varianz der Fehler
Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management
für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt
Vorlesung Wissensentdeckung
Vorlesung Wissensentdeckung Klassifikation und Regression: nächste Nachbarn Katharina Morik, Uwe Ligges 14.05.2013 1 von 24 Gliederung Funktionsapproximation 1 Funktionsapproximation Likelihood 2 Kreuzvalidierung
Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK
Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über
Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}.
Binomialverteilung Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder nicht. X = Häufigkeit, mit
Willkommen zur Vorlesung Statistik (Master)
Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften
Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood
Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Hauptseminar - Methoden der experimentellen Teilchenphysik WS 2011/2012 Fabian Hoffmann 2. Dezember 2011 Inhaltsverzeichnis 1 Einleitung
Parameterschätzung. Kapitel 14. Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum),
Kapitel 14 Parameterschätzung Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum), = ( 1,..., n ) sei eine Realisierung der Zufallsstichprobe X = (X 1,..., X n ) zu
SozialwissenschaftlerInnen II
Statistik für SozialwissenschaftlerInnen II Henning Best [email protected] Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen
Nicht-kontinuierliche abhängige Variablen: Das generalisierte lineare Modell und die Parameterschätzung via Maximum Likelihood
Nicht-kontinuierliche abhängige Variablen: Das generalisierte lineare Modell und die Parameterschätzung via Maximum Likelihood Interaktionseffekte Varianz-Kovarianz-Matrix Interaktionseffekte Varianz-Kovarianz-Matrix
Vorlesung: Statistik II für Wirtschaftswissenschaft
Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation
WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.
Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im
Statistik Klausur Sommersemester 2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!
Statistik 2 1. Klausur Sommersemester 2013 Hamburg, 26.07.2013 A BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................
Simultane Mehrgleichungssysteme: Parameterschätzung
Simultane Mehrgleichungssysteme: Parameterschätzung Stichwörter: Eigenschaften des OLS-Schätzers Hilfsvariablenschätzer 2SLS limited information Methoden 3SLS FIML full information Methoden o1-21.tex/0
Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung Prof. Dr. Michael Havbro Faber 8.04.009 Inhalt der heutigen Vorlesung Auswahl einer Verteilungsfunktion: Wahrscheinlichkeitspapier pp Schätzung und Modellentwicklung:
Frequentisten und Bayesianer. Volker Tresp
Frequentisten und Bayesianer Volker Tresp 1 Frequentisten 2 Die W-Verteilung eines Datenmusters Nehmen wir an, dass die wahre Abhängigkeit linear ist, wir jedoch nur verrauschte Daten zur Verfügung haben
Zufallsvariablen [random variable]
Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden
Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de
rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent
Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte
Hochschule RheinMain WS 2018/19 Prof. Dr. D. Lehmann Probe-Klausur zur Vorlesung Ökonometrie Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte (die eigentliche Klausur wird
Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60
WESTFÄLISCHE WILHELMS - UNIVERSITÄT MÜNSTER Wirtschaftswissenschaftliche Faktultät Prof. Dr. Bernd Wilfling Professur für VWL, insbesondere Empirische Wirtschaftsforschung Musterlösung zur Klausur im Fach
Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management
Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert
Univariates Datenmaterial
Univariates Datenmaterial 1.6.1 Deskriptive Statistik Zufallstichprobe: Umfang n, d.h. Stichprobe von n Zufallsvariablen o Merkmal/Zufallsvariablen: Y = {Y 1, Y 2,..., Y n } o Realisationen/Daten: x =
Die Momentenmethode. Vorteil: Oft einfach anwendbar. Nachteil: Güte kann nur schwer allgemein beurteilt werden; liefert zum Teil unbrauchbare
17.1.3 Die Momentenmethode Vorteil: Oft einfach anwendbar. Nachteil: Güte kann nur schwer allgemein beurteilt werden; liefert zum Teil unbrauchbare Lösungen. Sei ϑ = (ϑ 1,...,ϑ s ) der unbekannte, s-dimensionale
Proxies, Endogenität, Instrumentvariablenschätzung
1 4.2 Multivariate lineare Regression: Fehler in den Variablen, Proxies, Endogenität, Instrumentvariablenschätzung Literatur: Wooldridge, Kapitel 15, Appendix C.3 und Kapitel 9.4 Wahrscheinlichkeitslimes
Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme
Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder
Willkommen zur Vorlesung Statistik (Master)
Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.
Statistik III. Walter Zucchini Fred Böker Andreas Stadie
Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................
2.Tutorium Multivariate Verfahren
2.Tutorium Multivariate Verfahren - Multivariate Verteilungen - Hannah Busen: 27.04.2015 und 04.05.2015 Nicole Schüller: 28.04.2015 und 05.05.2015 Institut für Statistik, LMU München 1 / 21 Gliederung
Probeklausur - Statistik II, SoSe 2017
Probeklausur - Statistik II, SoSe 2017 Aufgabe 1: Mehrdimensionale Zufallsvariablen (15 Punkte) Gegeben sei ein zweidimensionaler stetiger Zufallsvektor X = (X 1, X 2 ) T mit der gemeinsamen Dichtefunktion
Vorlesung: Statistik II für Wirtschaftswissenschaft
Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2
Willkommen zur Vorlesung Statistik (Master)
Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.
5. Spezielle stetige Verteilungen
5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für
5. Stichproben und Statistiken
5. Stichproben und Statistiken Problem: Es sei X eine ZV, die einen interessierenden Zufallsvorgang repräsentiere Man möchte die tatsächliche Verteilung von X kennenlernen (z.b. mittels der VF F X (x)
f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212
1.6.2 Poisson Verteilung Eine weitere wichtige diskrete Verteilung ist die Poisson-Verteilung. Sie modelliert die Anzahl (eher seltener) Ereignisse in einem Zeitintervall (Unfälle, Todesfälle; Sozialkontakte,
Maximum-Likelihood Schätzung
Maximum-Likelihood Schätzung VL Forschungsmethoden 1 Wiederholung Einführung: Schätzung 2 Likelihood-Schätzung und Generalisiertes Lineares Modell Zufallsverteilungen 3 Lernziele 1 Grundzüge der Likelihood-Schätzung
Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)
Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel
Goethe-Universität Frankfurt
Goethe-Universität Frankfurt Fachbereich Wirtschaftswissenschaft PD Dr. Martin Biewen Dr. Ralf Wilke Sommersemester 2006 Klausur Statistik II 1. Alle Aufgaben sind zu beantworten. 2. Bitte runden Sie Ihre
Stichproben Parameterschätzung Konfidenzintervalle:
Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,
Kennwerteverteilungen von Häufigkeiten und Anteilen
Kennwerteverteilungen von Häufigkeiten und Anteilen SS200 6.Sitzung vom 29.05.200 Die hypergeometrische Verteilung Wahrscheinlichkeitsverteilung der Häufigkeit eines binären Merkmals bei Einfacher Zufallsauswahl
Statistik I für Betriebswirte Vorlesung 4
Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung
Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential
Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:
Einführung in die Induktive Statistik: Regressionsanalyse
Einführung in die Induktive Statistik: Regressionsanalyse Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Regressionsanalyse Ziel: Analyse
Statistik und Datenanalyse (Handout zum Seminarvortrag von Norman Bhatti, gehalten am )
Statistik und Datenanalyse (Handout zum Seminarvortrag von Norman Bhatti, gehalten am 9.0.) Motivation Unter Statistik versteht man die Lehre von den Methoden zum Umgang mit quantitativen Informationen,
5 Erwartungswerte, Varianzen und Kovarianzen
47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,
Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte
Kapitel 8 Parameter multivariater Verteilungen 8.1 Erwartungswerte Wir können auch bei mehrdimensionalen Zufallsvariablen den Erwartungswert betrachten. Dieser ist nichts anderes als der vektor der Erwartungswerte
Statistik II. IV. Hypothesentests. Martin Huber
Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur
Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne
Chi-Quadrat-Verteilung
Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist
