Wahrscheinlichkeitsverteilungen
|
|
|
- Maya Solberg
- vor 8 Jahren
- Abrufe
Transkript
1 Universität Bielefeld 3. Mai 2005
2 Wahrscheinlichkeitsrechnung
3 Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet Zufallsexperimente und die daraus resultierenden Ereignisse. Wie wahrscheinlich ist es, daß bestimmte Ereignisse A eintreten (z. B. Würfeln einer bestimmten Augenzahl)? Die Wahrscheinlichkeit eines Ereignisses p(a) läßt sich über die relative Häufigkeit H(A) schätzen: H(A) = p(a) = n A n (1) n A = Anzahl der günstigen Ereignisse A n = Anzahl der möglichen Ereignisse
4 Bernoulli-Theorem: Die Wahrscheinlichkeit π(a) für ein Ereignis A wird durch die relative Häufigkeit p(a) = n a /n geschätzt. Die Schätzung fällt umso genauer aus, je größer n ist. ( n ) A p n π(a) e 0 (2) Gleichung 2 gilt für n. Wenn ein Ereignis mit der Wahrscheinlichkeit π(a) auftritt und n voneinander unabhängige, gleichartige Zufallsexperimente durchgeführt werden, dann geht die Wahrscheinlichkeit für eine Differenz e zwischen relativer Häufigkeit n A n und Wahrscheinlichkeit π(a) gegen Null. Beispiel: Die Wahrscheinlichkeit, eine bestimmte Augenzahl zu würfeln, beträgt
5 Simulation des Werfens eines Würfels Anzahl der Würfe A π(a) Anzahl der Würfe Größe einer Stichprobe Wahrscheinlichkeit eines Ereignisses Anteilswert in der Grundgesamtheit
6 Simulation des Werfens eines Würfels relative Häufigkeit relative Häufigkeit Würfe Würfe Augenzahl Augenzahl relative Häufigkeit relative Häufigkeit Würfe Würfe Augenzahl Augenzahl
7 Anteilswerte der Zahl 6 bei 100 Würfen und 10 Wiederholungen Versuch Nr Anteil in % Bernoulli-Experiment: Wahrscheinlichkeit für das Werfen der Zahl 6: Wahrscheinlichkeit für das Werfen einer anderen Zahl: Nur der Anteil in Versuch Nr. 7 kommt dem Erwartungswert von nahe. Alle anderen Werte weichen mehr oder weniger von dem erwarteten Anteilswert ab. Die Abweichung zwischen empirischen und erwarteten Anteilswert läßt sich über eine Wahrscheinlichkeitsfuktion genau angeben.
8 Die Versuchsreihe wird von auf 10 auf 1000 erweitert: Es wird wiederum die Häufigkeit notiert, mit der bei jeweils 100 Würfen die Zahl 6 fällt. Theoretisch kann die Zahl 6 bei jedem dieser 1000 Experimente zwischen 0 und 100mal fallen. Das Experiment entspricht dem Ziehen von 1000 Stichproben des Umfangs 100. Anteilswerte, die weit vom Erwartungswert (0.1 6) liegen, kommen selten oder gar nicht vor. Anteilswerte, die nah am Erwartungswert (0.1 6) liegen, kommen häufig vor. 51% der Anteilswerte liegen unter der Häufigkeit von 17%, 49% der Anteilswerte liegen über der Häufigkeit von 17%.
9 Anteilswerte der Zahl 6 bei 100 Würfen und Wiederholungen Häufigkeit kum. Häufigkeit Anteil absolut in % absolut in % 6% % % % % % % % % % % % % % % % % % % % % % %
10 Anteilswerte der Zahl 6 bei 100 Würfen und Wiederholungen Häufigkeit in % Anteilswert in %
11 Wahrscheinlichkeitsfunktion der Binomialverteilung: f B (x n; p) = ( ) n p x (1 p) n x, für x = 0, 1, 2,..., n. (3) x n ist die Anzahl der Wiederholungen in einem Experiment. p ist die Wahrscheinlichkeit, daß ein Experiment auftritt. x ist die Ausprägung der Zufallsvariablen. f B (x n; p) ist die Wahrscheinlichkeit x unter der Bedingung, daß n und p zutrifft. p ist die Wahrscheinlichkeit, daß ein Experiment auftritt.
12 Exkurs: Anzahl der Kombinationen, die für x Objekte aus insgesamt n Objekten möglich sind: ( ) n = x n! x! (n x)! Die Anzahl der Möglichkeiten 6 Zahlen aus insgesamt 49 Zahlen zu ziehen, beträgt: ( ) 49 = 6 49! 6! (49 6)! =
13 Beispiel: Wie wahrscheinlich ist es, daß bei einer Durchführung des Experiments (100mal würfeln) die 6 mit einem Anteil von 20% (x = 20) auftritt: ( ) 100 f B (20 100; 0,1 6) = ( ) = 100! 20! (100 20)! = = Der theoretisch zu erwartende Wert beträgt demnach 6.79%. Bei 1000 Experimenten trat die Augenzahl 6 mit einer Wahrscheinlichkeit von 7.2% 20mal auf.
14 von Zufallsvariablen lassen sich durch Parameter beschreiben: 1. Erwartungswert: Der Erwartungswert einer diskreten Variablen X ist der Wert, der bei unendlich vielen Wiederholungen des Experiments zu erwarten ist. Bei einer Binomialverteilung lautet dieser: E(X ) = n p (4) 2. Varianz: Die Varianz einer diskreten Variablen X informiert darüber, wie stark die einzelnen Werte um den Erwartungswert. Bei einer Binomialverteilung lautet diese: Var(X ) = n p q; q = 1 p (5)
15 Beispiel: Wie hoch ist der Erwartungswert und die Varianz, bei 100 Würfen eine Augenzahl von 6 zu erhalten? E(X ) = n p = = Var(X ) = n p q = = 13. 8
16 Von einer stetigen Variablen wird dann gesprochen, wenn die Werte einer Variablen sich nicht nur nach diskreten Merkmalen unterscheiden (beim Würfel sind dies Werte von 1 bis 6), sondern auch Werte dazwischen erreichen können. Eine stetige Variable hat einen kontinuierlichen Merkmalsraum. Für eine stetige Variable gilt die Wahrscheinlichkeitsfunktion der Normalverteilung. Beispiel für eine stetige Variable ist das in einer Stichprobe erhobene Alter. Bei dem folgenden Beispiel werden 1000 Stichprobe mit einer Größe von N=1000 Personen gezogen. Der Altersmittelwert der Grundgesamtheit beträgt 37,268 Jahre. In der folgenden Abbildung ist die Verteilung der Stichprobenmittelwerte (Altersdurchschnitte) dargestellt.
17 Altersdurchschnitte bei Stichproben der Größe Häufigkeit in % Stichprobenmittelwert
18 Die Formel der Normalverteilungsfunktion lautet: f N (x x; s 2 1 ) = 2π e s Zwei Parameter kennzeichnen die Funktion: 1 2 ( x x 1. Das arithmetische Mittel der Verteilung: x 2. Die Varianz der Verteilung: s 2 Eigenschaften der Normalverteilung: s ) 2 (6) Symmetrische Verteilung mit einem Gipfel: 50% der Fläche liegen jeweils links und rechts von x. Sie nähert sich asymptotisch der x-achse und dem Funktionswert 0 wenn x gegen + oder strebt.
19 Normalverteilungen mit verschiedenen Parametern x und s x=0; s²=0,25 ƒ(x) x=0; s²=4 x=0; s²=1 x=2; s²= x
20 Die Fläche unterhalb der Normalverteilung gibt an, wie viele x-werte sich in einem bestimmten Bereich der Verteilung befinden. Um von der Basis einer Stichprobe Aussagen über die Grundgesamtheit treffen zu können, müssen Flächen unterhalb der Normalverteilung berechnet werden können. Die Flächenbestimmung kann über die Standardnormalverteilung vorgenommen werden: f (x) = 1 2π e x2 2 (7)
21 Die Standardnormalverteilung ist die Normalverteilung, deren Mittelwert Null (x = 0) und deren Varianz Eins (s 2 = 1) ist. Die Werte der Standardnormalverteilung werden als z-werte bezeichnet. Die Flächen der Standardnormalverteilung werden in den meisten Lehrbüchern der Statistik in Tabellenform abgedruckt (z. B. im Lehrbuch von Gehring/Weins als z-verteilung im Anhang A).
22 Flächen unter der Standardormalverteilung a) z = 2,5; Φ(z) = 0,9938 b) z = -0,95; Φ(z) = 0, c) z = 1,49; Φ(z) = 0,0681 d) z(a)=-1,03; z(b)=2; Φ( z)=0,
23 Flächenberechnung: Fläche links vom z-wert: Bei z = 2.5 ergibt sich eine Fläche Φ(z) = Fläche rechts vom z-wert: Bei z = 1.49 ergibt sich eine Fläche 1 Φ(z) = Flächenberechnung zwischen zwei Werten z a und z b : Bei z a = 1.03 und z b =2.0 ergibt sich eine Fläche von: Φ zb Φ za = =
24 Für die Intervalle um den Mittelwert (-1;1), (-2;2) und (-3;3) ergeben sich folgende Flächen: 1. Zwischen 1 und +1 liegen 68,27% der Fläche bzw. der z-werte. 2. Zwischen 2 und +2 liegen 95,45% der Fläche bzw. der z-werte. 3. Zwischen 3 und +3 liegen 99,73% der Fläche bzw. der z-werte.
25 Normalverteilung Standardnormalverteilung: Jede beliebige Normalverteilung kann durch eine z-transformation in eine Standardnormalverteilung überführt werden: z = x i x (8) s Aus der Standardnormalverteilung läßt sich auch umgekehrt jede beliebige Verteilung mit dem Mittelwert x und der Standardabweichung s konstruieren: x i = x + z s (9) Um festzustellen, wieviel Prozent der Fläche zwischen zwei x-werten liegt, standardisiert man die beiden x-werte, um die Flächen aus der Tabelle abzulesen: (10) Φ( x) = Φ xb Φ xa = Φ x2 x/s Φ x1 x/s = Φ zb Φ za
26 Beispiel: Gegeben ist eine Normalverteilung mit folgenden Parametern: 1. x = 3 2. s = 4 Berechnet werden soll die Fläche zwischen den Werten x 1 = 2 und x 2 = 5: Φ( x) = Φ 5 Φ 2 = Φ 5 3 /4 Φ 2 3 /4 = Φ 0.5 Φ 0.25 = = % der Werte liegen zwischen den beiden Werten x 1 = 2 und x 2 = 5.
27 Verteilung der Stichprobenmittelwerte: Die Verteilung der Stichprobenmittelwerte läßt sich auch durch ihren Mittelwert und ihre Varianz beschreiben ( siehe Abbildung Altersdurchschnitte bei Stichproben der Größe 1.000) Der Mittelwert der Stichprobenmittelwerte entspricht dem wahren Mittelwert der in der Grundgesamtheit. Der wahre Mittelwert wird mit dem griechischen Buchstaben µ bezeichnet. Die Varianz der Stichprobenmittelwerte ist von der Streuung des Merkmals in der Grundgesamtheit abhängig. Diese Streuung wird mit σ 2 bezeichnet. Die Varianz der Stichprobenmittelwerte ist auch von der Stichprobengröße abhängig: Je größer der Umfang der gezogenen Stichproben, desto kleiner ist die Abweichung von wahren Mittelwert der Grundgesamtheit.
28 Die Varianz der Stichprobenmittelwerte entspricht dem Verhältnis zwischen Streuung des Merkmals und Umfang der Stichprobe: σ 2 x = σ2 n Die Standardabweichung der Stichprobenmittelwerte wird auch als Standardfehler des Mittelwerts bezeichnet: σ x = σ 2 x = σ 2 (11) n = σ n (12) Werden die Parameter µ und σ x in die allgemeine Formel der Normalverteilungsfunktion eingesetzt, dann erhält man die Gleichung der Stichprobenmittelwerteverteilung: f N ( x µ; σ 2 x) = σ x 1 2π e 1 2 ( x µ σ x ) 2 (13)
29 Beispiel: Gegeben ist die Altersverteilung in der Grundgesamtheit mit folgenden Parametern: 1. µ = σ 2 = σ x = = Werden die Parameter in die Gleichung der Stichprobenmittelwerteverteilung eingetragen, dann erhält man die Wahrscheinlichkeitsdichte: f N (37, ; ) = π e 2 ( ) = e =
30 Der Wert der Wahrscheinlichkeitsdichte wird mit der gewählten Intervallbreite von 0.1 multipliziert: = % Etwa 6% der 1000 simulierten Stichproben haben einen Altersdurchschnitt von 37.2 Jahren. Bernoulli-Theorem: Mit zunehmender Zahl an Stichproben wird sich der empirische Wert dem theoretischen Wert annähern. Die empirische Verteilung nähert sich damit immer mehr der Normalverteilung.
31 Die Flächenberechnung der Stichprobenmittelwerteverteilung erfolgt über die Tabelle der z-verteilung. Die x-werte werden in z-werte transformiert: z = x µ σ x (14) Die Umkehrung der Gleichung lautet: x = µ + z σ x (15) x ist bei einer Stichprobenmittelwerteverteilung ein beliebiger Wert der Verteilung und nicht wie bei der Normalverteilung das arithmetische Mittel.
32 Für die Flächenberechnung der Stichprobenmittelwerte gilt: 1. Zwischen µ 1 σ x und µ + 1 σ x liegen 68,27% der Stichprobenmittelwerte. 2. Zwischen µ 2 σ x und µ + 2 σ x liegen 95,45% der Stichprobenmittelwerte. 3. Zwischen µ 3 σ x und µ + 3 σ x liegen 99,73% der Stichprobenmittelwerte. Zentraler Grenzwertsatz: Mittelwerte aus beliebigen Verteilungen folgen mit zunehmendem Stichprobenumfang einer Normalverteilung.
Willkommen zur Vorlesung Statistik (Master)
Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.
Zufallsvariablen [random variable]
Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden
Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005
Universität Bielefeld 13. Juni 2005 Einführung Einführung Wie kann die Kenntnis der Wahrscheinlichkeitsverteilung der Parameter einer Stichprobe dazu verhelfen auf die wahren Werte der Grundgesamtheit
Inferenzstatistik (=schließende Statistik)
Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die
Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.
Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment
Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung
lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany [email protected] Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,
Grundlegende Eigenschaften von Punktschätzern
Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur
15.5 Stetige Zufallsvariablen
5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven
Institut für Biometrie und klinische Forschung. WiSe 2012/2013
Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive
Schließende Statistik
Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.
Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de
rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent
1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6
Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere
Jost Reinecke. 7. Juni 2005
Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung
ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)
ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels
Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen
Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir
I. Deskriptive Statistik 1
I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................
Einführung in die Maximum Likelihood Methodik
in die Maximum Likelihood Methodik Thushyanthan Baskaran [email protected] Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood
1 Dichte- und Verteilungsfunktion
Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen [email protected] 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die
Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg
Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft
Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec
Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch
Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!
Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)
Stochastik. 1. Wahrscheinlichkeitsräume
Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.
Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?
Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben
7.2 Moment und Varianz
7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p
Übungsaufgaben, Statistik 1
Übungsaufgaben, Statistik 1 Kapitel 3: Wahrscheinlichkeiten [ 4 ] 3. Übungswoche Der Spiegel berichtet in Heft 29/2007 von folgender Umfrage vom 3. und 4. Juli 2007:,, Immer wieder werden der Dalai Lama
Basistext - Wahrscheinlichkeitsrechnung
Basistext - Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung beschäftigt sich mit Vorgängen, die in ihrem Ausgang unbestimmt sind. Sie versucht mögliche Ergebnisse der Vorgänge zu quantifizieren.
Wahrscheinlichkeitsrechnung und schließende Statistik
Günther Bourier Wahrscheinlichkeitsrechnung und schließende Statistik Praxisorientierte Einführung Mit Aufgaben und Lösungen 3. F überarbeitete Auflage GABLER Inhaltsverzeichnis Vorwort Inhaltsverzeichnis
Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.
Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )
Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5
Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung
Übung zur Vorlesung: Geostatistik 1 Philipp, Mo. 15: Türcode: 1516
Übung zur Vorlesung: Geostatistik 1 Philipp, Mo. 15:45 3067 Türcode: 1516 Deskriptive Statistik Maße der Zentraltendenz Deskriptive Statistik Maße der Zentraltendenz arithmetischer Mittewert klassenorientierter
Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)
Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36)
Statistik I Sommersemester 2009 Statistik I I (1/36) Wiederholung Grenzwertsatz Konfidenzintervalle Logik des 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Statistik I I (2/36) Zum Nachlesen Agresti/Finlay: Kapitel 6+7
1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...
Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............
Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten
Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests
Diskrete Wahrscheinlichkeitsverteilungen
Diskrete Wahrscheinlichkeitsverteilungen Worum geht es in diesem Modul? Zufallsvariablen Wahrscheinlichkeitsverteilungen Maßzahlen theoretischer Verteilungen Eigenschaften von Erwartungswert und Varianz
4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)
4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte
Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie
Webinar Induktive Statistik - Wahrscheinlichkeitsrechnung - Stichprobentheorie Wahrscheinlichkeitstheorie Aufgabe : Zwei Lieferanten decken den Bedarf eines PKW-Herstellers von 00.000 Einheiten pro Monat.
Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende
Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,
Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion
Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig
Einführung in die Wahrscheinlichkeitsrechnung
Einführung in die Wahrscheinlichkeitsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg [email protected] Statistik 1 S. Garbade (SRH Heidelberg) Wahrscheinlichkeitsrechnung
STETIGE VERTEILUNGEN
STETIGE VERTEILUNGEN. Die Näherungsformel von Moivre Laplace Betrachtet man die Binomialverteilungen Bnp für wachsendes n bei konstantem p, so werden die Histogramme einer binomialverteilten Zufallsvariablen
Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern.
10. Stetige Zufallsvariable, Normalverteilung 55 Die in den folgenden Beispielen dargestellten Verteilungen haben ungefähr Glockenform. Sie können durch die sogenannte Normalverteilung oder Gaussverteilung
M13 Übungsaufgaben / pl
Die Histogramme von Binomialverteilungen werden bei wachsendem Stichprobenumfang n immer flacher und breiter. Dem Maximum einer solchen Verteilung kommt daher keine allzu große Wahrscheinlichkeit zu. Vielmehr
Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen
Kapitel 11 Stichprobenfunktionen Um eine Aussage über den Wert eines unbekannten Parameters θ zu machen, zieht man eine Zufallsstichprobe vom Umfang n aus der Grundgesamtheit. Das Merkmal wird in diesem
Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren
Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei
Grundwissen zur Stochastik
Grundwissen zur Stochastik Inhalt: ABHÄNGIGE EREIGNISSE...2 ABHÄNGIGKEIT UND UNABHÄNGIGKEIT VON ERGEBNISSEN...2 ABHÄNGIGKEIT UND UNABHÄNGIGKEIT VON MERKMALEN IN VIERFELDERTAFELN...2 ABSOLUTE HÄUFIGKEIT...2
4 Diskrete Wahrscheinlichkeitsverteilungen
4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder
Statistik II. Statistische Tests. Statistik II
Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen
VS PLUS
VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen - Inferenzstatistik 1 [Übungsaufgaben und Lösungenn - Inferenzstatistik 1] ÜBUNGSAUFGABEN
Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung
Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt
Übung 1: Wiederholung Wahrscheinlichkeitstheorie
Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable
die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen
Kapitel 8 Schätzung von Parametern 8.1 Schätzmethoden Gegeben seien Beobachtungen Ü Ü ¾ Ü Ò die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen ¾ Ò auffassen. Die Verteilung
Vorlesung Wirtschaftsstatistik 2 (FK ) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren. Dipl.-Ing.
Vorlesung Wirtschaftsstatistik 2 (FK 040637) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Vorlesungsinhalte Wiederholung:
Grundbegriffe der Wahrscheinlichkeitsrechnung
Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.
Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:
Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die
3.3 Bedingte Wahrscheinlichkeit
28 3.3 Bedingte Wahrscheinlichkeit Oft ist die Wahrscheinlichkeit eines Ereignisses B gesucht unter der Bedingung (bzw. dem Wissen), dass ein Ereignis A bereits eingetreten ist. Man bezeichnet diese Wahrscheinlichkeit
Bachelor BEE Statistik Übung: Blatt 1 Ostfalia - Hochschule für angewandte Wissenschaften Fakultät Versorgungstechnik Aufgabe (1.1): Gegeben sei die folgende Messreihe: Nr. ph-werte 1-10 6.4 6.3 6.7 6.5
Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests
ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen
Mathematische und statistische Methoden II
Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike [email protected] lordsofthebortz.de lordsofthebortz.de/g+
Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet.
11.01.2012 Prof. Dr. Ingo Klein Klausur zur VWA-Statistik Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet. Aufgabe 1:
Die Varianz (Streuung) Definition
Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ
Einführung in die Induktive Statistik: Testen von Hypothesen
Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte
P (X = 2) = 1/36, P (X = 3) = 2/36,...
2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel
Übungen mit dem Applet Vergleich von zwei Mittelwerten
Vergleich von zwei Mittelwerten 1 Übungen mit dem Applet Vergleich von zwei Mittelwerten 1 Statistischer Hintergrund... 2 1.1 Typische Fragestellungen...2 1.2 Fehler 1. und 2. Art...2 1.3 Kurzbeschreibung
Spezielle stetige Verteilungen
Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für
Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch
6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6
Auswahl von Schätzfunktionen
Auswahl von Schätzfunktionen Worum geht es in diesem Modul? Überblick zur Punktschätzung Vorüberlegung zur Effizienz Vergleich unserer Schätzer für My unter Normalverteilung Relative Effizienz Einführung
Statistische Tests für unbekannte Parameter
Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung
Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007
Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte
Wahrscheinlichkeitstheorie und Statistik vom
INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen
Einführung in die computergestützte Datenanalyse
Karlheinz Zwerenz Statistik Einführung in die computergestützte Datenanalyse 6., überarbeitete Auflage DE GRUYTER OLDENBOURG Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL
Wahrscheinlichkeitsrechnung und Quantentheorie
Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten
Statistik für Ökonomen
Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS 2., überarbeitete Auflage 4ü Springer Gabler Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R '! 3 1.1 Installieren
Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.
Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.
Kapitel VII. Punkt- und Intervallschätzung bei Bernoulli-Versuchen
Kapitel VII Punkt- und Intervallschätzung bei Bernoulli-Versuchen Einführungsbeispiel: Jemand wirft einen korrekten Würfel 60 mal. Wie oft etwa wird er die 6 würfeln? Klar: etwa 10 mal, es kann aber auch
Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage
Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz 3., überarbeitete Auflage R.01denbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt
Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester
Messung von Rendite und Risiko Finanzwirtschaft I 5. Semester 1 Messung von Renditen Ergebnis der Anwendung der Internen Zinsfuß- Methode ist die Rentabilität des Projekts. Beispiel: A0-100.000 ZÜ1 54.000
A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:
5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)
Ü b u n g s b l a t t 13
Einführung in die Stochastik Sommersemester 06 Dr. Walter Oevel 5. 6. 006 Ü b u n g s b l a t t 3 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben
Inhaltsverzeichnis. Teil I Einführung
Inhaltsverzeichnis Teil I Einführung 1 Statistik-Programme... 1.1 Kleine Einführung in R... 1.1.1 Installieren und Starten von R. 1.1.2 R-Konsole... 1.1.3 R-Workspace... 1.1.4 R-History... 1.1.5 R-Skripteditor...
Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz
Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis
Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten...
Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R... 3 1.1 Installieren und Starten von R... 3 1.2 R-Befehleausführen... 3 1.3 R-Workspace speichern... 4 1.4 R-History sichern........ 4 1.5
Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz...
Inhaltsverzeichnis Vorwort... 2 Zum Einstieg... 3 1 Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße... 5 1.2 Erwartungswert und Varianz... 7 2 Wahrscheinlichkeitsverteilungen
Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von
Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN
Keine Panik vor Statistik!
Markus Oestreich I Oliver Romberg Keine Panik vor Statistik! Erfolg und Spaß im Horrorfach nichttechnischer Studiengänge STUDIUM 11 VIEWEG+ TEUBNER Inhaltsverzeichnis 1 Erstmal locker bleiben: Es längt
Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe
Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,
Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure
Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Von Prof. Hubert Weber Fachhochschule Regensburg 3., überarbeitete und erweiterte Auflage Mit zahlreichen Bildern, Tabellen sowie
Anleitung: Standardabweichung
Anleitung: Standardabweichung So kann man mit dem V200 Erwartungswert und Varianz bzw. Standardabweichung bei Binomialverteilungen für bestimmte Werte von n, aber für allgemeines p nach der allgemeinen
Der Zentrale Grenzwertsatz
QUALITY-APPS Applikationen für das Qualitätsmanagement Der Zentrale Grenzwertsatz Autor: Dr. Konrad Reuter Für ein Folge unabhängiger Zufallsvariablen mit derselben Verteilung und endlichem Erwartungswert
10. Die Normalverteilungsannahme
10. Die Normalverteilungsannahme Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher haben wir vorausgesetzt, daß die Beobachtungswerte normalverteilt sind. In diesem Fall kann man
Prüfung aus Statistik 1 für SoziologInnen. Musterlösung
Prüfung aus Statistik 1 für SoziologInnen Gesamtpunktezahl =80 1) Wissenstest (maximal 20 Punkte) Prüfungsdauer: 2 Stunden Musterlösung Kreuzen ( ) Sie die jeweils richtige Antwort an. Jede richtige Antwort
Übungsaufgaben zu Statistik II
Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben
I. Zahlen, Rechenregeln & Kombinatorik
XIV. Wiederholung Seite 1 I. Zahlen, Rechenregeln & Kombinatorik 1 Zahlentypen 2 Rechenregeln Brüche, Wurzeln & Potenzen, Logarithmen 3 Prozentrechnung 4 Kombinatorik Möglichkeiten, k Elemente anzuordnen
3. Kombinatorik und Wahrscheinlichkeit
3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:
0, t 0,5
XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz --------------------------------------------------------------------------------------------------------------
1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0
1.4 Der Binomialtest Mit dem Binomialtest kann eine Hypothese bezüglich der Wahrscheinlichkeit für das Auftreten einer Kategorie einer dichotomen (es kommen nur zwei Ausprägungen vor, z.b. 0 und 1) Zufallsvariablen
