Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester

Größe: px
Ab Seite anzeigen:

Download "Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester"

Transkript

1 Messung von Rendite und Risiko Finanzwirtschaft I 5. Semester 1

2 Messung von Renditen Ergebnis der Anwendung der Internen Zinsfuß- Methode ist die Rentabilität des Projekts. Beispiel: A ZÜ ZÜ Int. Zinsfuß 5,00% 2

3 Problem Zukünftige Zahlungsüberschüsse sind unsicher. Annahme: Aus Erfahrung wüssten wir, dass dieses Investitionsprojekt sich auch schon mit anderen Renditen verzinst hat. 3

4 Beispiel: Investition 1 In der Vergangenheit ergaben sich für dieses Projekt folgende Werte: 4%, 4%, 4%, 5%, 5%, 5%, 5%, 6%, 6% und 6%. Die Wahrscheinlichkeit, 5% Rendite zu erhalten, beträgt als nur 40%, die Wahrscheinlichkeit 4% oder 6% zu bekommen schon 30%. 4

5 Erwartungswert Erwartete Rendite 1 Der Erwartungswert ist definiert als: E(X) = 1 n n i= 1 X i = n i= 1 X i p wobei X i für die (unterschiedlichen) Renditen, n für den Stichprobenumfang und p (probability) für die Wahrscheinlichkeit des Eintretens steht. (Mittelwert) Somit erhalten wir den Erwartungswert des Investitionsprojekts 1 als E(X) = 5%. E(X) = 1/10 (4%+4%+4%+5%+5%+5%+5%+6%+6%+6%) oder E(X) = 4% 30% + 5% 40% + 6% 30% 5

6 Beispiel: Investition 2 In der Vergangenheit ergaben sich für dieses Projekt folgende Werte: 2%, 3%, 4%, 4%, 5%, 5%, 6%, 6%, 7% und 8%. Die Wahrscheinlichkeit 5% Rendite zu erhalten, beträgt als nur 20%, die Wahrscheinlichkeit 2% und 3% oder 7% und 8% zu bekommen 20%. 6

7 Erwartungswert Erwartete Rendite 2 Auch für dieses Projekt erhalten wir den Erwartungswert n n E(X) = des Investitionsprojekts 1 als E(X) = 5% E(X) wird auch mit μ symbolisiert, wobei μ allerdings für den Wert in der Grundgesamtheit steht. 1 n i= 1 X i = i= 1 X i p 7

8 Vergleich der Projekte Beide Projekte weisen den gleichen Erwartungswert auf. Wir können bei beiden Projekten eine Verzinsung von μ = 5% erwarten. Wenn wir nur den Erwartungswert als Entscheidungskriterium zugrunde legen, könnten wir uns nicht entscheiden. Berücksichtigung des Risikos. 8

9 Messung von Risiko Am Beispiel der beiden Projekte: Invest.Proj. 1 Invest.Proj. 2 4% 2% 4% 3% 4% 4% 5% 4% 5% 5% 5% 5% 5% 6% 6% 6% 6% 7% 6% 8% Erwartungswert 5,0% 5,0% µ1 µ2 Die Wahrscheinlichkeit für den schlechtesten Fall - eine Rendite von 2% - beträgt für Projekt 1 0% für Projekt 2 immerhin 10%. Gleiches gilt für 3%. 9

10 Graphische Darstellung 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% Invest.Proj. 1 Invest.Proj. 2 1% 2% 3% 4% 5% 6% 7% 8% Deutlich erkennbar ist, dass die Wahrscheinlichkeit 5% zu erhalten, bei Projekt 1 (=40%) höher ist als die bei Projekt 2 (=20%). Die Wahrscheinlichkeit zwischen 4 und 6% zu erhalten, ist bei Projekt 1 wesentlich höher (100%) als bei Projekt 2. Somit ist auch das Risiko geringer. Man kann auch sagen, dass die Ergebnisse des Projekts 1 weniger streuen. 10

11 Streuung - Varianz Die Streuung lässt sich am Einfachsten durch die (empirische) Varianz messen. n s = ( Xi E(X) ) n 1 i= 1 Häufig wird als Maß der Streuung aber nicht die Varianz, sondern die Standardabweichung herangezogen, welche die Wurzel aus der Varianz ist: s = s 2 = 1 n 1 n ( Xi E(X) ) i= 1 Mit σ wird die Standardabweichung der Grundgesamtheit bezeichnet. 2 11

12 Ergebnisse für unser Beispiel Wie nach der graphischen Darstellung nicht anders zu erwarten, unterscheiden sich die Ergebnisse bezüglich der Streuung der Werte bzw. des Risikos: Die Streuung des Projekts 1 beträgt: 0,82%, die des Projekts 2 schon 1,83%. Somit ist die erwartete Rendite des zweiten Projekts risikobehafteter als die des ersten Projekts. 12

13 Ergebnis: Der Erwartungswert signalisiert das erwartete Ergebnis. Die Standardabweichung gibt das Risiko an. Je höher die Standardabweichung ist, desto höher das Risiko, die Plangröße, den Erwartungswert, später zu realisieren. Risiko wird in diesem Fall als Abweichung von der Plangröße verstanden. Ökonomisch wird unter Risiko meist nur die Gefahr gesehen, ein Ergebnis unterhalb des Erwartungswerts zu realisieren. als Maß halbe Streuung oder Downside-Risikomaße 13

14 Verteilung von Wahrscheinlichkeiten Meist lassen sich die Wahrscheinlichkeiten von Ereignissen mit Hilfe von Verteilungsfunktionen bzw. Dichtfunktionen erfassen bzw. beschreiben. Einer der wichtigsten ist die Normalverteilung. 14

15 Bedeutung der Normalverteilungsfunktion Die Gaussche Glockenkurve 15

16 Normalverteilung Die Normalverteilung bietet sich für unsere weitere Analyse besonders an, da sie nur von den beiden Größen Mittelwert μ und Standardabweichung σ abhängt. 2 Die Dichtefunktion der ( x μ) σ f ( x) = e Normalverteilung: 2 π σ 16

17 Graphische Darstellung Relative Häufigkeit fi Mittelwert 5% 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% Sigma = 0,5% Die Normalverteilung ist eine symmetrische Verteilung. Annahme: µ = 5% und σ = 0,5% Da die Streuung gering ist, liegen die Werte eng um den Mittelwert verteilt. Mit hoher Wahrscheinlichkeit wird eine Rendite größer 3% und mit kleiner Wahrscheinlichkeit wird eine Rendite kleiner 3% (value at risk Betrachtung) erzielt. 17

18 Standardabweichung als Risikomaß Sigma ist auch deshalb als Maß, des Risikos bedeutsam, da z.b. im 1σ-Bereich um den Mittelwert 68,26% der möglichen Realisationen liegen, im 2σ-Bereich 95,44% und im 3σ-Bereich 99.74%. Für µ =5% und σ = 0,5%: Mit einer Wahrscheinlichkeit von 99,74% wird die erwartete Rendite unter diesen Annahmen zwischen 5%-3 0,5% und 5%+3 0,5% also zwischen 3,5 und 6,5% liegen. 18

19 Unterschiedliches Risiko Relative Häufigkeit fi Erwartungswert 5% 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% Sigma = 0,5% Sigma = 1% Sigma = 2% Gehen wir von der Normalverteilung mit μ = 5% und einem zunehmenden Risikos aus: 1. Die Streuung betrage 0,5%. Mit einer Wahrscheinlichkeit von 99,74% werden wir zwischen 3,5% (μ 3σ) und 6,5% (μ + 3σ) erhalten. 2. Nun nehmen wir an, dass die Streuung von 0,5% auf 1% steigt: Mit einer Wahrscheinlichkeit von 99,74% werden wir zwischen 2% (μ 3σ) und 8% (μ + 3σ) erhalten. 3. Sollte die Streuung weiter zunehmen z.b. auf 2%, erhalten wir mit einer Wahrscheinlichkeit von 99,74% ein Intervall von -1% bis 11%. Ergebnis: Obwohl sich der Erwartungswert (5%) nicht ändert, ist es nun bei der gleichen Wahrscheinlichkeit von 99,74% möglich, in den Verlustbereich zu geraten. 19

20 Ergebnis Renditemessung mittels Erwartungswert bzw. Mittelwert (der Stichprobe bzw. Grundgesamtheit) Risikomessung über Standardabweichung (Streuung der Stichprobe bzw. Grundgesamtheit) Praktikabelste Verteilung: Normalverteilung (mit Mittelwert und Standardabweichung) 20

Sigma-Umgebung. Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5. n = 20 p = 0,75

Sigma-Umgebung. Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5. n = 20 p = 0,75 Sigma-Umgebung Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5 0,2 (z.b. 30-maliges Werfen einer Münze, X Anzahl von Zahl ) 5 10 15 20 n = 20 p = 0,75 0,2 5 10 15 20 Der Erwartungswert

Mehr

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden?

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden? 1. Aufgabe: Eine Bank will die jährliche Sparleistung eines bestimmten Kundenkreises untersuchen. Eine Stichprobe von 12 Kunden ergab folgende Werte: 825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

Investition und Risiko. Finanzwirtschaft I 5. Semester

Investition und Risiko. Finanzwirtschaft I 5. Semester Investition und Risiko Finanzwirtschaft I 5. Semester 1 Gliederung Ziel Korrekturverfahren: Einfache Verfahren der Risikoberücksichtigung Sensitivitätsanalyse Monte Carlo Analyse Investitionsentscheidung

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Von der Normalverteilung zu z-werten und Konfidenzintervallen

Von der Normalverteilung zu z-werten und Konfidenzintervallen Von der Normalverteilung zu z-werten und Konfidenzintervallen Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005 Universität Bielefeld 13. Juni 2005 Einführung Einführung Wie kann die Kenntnis der Wahrscheinlichkeitsverteilung der Parameter einer Stichprobe dazu verhelfen auf die wahren Werte der Grundgesamtheit

Mehr

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf. Vorlesung 04 Mathematische Grundlagen II,

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf. Vorlesung 04 Mathematische Grundlagen II, Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf 1 Was sollen Sie heute lernen? 2 Agenda Wiederholung stetige Renditen deskriptive Statistik Verteilungsparameter

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern.

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. Aufgabe 1 (2 + 1 + 2 + 2 Punkte) Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. a) Wieviele Möglichkeiten hat

Mehr

Unterschiedliche Präferenzen für Risiko. Finanzwirtschaft I 5. Semester

Unterschiedliche Präferenzen für Risiko. Finanzwirtschaft I 5. Semester Unterschiedliche Präferenzen für Risiko Finanzwirtschaft I 5. Semester 1 Ziel der Darstellung Wiederholung der drei unterschiedlichen individuellen Einstellungen zum Risiko und vertiefte Erklärung dieser

Mehr

Statistik für NichtStatistiker

Statistik für NichtStatistiker Statistik für NichtStatistiker Zufall und Wahrscheinlichkeit von Prof. Dr. Karl Bosch 5., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis 1. ZufalLsexperimente und zufällige Ereignisse

Mehr

Erläuterung des Vermögensplaners Stand: 3. Juni 2016

Erläuterung des Vermögensplaners Stand: 3. Juni 2016 Erläuterung des Vermögensplaners 1 Allgemeines 1.1. Der Vermögensplaner stellt die mögliche Verteilung der Wertentwicklungen des Anlagebetrags dar. Diese verschiedenen Werte bilden im Rahmen einer bildlichen

Mehr

Einführung in die Portfoliotheorie. Finanzwirtschaft I 5. Semester

Einführung in die Portfoliotheorie. Finanzwirtschaft I 5. Semester Einführung in die Portfoliotheorie Finanzwirtschaft I 5. Semester 1 Unsichere Renditen Die Methoden der dynamischen Investitionsrechnung beurteilen die Vorteilhaftigkeit von Investitionsprojekten unter

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 1 Stetige Zufallsvariablen 1.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

Sigma-Umgebung. Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5. n = 20 p = 0,75

Sigma-Umgebung. Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5. n = 20 p = 0,75 Sigma-Umgebung Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5 0,2 (z.b. 30-maliges Werfen einer Münze, X Anzahl von Zahl ) 5 10 15 20 n = 20 p = 0,75 0,2 5 10 15 20 Der Erwartungswert

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften t-test Varianzanalyse (ANOVA) Übersicht Vergleich von Mittelwerten 2 Gruppen: t-test einfaktorielle ANOVA > 2 Gruppen: einfaktorielle ANOVA Seeigel und

Mehr

Die richtige Wahl von Verteilungen

Die richtige Wahl von Verteilungen Die richtige Wahl von Verteilungen N. Schiering, ZMK GmbH Sachsen-Anhalt Agenda Einleitung Standardmessunsicherheiten Typ A und Typ B Normalverteilung Rechteckverteilung Dreieckverteilung Trapezverteilung

Mehr

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf 1 Agenda Wiederholung stetige Renditen deskriptive Statistik Verteilungsparameter Erwartsungswert und Varianz

Mehr

Arbeitsblatt 27: Normalverteilung Kerzen

Arbeitsblatt 27: Normalverteilung Kerzen Erläuterungen und Aufgaben Zeichenerklärung: [ ] - Drücke die entsprechende Taste des Graphikrechners! [ ] S - Drücke erst die Taste [SHIFT] und dann die entsprechende Taste! [ ] A - Drücke erst die Taste

Mehr

Meßprozeß, Meßfehler und Statistik

Meßprozeß, Meßfehler und Statistik 0- Meßprozeß, Meßfehler und Statistik Vorbereitung : Begriff der Wahrscheinlichkeit, statistische Verteilungen (Binomialverteilung, Poissonverteilung, Gaussverteilung), Meßfehler und Fehlerfortpflanzung.

Mehr

Verteilung von Summen

Verteilung von Summen Verteilung von Summen Beispiel: Würfelwurf Frage: Wie verhält sich die Verteilung der Augensumme von -Würfeln bei wachsendem? Zur Beantwortung führen wir ein Simulationseperiment durch. 6 Würfe mit 1 Würfel

Mehr

Statistik für SozialwissenschaftlerInnen II p.85

Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Ziel von Schätzverfahren: Ausgehend von Stichproben Aussagen über Populationskennwerte machen Kenntnis der Abweichung des

Mehr

Biometrieübung 5 Spezielle Verteilungen. 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen

Biometrieübung 5 Spezielle Verteilungen. 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen Biometrieübung 5 (Spezielle Verteilungen) - Aufgabe Biometrieübung 5 Spezielle Verteilungen Aufgabe 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen Anzahl weiblicher Mäuse (k) Anzahl Würfe

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

N 1 0 50 0.5 50 0.5 2 1 20 0.2 70 0.7 3 2 15 0.15 85 0.85 4 3 10 0.1 95 0.95 5 4+ 5 0.05 100 1-100 1.00 - -

N 1 0 50 0.5 50 0.5 2 1 20 0.2 70 0.7 3 2 15 0.15 85 0.85 4 3 10 0.1 95 0.95 5 4+ 5 0.05 100 1-100 1.00 - - 2 Deskriptive Statistik 1 Kapitel 2: Deskriptive Statistik A: Beispiele Beispiel 1: Im Rahmen einer Totalerhebung der Familien eines Dorfes (N = 100) wurde u.a. das diskrete Merkmal Kinderanzahl (X) registriert.

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Grundproblem Generell sind wir nur selten in der Geographie in der Lage, Daten über die Grundgesamtheit zur Verfügung zu haben.

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Wirtschaftsstatistik Normalverteilung

Wirtschaftsstatistik Normalverteilung Fachhochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 1, Tel 39 14 jutta.arrenberg@fh-koeln.de Wirtschaftsstatistik Normalverteilung Aufgabe 10.1 Die Lebensdauer

Mehr

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests 1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests Statistische Tests dienen dem Testen von Vermutungen, so genannten Hypothesen, über Eigenschaften der Gesamtheit aller Daten ( Grundgesamtheit

Mehr

Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Stetige Verteilungen

Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Stetige Verteilungen Materialien zur Lösung der folgenden Aufgaben: - in Übung 3 beigefügte Tabelle Wahrscheinlichkeitsverteilungen diskreter und stetiger Zufallsgrößen - Übersicht - beigefügte Tabelle spezieller stetiger

Mehr

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung R. Brinkmann http://brinkmann-du.de Seite 5.05.0 Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung Erwartungswert binomialverteilter Zufallsgrößen Wird ein Bernoulli- Versuch, bei

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Stetige Wahrscheinlichkeitsverteilung

Stetige Wahrscheinlichkeitsverteilung Stetige Wahrscheinlichkeitsverteilung Stetige Wahrscheinlichkeitsverteilung Gaußsche Normalverteilung [7] S.77 [6] S.7 ORIGIN µ : Mittelwert σ : Streuung :, 9.. Zufallsvariable, Zufallsgröße oder stochastische

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.6 und 4.7 besser zu verstehen. Auswertung und Lösung Abgaben: 59 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.78 1 Frage

Mehr

Übungen mit dem Applet Rangwerte

Übungen mit dem Applet Rangwerte Rangwerte 1 Übungen mit dem Applet Rangwerte 1 Statistischer Hintergrund... 2 1.1 Verteilung der Einzelwerte und der Rangwerte...2 1.2 Kurzbeschreibung des Applets...2 1.3 Ziel des Applets...4 2 Visualisierungen

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsverteilungen 1. Binomialverteilung 1.1 Abzählverfahren 1.2 Urnenmodell Ziehen mit Zurücklegen, Formel von Bernoulli 1.3 Berechnung von Werten 1.4 Erwartungswert und Standardabweichung

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Überblick Bessere Modelle, die nicht nur den Mittelwert von Referenzvektoren sondern auch deren Varianz berücksichtigen Weniger Fehlklassifikationen Mahalanobis Abstand Besseres Abstandsmaß basierend

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

Stochastik 03 Zufallsgröÿen und Verteilung

Stochastik 03 Zufallsgröÿen und Verteilung 29. August 2018 Grundlagen der Stochastik (bis Klasse 10) Grundlagen der Statistik (bis Klasse 10) Zufallsgrößen und Verteilungen Beurteilende Statistik (Testen von Hypothesen) Bernoulli-Experimente Ziele

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Übungsaufgaben zu Statistik II

Übungsaufgaben zu Statistik II Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Springer-Lehrbuch Wahrscheinlichkeitsrechnung und schließende Statistik von Karl Mosler, Friedrich Schmid Neuausgabe Wahrscheinlichkeitsrechnung und schließende Statistik Mosler / Schmid schnell und portofrei

Mehr

Stoffverteilungsplan Mathematik Leistungskurs. Lambacher Schweizer Stochastik ISBN Klassenarbeit

Stoffverteilungsplan Mathematik Leistungskurs. Lambacher Schweizer Stochastik ISBN Klassenarbeit Lambacher Schweizer Q3.1 Grundlegende Begriffe der Grundlagen der Wahrscheinlichkeitstheorie: Beschreiben von Zufallsexperimenten (Laplace-Experimente) unter Verwendung der Begriffe Ergebnis, Ergebnismenge,

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Binomialverteilung und Bernoulli- Experiment

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Binomialverteilung und Bernoulli- Experiment Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Binomialverteilung und Bernoulli- Experiment Das komplette Material finden Sie hier: Download bei School-Scout.de TOSSNET Der persönliche

Mehr

QM III Normalverteilung Aufgabe 10.1 Die Lebensdauer (in Jahren) von KFZ-Batterien des Typs

QM III Normalverteilung Aufgabe 10.1 Die Lebensdauer (in Jahren) von KFZ-Batterien des Typs Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 1, Tel 3914 jutta.arrenberg@th-koeln.de QM III Normalverteilung Aufgabe 10.1 Die Lebensdauer (in Jahren)

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Ü b u n g s b l a t t 15

Ü b u n g s b l a t t 15 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 2. 7. 2007 Ü b u n g s b l a t t 15 Hier ist zusätzliches Übungsmaterial zur Klausurvorbereitung quer durch die Inhalte der Vorlesung. Eine

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014 Prüfungstutorat: Angewandte Methoden der Politikwissenschaft Polito Seminar Carl Schweinitz 10.12.2014 Übersicht 1. Einheiten und Variablen 2. Skalen und ihre Transformation 3. Deskriptive Statistik 4.

Mehr

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch.

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch. Zentraler Grenzwertsatz Die Normalverteilung verdankt ihre universelle theoretische und praktische Bedeutung dem zentralen Grenzwertsatz. Unabhängig von der konkreten k Ausgangsverteilung konvergiert die

Mehr

Population und Stichprobe Wahrscheinlichkeitstheorie II

Population und Stichprobe Wahrscheinlichkeitstheorie II Population und Stichprobe Wahrscheinlichkeitstheorie II 5. Sitzung 1 S. Peter Schmidt 2003 1 Stichprobenziehung als Zufallsexperiment Definition Stichprobe: Teilmenge der Elemente der Grundgesamtheit bzw.

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken...

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken... I. Deskriptive Statistik 1 1. Einführung 3 1.1. Die Grundgesamtheit......................... 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................ 10

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

10. Vorlesung. Grundlagen in Statistik. Seite 291. Martin-Luther-Universität Halle/Wittenberg

10. Vorlesung. Grundlagen in Statistik. Seite 291. Martin-Luther-Universität Halle/Wittenberg . Vorlesung Grundlagen in Statistik Seite 29 Beispiel Gegeben: Termhäufigkeiten von Dokumenten Problemstellung der Sprachmodellierung Was sagen die Termhäufigkeiten über die Wahrscheinlichkeit eines Dokuments

Mehr

29 Schätzung von Erwartungswert und Varianz

29 Schätzung von Erwartungswert und Varianz 29 Schätzung von Erwartungswert und Varianz Jörn Loviscach Versionsstand: 21. September 2013, 15:55 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

VOLKSWIRTSCHAFTLICHE VORDIPLOMPRÜFUNG

VOLKSWIRTSCHAFTLICHE VORDIPLOMPRÜFUNG VOLKSWIRTSCHAFTLICHE VORDIPLOMPRÜFUNG 17.07.2007 Übungsklausur auf dem Gebiet: STATISTIK II Prüfer: Dr. Roland Füss Name, Vorname: Matrikel-Nr.: Die Klausur enthält drei Typen von Aufgaben: D e r T e i

Mehr

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer.

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer. R. Brinkmann http://brinkmann-du.de Seite 1 06.1008 Erwartungswert binomialverteilter Zufallsgrößen. Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt,

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

Kapitel 2. Fehlerrechnung

Kapitel 2. Fehlerrechnung Fehlerrechnung 1 Messungen => quantitative Aussagen Messungen müssen zu jeder Zeit und an jedem Ort zu den gleichen Ergebnissen führen Messungen sind immer mit Fehler behaftet. => Angabe des Fehlers! Bespiel

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst aufräumen 1 Modell vs. Daten Bis jetzt

Mehr

Deskriptive Statistik

Deskriptive Statistik Modul G.1 WS 07/08: Statistik 8.11.2006 1 Deskriptive Statistik Unter deskriptiver Statistik versteht man eine Gruppe statistischer Methoden zur Beschreibung von Daten anhand statistischer Kennwerte, Graphiken,

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende im Sommersemester 2012 Prof. Dr. H. Küchenhoff, J. Brandt, G. Schollmeyer, G. Walter Aufgabe 1 Betrachten

Mehr

Klausur zur Vorlesung Wahrscheinlichkeitsrechnung

Klausur zur Vorlesung Wahrscheinlichkeitsrechnung Name: 1. Februar 2002, 8.30-10.00 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 90 min, 1.5 Zeitstunden Skript, Vorlesungsmitschrift, Taschenrechner Schreiben Sie bitte auf dieses

Mehr

Stichproben Parameterschätzung Konfidenzintervalle:

Stichproben Parameterschätzung Konfidenzintervalle: Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,

Mehr

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht

Mehr

Über den Autor 7. Teil Beschreibende Statistik 29

Über den Autor 7. Teil Beschreibende Statistik 29 Inhaltsverzeichnis Über den Autor 7 Einführung Über dieses Buch - oder:»... für Dummies«verpflichtet! Wie man dieses Buch benutzt 22 Wie ich Sie mir vorstelle 22 Wie dieses Buch aufgebaut ist 23 Teil I:

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 10. Übung SS 18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 10. Übung SS 18: Woche vom Übungsaufgaben 10. Übung SS 18: Woche vom 18. 6. 22. 6. 2016 Stochastik IV: ZG (diskret + stetig); Momente von ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!)

Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!) Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!) - Arithmetisches Mittel o Das arithmetische Mittel (auch Durchschnitt) ist ein Mittelwert, der als Quotient

Mehr

Lage- und Streuungsparameter

Lage- und Streuungsparameter Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 23. Dezember 2011 1 Stetige Zufallsvariable, Normalverteilungen Der zentrale Grenzwertsatz und die 3-Sigma Regel

Mehr

Abitur 2009 Mathematik GK Stochastik Aufgabe C1

Abitur 2009 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 009 Mathematik GK Stochastik Aufgabe C1 Auf einem Spielbrett rollt eine Kugel vom Start bis in eines der Fächer F 1 bis F 5. An jeder Verzweigung rollt

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

Statistik K urs SS 2004

Statistik K urs SS 2004 Statistik K urs SS 2004 3.Tag Grundlegende statistische Maße Mittelwert (mean) Durchschnitt aller Werte Varianz (variance) s 2 Durchschnittliche quadrierte Abweichung aller Werte vom Mittelwert >> Die

Mehr

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test)

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test) Spezielle Tests Test auf einen Anteilswert (Binomialtest) Vergleich zweier Anteilswerte Test auf einen Mittelwert (Ein-Stichproben Gauss bzw. t-test) Vergleich zweier Mittelwerte (t-test) Test auf einen

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr