Kenngrößen von Zufallsvariablen
|
|
|
- Arthur Kaiser
- vor 9 Jahren
- Abrufe
Transkript
1 Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert einer Verteilung ist definiert als Diskrete Verteilung E(X) = µ = n x i P (X = x i ) i=1 D.h. der Erwartungswert ist die Summe über alle Ausprägungen mal ihrer Wahrscheinlichkeit Beispiel: Wir wollen den Erwartungswert einer (diskreten) Variablen berechnen, deren Verteilung die Poissonverteilung ist, d.h. Der Erwartungswert ist E(X) = P (X = x i ) = P (X = i) = λi i! e λ. i=0 Stetige Verteilung E(X) = µ = i λi i! e λ = = λe λ λ i i=0 (i)! } {{ } =e λ xf(x)dx. λ λi 1 i=1 (i 1)! e λ = λe λ i=1 = λe λ e λ = λ. λ i 1 (i 1)! Es wird also über den Raum aller möglichen Ausprägungen (der Integrand ist die Ausprägung mal der Dichtefunktion) integriert.
2 Beispiel: Nehmen wir an, die Zufallsvariable X ist standardnormalverteilt, d.h. X N(0, 1). Der Erwartungswert von X ist demnach 0 (eine Verteilung ist durch ihre Parameter charakterisiert, im Falle der Normalverteilung von µ, dem Erwartungswert, und von σ, der Standardabweichung). Der Median und andere Quantile Der Lageparamter Median ist einfach ausgedrückt der mittlere Wert einer Verteilung. Nehmen wir an, die Zufallsvariable X hat folgende Realisierungen: 1, 4, 7, 13, 15. Der Median von X wäre dann 7. Der Median (symbolisch ξ 0.5 ) ist jener Wert, der die folgenden Bedingungen erfüllt: P (X ξ 0.5 ) 0.5 und P (X ξ 0.5 ) 0.5. Falls man die Verteilungsfunktion F X (t) der Zufallsvariable X invertieren kann, so berechnet sich der Median durch ξ 0.5 = F X (0.5) 1 Der Median ist ein Spezialfall des sogenannten α Quantils: ξ α = FX 1 (α) Weitere Spezialfälle sind unteres Quartil: 0.25 Quantil (ξ 0.25 ) oberes Quartil: 0.75 Quantil (ξ 0.75 ) Wir unterscheiden wiederum den stetigen und den diskreten Fall:
3 Falls die Zufallsvariable X eine stetige Verteilung hat, so gilt F X (ξ α ) = ξ α f X (x)dx = α Wir wir bereits wissen, kann man das Integral als den Flächeninhalt unter einer Kurve interpretieren. In diesem Fall ist die Kurve die Wahrscheinlichkeitsfunktion. Das heisst F X (ξ α ) ist der Fläche zwischen der x-achse und der Wahrscheinlichkeitsfunktion f x im Bereich von bis ξ α. Dieser Flächeninhalt ist gleich α. Dazu eine Grafik: Ist die Verteilung von X diskret, so gilt F X (ξ α ) α Im folgenden Fall ist F X (ξ α ) echt größer als α:
4 Streuungsparameter Die Varianz einer Zufallsvariable X ist definiert als V arx = E(X EX) 2. Anhand der Formel sieht man, dass die Varianz der Erwartungswert der quadratischen Abweichung einer Zufallsvariabe von ihrem Erwartungswert ist. Häufig verwendet man für die Varianz auch das Symbol σ 2. Die Standardabweichung ist die Wurzel aus der Varianz, also σ = V arx. Die Varianz bzw. die Standardabweichung sind also Maße für die absolute Größe der Streuungen um den Erwartungswert.
5 Zur Berechnung der Varianzen sind folgende Regeln nützlich: 1. V ar(x) = E(X) 2 (E(X)) 2 2. V ar(αx + β) = α 2 V ar(x) 3. Sind X 1, X 2,..., X n unabhängige Zufallsvariablen, dann gilt V ar(x 1 +X X n ) = V ar(x 1 )+V ar(x 2 )+... +V ar(x n ) Ein Beispiel: Sei X exponentialverteilt mit Parameter λ, dann gilt wegen E(X) = 1 λ E(X) 2 = 0 x 2 λe λx dx = [ x 2 e λx ] 0 + 2xe λx dx 0 } {{ } 2 E(X) = λ E(X) = 2 λ 2 Das heisst V ar(x) = E(X) 2 (E(X)) 2 = 2 λ 2 ( 1 λ) 2 = 1 λ 2 Momente von Zufallsvariablen Weitere die Verteilung einer Zufallsvariable charkterisierenden Elemente sind: Momente: E(X) k Zentrale Momente E(X E(X)) k Das erste Moment E(X) 1 ist der Erwartungswert, das zweite zentrale Moment E(X E(X)) 2 kennen wir als Varianz. Aud den (zentralen) Momenten werden wichtige Grössen abgeleitet, nämlich
6 Schiefe: E(X E(X)) 3 V ar(x) 3 Eine Schiefe von 0 besitzen symmetrische Verteilungen (z.b. die Normalverteilung). Eine Verteilung die negative Schiefe besitzt wird linksschief genannt, eine mit positiver Schiefe rechtsschief. Eine kleine Hilfe zur Identifizierung von links- bzw. rechtsschiefen Funktionen: Eine linksschiefe Funktion wird auch rechtssteil genannt, ist sozusagen rechts steiler Eine rechtssschiefe Funktion wird auch linkssteil genannt, ist dementsprechend links steiler Beispiel: Folgend sind jeweils eine linksschiefe (bzw. rechtssteile) und eine rechtsschiefe (bzw. linkssteile) Funktion: f(x) linksschief x
7 f(x) rechtsschief x Exzeß E(X E(X)) 4 (V ar(x)) 2 3 Der Exzeß kann als Maß dafür angesehen werden, wie stark sich die Wölbung von der der Normalverteilung unterscheidet. Kovarianz und Korrelation von Zufallsvariablen Die Kovarianz ist eine Kenngröße, die den Zusammenhang zwischen zwei Zufallsvariablen (X und Y ) misst. Sie ist definiert durch Cov(X, Y ) = E(X E(X))(Y E(Y )). Es gelten folgende Rechenregeln: Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z) Cov(X, Y + Z) = Cov(X, Y ) + Cov(X, Z)
8 Zu beachten: Ist die Kovarianz gleich Null, so nennt man die Zufallsvariablen unkorreliert Zwei unabhängige Zufallsvariablen sind ebenfalls stets unkorreliert ACHTUNG: aus der Unkorreliertheit zweier Zufallsvariablen folgt NICHT ZWINGENDERMASSEN die Unabhängigkeit! Die Korrelation ist eine Normierung der Kovarianz, welche folgendermaßen definiert ist: Corr(X, Y ) = Cov(X, Y ) V ar(x) V ar(y ). Aufgrund der Normierung liegt der Wert der Korrelation zweier Zufallsvariablen stets zwischen 1 und 1.
Statistik I für Betriebswirte Vorlesung 3
Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April
Kapitel VI - Lage- und Streuungsparameter
Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie
1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt.
. Grundbegri e Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. ist auch das sichere Ereignis,
Statistik I für Betriebswirte Vorlesung 4
Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung
5 Erwartungswerte, Varianzen und Kovarianzen
47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,
Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)
Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel
Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review)
Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) 1 Diskrete Zufallsvariablen (Random variables) Eine Zufallsvariable X(c) ist eine Variable (genauer eine Funktion), deren Wert vom Ergebnis c
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
Zusatzmaterial zur Vorlesung Statistik II
Zusatzmaterial zur Vorlesung Statistik II Dr. Steffi Höse Professurvertretung für Ökonometrie und Statistik, KIT Wintersemester 2011/2012 (Fassung vom 15.11.2011, DVI- und PDF-Datei erzeugt am 15. November
Mathematik für Naturwissenschaften, Teil 2
Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die
Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.
Veranstaltung: Statistik für das Lehramt 16.12.2016 Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm Erwartungswert Varianz Standardabweichung Die Wahrscheinlichkeitsverteilung
Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung
Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 15. Jänner 2017 Evelina Erlacher Inhaltsverzeichnis 1 Mengen 2 2 Wahrscheinlichkeiten 3 3 Zufallsvariablen 5 3.1 Diskrete Zufallsvariablen............................
Statistik für Ingenieure Vorlesung 3
Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind
7.2 Moment und Varianz
7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p
Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management
für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt
Übung 1: Wiederholung Wahrscheinlichkeitstheorie
Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable
Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern.
Aufgabe 1 (2 + 1 + 2 + 2 Punkte) Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. a) Wieviele Möglichkeiten hat
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf. Vorlesung 04 Mathematische Grundlagen II,
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf 1 Was sollen Sie heute lernen? 2 Agenda Wiederholung stetige Renditen deskriptive Statistik Verteilungsparameter
13 Mehrdimensionale Zufallsvariablen Zufallsvektoren
3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem
Wirtschaftsmathematik
Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A
Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management
Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)
Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch
6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6
6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen
6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,
1. Grundbegri e der Stochastik
. Grundbegri e der Stochastik Raum der Ereignisse. Die einelementigen Teilmengen f!g heißen auch Elementarereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. A ist ein geeignetes System von Teilmengen
1. Grundbegri e der Stochastik
Wiederholung von Grundwissen der Stochastik. Grundbegri e der Stochastik Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt
5. Spezielle stetige Verteilungen
5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für
Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management
Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert
Zufallsvariablen [random variable]
Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden
Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung
Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben
Wichtige Definitionen und Aussagen
Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge
Stochastik Musterlösung 4
ETH Zürich HS 218 RW, D-MATL, D-MAVT Prof. Marloes H. Maathuis Koordinator Dr. Marvin S. Müller Stochastik Musterlösung 4 1. Die Zufallsvariable, die die Anzahl eingehender Telefonanrufe in einer Telefonzentrale
4. Verteilungen von Funktionen von Zufallsvariablen
4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten
Übungsblatt 9 (25. bis 29. Juni)
Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell
67 Zufallsvariable, Erwartungswert, Varianz
67 Zufallsvariable, Erwartungswert, Varianz 67.1 Motivation Oft möchte man dem Resultat eines Zufallsexperiments eine reelle Zahl zuordnen. Der Gewinn bei einem Glücksspiel ist ein Beispiel hierfür. In
Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler
6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung
1.5 Erwartungswert und Varianz
Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.
Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen
Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Oktober 2018 Prof. Dr. Hans-Jörg
1.5 Erwartungswert und Varianz
Ziel: Charakterisiere Verteilungen von Zufallsvariablen (Bildbereich also reelle Zahlen, metrische Skala) durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere:
Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19
Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik PD Dr. U. Ludwig Vorlesung 7 1 / 19 2.2 Erwartungswert, Varianz und Standardabweichung (Fortsetzung) 2 / 19 Bedingter Erwartungswert
Statistische Methoden in den Umweltwissenschaften
Statistische Methoden in den Umweltwissenschaften Stetige und diskrete Wahrscheinlichkeitsverteilungen Lageparameter Streuungsparameter Diskrete und stetige Zufallsvariablen Eine Variable (oder Merkmal
0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5
4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit
Mathematische und statistische Methoden II
Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike [email protected] lordsofthebortz.de lordsofthebortz.de/g+
Kapitel 2 Wahrscheinlichkeitsrechnung
Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt
I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...
Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................
Lagemasse und Streuung
Lagemasse und Streuung Benjamin Schlegel 07. März 2016 Lagemasse sagen etwas über die Lage und das Zentrum der Daten aus, Streuungsmasse, wie die Daten um dieses Zentrum gestreut sind. Lagemasse Lagemasse
Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential
Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:
Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert
Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht
1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Hypothesentests. 5 Regression
0 Einführung 1 Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests 5 Regression Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen
Lösungen zu Übungsaufgaben Blatt 9
Diskrete Zufallsgrößen Zu Aufgabe Die zufällige Anzahl X von Ausfällen eines Servers pro Jahr genüge folgender Verteilung: ai 0 3 4 5 6 >6 pi /0 /0 3/0 /0 /0 /0 /0 0 Ein Ausfall des Servers verursacht
Kapitel 6. Verteilungsparameter. 6.1 Der Erwartungswert Diskrete Zufallsvariablen
Kapitel 6 Verteilungsparameter Wie bei einem Merkmal wollen wir nun die Lage und die Streuung der Verteilung einer diskreten Zufallsvariablen durch geeignete Maßzahlen beschreiben. Beginnen wir mit Maßzahlen
Ü b u n g s b l a t t 15
Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 2. 7. 2007 Ü b u n g s b l a t t 15 Hier ist zusätzliches Übungsmaterial zur Klausurvorbereitung quer durch die Inhalte der Vorlesung. Eine
12 Die Normalverteilung
12 Die Normalverteilung Die Normalverteilung ist eine der wichtigsten Wahrscheinlichkeitsverteilungen in der Praxis, weil aufgrund des sogenannten zentralen Grenzwertsatzes in vielen Situationen angenommen
Stetige Verteilungen Rechteckverteilung
Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a
Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen
Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k
Statistik Klausur Wintersemester 2013/2014 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!
Statistik 1 A 2. Klausur Wintersemester 2013/2014 Hamburg, 18.03.2014 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................
4. Gemeinsame Verteilung und Grenzwertsätze
4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen
6.6 Poisson-Verteilung
6.6 Poisson-Verteilung Die Poisson-Verteilung ist eine Wahrscheinlichkeitsverteilung, die zur Modellierung der Anzahl von zufälligen Vorkommnissen in einem bestimmten räumlichen oder zeitlichen Abschnitt
Sigma-Umgebung. Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5. n = 20 p = 0,75
Sigma-Umgebung Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5 0,2 (z.b. 30-maliges Werfen einer Münze, X Anzahl von Zahl ) 5 10 15 20 n = 20 p = 0,75 0,2 5 10 15 20 Der Erwartungswert
Statistik Klausur Wintersemester 2013/2014 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!
Statistik 1 2. Klausur Wintersemester 2013/2014 Hamburg, 18.03.2014 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................
Statistik I für Betriebswirte Vorlesung 3
Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 20. April 2017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 18.
Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester
Messung von Rendite und Risiko Finanzwirtschaft I 5. Semester 1 Messung von Renditen Ergebnis der Anwendung der Internen Zinsfuß- Methode ist die Rentabilität des Projekts. Beispiel: A0-100.000 ZÜ1 54.000
Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.
Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer
Wirtschaftswissenschaftliches Prüfungssekretariat Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Sommersemester 2015
Wirtschaftswissenschaftliches Prüfungssekretariat Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Sommersemester 205 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer
3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit
3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate
Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann
4. Übung Themenkomplex: Zufallsvariablen und ihre Verteilung Aufgabe 1 Für eine stetige Zufallsvariable gilt: a) P (x = t) > 0 b) P (x 1) = F (1) c) P (x = 1) = 0 d) P (x 1) = 1 F(1) e) P (x 1) = 1 F(1)
Standardnormalverteilung
Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative
Beispiel: Zweidimensionale Normalverteilung I
10 Mehrdimensionale Zufallsvariablen Bedingte Verteilungen 10.6 Beispiel: Zweidimensionale Normalverteilung I Wichtige mehrdimensionale stetige Verteilung: mehrdimensionale (multivariate) Normalverteilung
2. Übung zur Vorlesung Statistik 2
2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen
Woche 2: Zufallsvariablen
Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit
Die Korrelation von Merkmalen
Die Korrelation von Merkmalen In der Analse von Datenmaterial ist eines der Hauptziele der Statistik eine Abhängigkeit bzw. einen Zusammenhang zwischen Merkmalen zu erkennen. Die Korrelation ermittelt
Eindimensionale Zufallsvariablen
Eindimensionale Grundbegriffe Verteilungstypen Diskrete Stetige Spezielle Maßzahlen für eindimensionale Erwartungswert Varianz Standardabweichung Schwankungsintervalle Bibliografie Bleymüller / Gehlert
Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung
Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus
Reelle Zufallsvariablen
Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen
Statistik I. 1. Klausur Wintersemester 2010/2011 Hamburg, Art der Anmeldung: STiNE FlexNow Zulassung unter Vorbehalt
Statistik I 1. Klausur Wintersemester 2010/2011 Hamburg, 11.02.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................
Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten
Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests
Statistik 1 Beispiele zum Üben
Statistik 1 Beispiele zum Üben 1. Ein Kühlschrank beinhaltet 10 Eier, 4 davon sind faul. Wir nehmen 3 Eier aus dem Kühlschrank heraus. (a Bezeichne die Zufallsvariable X die Anzahl der frischen herausgenommenen
Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5
Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung
Mehrdimensionale Zufallsvariablen
Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,
1 Multivariate Zufallsvariablen
1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)
