Lage- und Streuungsparameter
|
|
|
- Alwin Solberg
- vor 9 Jahren
- Abrufe
Transkript
1 Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch darzustellen Soweit die Berechnung ohne einen Computer erfolgt, ist es sinnvoll, die Daten zu gruppieren, d.h. eine Häufigkeitstabelle zu erstellen, mit der die Berechnungen vereinfacht werden können 1
2 Alter der Kursteilnehmer: Häufigkeitstabelle Ausprägung Häufigkeit
3 Lageparameter (=Mittelwerte) Beziehen sich auf die zentrale Tendenz einer Verteilung Berechnung nur dann sinnvoll, wenn die Verteilung tatsächlich eine zentrale Tendenz aufweist, d.h. möglichst eingipflig ist Vielzahl von Mittelwerten. Hier behandelt werden Modus (=Modalwert) Median Arithmetisches Mittel (= Durchschnitt ) 3
4 Modus Ist der Meßwert, der in der Verteilung am häufigsten vorkommt. Abkürzung x Mo Im Beispiel: 22 Jahre Wenn zwei Werte gleich häufig vorkommen arithmetisches Mittel bestimmen, soweit sinnvoll und möglich ansonsten auf Angabe des Modus verzichten Kann unmittelbar aus der Verteilung bestimmt werden Ist unempfindlich gegenüber Extremwerten Kann für alle Skalenniveaus bestimmt werden Niedriger Informationsgehalt 4
5 Median Ist der Meßwert, der die aufsteigend angeordneten Meßwerte in der Mitte teilt Bei einer ungeraden Anzahl von Meßwerten gibt es genau einen Wert, der diese Bedingung erfüllt Bei einer geraden Anzahl von Werten wird das arithmetische Mittel aus den beiden mittleren Werten gebildet Berücksichtigt alle Meßwerte und ist robust gegen Ausreißer In diesem Fall (22+22)/2=22 x~!!
6 Arithmetisches Mittel Ist der bekannteste Mittelwert Prinzip: alle Werte werden aufsummiert, dann wird durch die Zahl der Fälle geteilt In unserem Fall: 644/28=23 Empfindlich gegen Ausreißer: Bleiben die ältesten beiden Kursteilnehmer unberücksichtigt, sinkt das arithmetische Mittel auf 22,42 Jahre. Modus und Median bleiben unbeeinflußt Nutzt das Maximum an Information, das in den Daten enthalten ist Die Summe der Abweichungen vom arithmetischen Mittel ist null Die Summe der quadrierten Abweichungen vom arithmetischen Mittel ist minimal x 6
7 Rechnen mit dem Summenzeichen In der Statistik wird häufig das Summenzeichen (Sigma) benutzt Dieses Zeichen symbolisiert eine Aufsummierung über alle Fälle Unter dem Summenzeichen steht meist i=1, was den Laufindex über die Fälle und dessen Startwerte repräsentiert Über dem Summenzeichen steht n, was bedeutet, das bis zum letzten (n-ten) Fall aufsummiert werden soll Beide Zusätze werden häufig weggelassen n i=1 n x i = x 7
8 Form der Verteilung Aus dem Verhältnis der drei Mittelwerte zueinander kann man auf die Form der Verteilung schließen: Linkssteile Verteilung Die häufigste Ausprägung liegt weit links, deshalb ist der Modus der kleinste der drei Werte Der Median, der die Verteilung halbiert, liegt in der Mitte und ist deshalb größer als der Modus Das arithmetische Mittel reagiert auf die wenigen Ausreißer am rechten Rand der Verteilung und ist deshalb nochmals größer als der Median Rechtssteile Verteilung: Reihenfolge kehrt sich um Symmetrische Verteilung: alle drei Mittelwerte fallen zusammen 8
9 Streuungsparameter Mittelwerte informieren über die zentrale Tendenz einer Verteilung Streuungsparameter informieren darüber, wie homogen eine Verteilung ist: im Falle einer absolut homogenen Verteilung sind alle Werte mit dem Mittelwert identisch, die Streuung ist gleich null je heterogener die Verteilung, desto stärker streuen die Meßwerte um den Mittelwert im Falle einer zweigipfeligen Verteilung unterscheiden sich die die Meßwerte extrem vom Mittelwert Zur Beschreibung der Streuung existieren verschiedene Maße. Im Kurs behandelt werden Variationsweite (auch Spannweite, range) Varianz und die daraus abgeleitete Standardabweichung 9
10 Variationsweite Die Variationsweite (V) ist einfach die Differenz zwischen dem größten und dem kleinsten Meßwert In unserem Fall: 31-20= 11 Jahre Kann direkt aus der Verteilung abgelesen werden Einfache Interpretation Basiert auf lediglich zwei Meßwerten Wertet nur einen Bruchteil der in den Daten enthaltenen Information aus Extrem anfällig für Ausreißer 10
11 Varianz Berücksichtigt alle Meßwerte Entspricht der durchschnittlichen quadrierten Abweichung der Meßwerte von ihrem Mittelwert Abkürzung s 2 In unserem Fall: 8,07 Warum werden Abweichungen quadriert? Damit das Vorzeichen verschwindet (Summe der einfachen Abweichungen wäre null) Damit große Abweichungen vom Mittelwert stärker gewichtet werden Problem: Die Maßeinheit geht verloren bzw. kann nicht interpretiert werden (Quadratjahre) 11
12 Berechnung der Varianz Varianz II Mittelwert berechnen Für jeden Meßwert Differenz zum Mittelwert berechnen Differenz quadrieren und aufaddieren Summe durch Zahl der Fälle teilen s 2 = SAQ (Summe der Abweichungs-Quadrate)/n Die Varianz einer Stichprobe unterschätzt die Varianz der Grundgesamtheit um den Faktor (n-1)/n Deshalb muß die Stichprobenvarianz mit dem Faktor n/(n-1) multipliziert werden, wenn eine Schätzung für die Grundgesamtheit gewünscht wird Das führt zur Vereinfachung SAQ/n*n/(n-1) = SAQ/n-1 Diese Korrektur wird nur dann vorgenommen, wenn eine Schätzung erforderlich ist 12
13 Varianz III ID Meßwert arith. Mittel Abweichung AQ Varianz = = = /28=8,07 13
14 Standardabweichung Die Standardabweichung (s) wird direkt aus der Varianz berechnet, indem aus der Varianz die Quadratwurzel gezogen wird Wird teilweise mit S.D. (standard deviation) abgekürzt Vorteil: Liegt wieder in der ursprünglichen Einheit vor In unserem Fall: 2,84 Jahre Interpretation trotzdem nicht ganz einfach s ist nicht die mittlere Abweichung vom Durchschnitt s entspricht auch nicht dem Mittel der Beträge der einzelnen Abweichungen 14
15 z-transformation Meßwerte aus unterschiedlichen Verteilungen (bspw. unterschiedliche Statistikklausuren) sollen miteinander verglichen werden Dazu wird zunächst von jedem Meßwert der Mittelwert seiner Verteilung abgezogen (Zentrierung), um Niveauunterschiede auszugleichen Die unterschiedliche Streuung (z.b. durch unterschiedliche Maßeinheiten) der Verteilungen wird kompensiert, indem die zentrierten Werte durch die Standardabweichung ihrer Verteilung geteilt werden 15
16 z-werte Sind das Ergebnis der z-transformation Repräsentieren die Abweichung des ursprünglichen Meßwertes vom Mittelwert seiner Verteilung Diese Abweichung wird in Standardabweichungen der ursprünglichen Verteilung ausgedrückt Damit informieren z-werte skalenunabhängig über die Lage des ursprünglichen Meßwertes innerhalb seiner Verteilung z-werte weisen ihrerseits einen Mittelwert von 0 und eine Standardabweichung von 1 auf 16
Statistik K urs SS 2004
Statistik K urs SS 2004 3.Tag Grundlegende statistische Maße Mittelwert (mean) Durchschnitt aller Werte Varianz (variance) s 2 Durchschnittliche quadrierte Abweichung aller Werte vom Mittelwert >> Die
1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent
Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte
Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen
DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung
Maße der zentralen Tendenz
UStatistische Kennwerte Sagen uns tabellarische und graphische Darstellungen etwas über die Verteilung der einzelnen Werte einer Stichprobe, so handelt es sich bei statistischen Kennwerten um eine Kennzahl,
Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8
Wiederholung Statistik I Statistik für SozialwissenschaftlerInnen II p.8 Konstanten und Variablen Konstante: Merkmal hat nur eine Ausprägung Variable: Merkmal kann mehrere Ausprägungen annehmen Statistik
Statistik II: Grundlagen und Definitionen der Statistik
Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 [email protected] Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen
Statistik eindimensionaler Größen
Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,
Das arithmetische Mittel. x i = = 8. x = 1 4. und. y i = = 8
.2 Einige statistische Maßzahlen.2. Die Schusser in zwei Familien Die vier Kinder der Familie Huber haben x = 5, x 2 = 7, x 3 = 9, x 4 = Schusser. Die vier Kinder der Familie Maier haben y = 7, y 2 = 7,
Median 2. Modus < Median < Mittelwert. Mittelwert < Median < Modus. 2 Modalwerte oder Modus viel größer bzw. viel kleiner als Mittelwert
Universität Flensburg Zentrum für Methodenlehre Tutorium Statistik I Modus oder Modalwert (D) : - Geeignet für nominalskalierte Daten - Wert der häufigsten Merkmalsausprägung - Es kann mehrere Modalwerte
Deskriptive Statistik
Deskriptive Statistik 1 Ziele In der deskriptiven (=beschreibenden) Statistik werden Untersuchungsergebnisse übersichtlich dargestellt, durch Kennzahlen charakterisiert und grafisch veranschaulicht. 2
Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)
Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke
3. Lektion: Deskriptive Statistik
Seite 1 von 5 3. Lektion: Deskriptive Statistik Ziel dieser Lektion: Du kennst die verschiedenen Methoden der deskriptiven Statistik und weißt, welche davon für Deine Daten passen. Inhalt: 3.1 Deskriptive
Deskriptivstatistik a) Univariate Statistik Weiters zum Thema der statistischen Informationsverdichtung
20 Weiters zum Thema der statistischen Informationsverdichtung M a ß z a h l e n Statistiken bei Stichproben Parameter bei Grundgesamtheiten Maßzahlen zur Beschreibung univariater Verteilungen Maßzahlen
Lage- und Streuungsmaße
Sommersemester 2009 Wiederholung/Einführung Modus Median Arithmetisches Mittel Symmetrie/Schiefe Wölbung/Exzess 4 6 8 10 ALQ Tutorien Begleitend zur Vorlesung, inhaltlich identisch mit der Übung Mögliche
Deskriptive Statistik Erläuterungen
Grundlagen der Wirtschaftsmathematik und Statistik Erläuterungen Lernmaterial zum Modul - 40601 - der Fernuniversität Hagen 7 2.1 Einfache Lageparameter aus einer gegebenen Messreihe ablesen Erklärung
Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg
Lagemaße Übung M O D U S, M E D I A N, M I T T E L W E R T, M O D A L K L A S S E, M E D I A N, K L A S S E, I N T E R P O L A T I O N D E R M E D I A N, K L A S S E M I T T E Zentrale Methodenlehre, Europa
Einführung in Quantitative Methoden
Einführung in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2011 Christodoulides / Waldherr Einführung in Quantitative Methoden- 2.VO 1/62 Summenzeichen
W-Seminar: Versuche mit und am Menschen 2017/2019 Skript
3. Deskriptive Statistik Die deskriptive (auch: beschreibende) Statistik hat zum Ziel, [ ] Daten durch Tabellen, Kennzahlen [ ] und Grafiken übersichtlich darzustellen und zu ordnen. Dies ist vor allem
Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66
Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation
Graphische Darstellung einer univariaten Verteilung:
Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike [email protected]
Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durc
SS 2017 Torsten Schreiber 222 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durch Summierung je Ausprägung
Ausführliche Lösungen zu ausgewählten Aufgaben von ÜB 5 und 6. Streudiagramm
y Aufgabe 3 Ausführliche Lösungen zu ausgewählten Aufgaben von ÜB 5 und 6 a) Zur Erstellung des Streudiagramms zeichnet man jeweils einen Punkt für jedes Datenpaar (x i, y i ) aus der zweidimensionalen
3. Deskriptive Statistik
3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten
Streuungsmaße von Stichproben
Streuungsmaße von Stichproben S P A N N W E I T E, V A R I A N Z, S T A N D A R D A B W E I C H U N G, Q U A R T I L E, K O V A R I A N Z, K O R R E L A T I O N S K O E F F I Z I E N T Zentrale Methodenlehre,
Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert
Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht
Deskriptive Statistik & grafische Darstellung
Deskriptive Statistik & grafische Darstellung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg [email protected] Statistik 1 S. Garbade (SRH Heidelberg) Deskriptive
Einführung in Quantitative Methoden
Einführung in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2014 Christodoulides / Waldherr Einführung in Quantitative Methoden- 2.VO 1/57 Die Deskriptivstatistik
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
Mittelwert und Standardabweichung
Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Mittelwert und Standardabweichung Überblick Mittelwert Standardabweichung Weitere Maße
Lösungen. w58r4p Lösungen. w58r4p. Name: Klasse: Datum:
Testen und Fördern Name: Klasse: Datum: 1) Ermittle jeweils das arithmetische Mittel. Ordne die Datenerhebungen nach der Größe der arithmetischen Mittel. Beginne mit dem Größten. 45, 39, 44, 48, 42, 39,
htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK
htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 2 Grundbegriffe htw saar 3 Grundgesamtheit und Stichprobe Ziel: Über eine Grundgesamtheit (Population) soll eine Aussage über ein
Lagemasse und Streuung
Lagemasse und Streuung Benjamin Schlegel 07. März 2016 Lagemasse sagen etwas über die Lage und das Zentrum der Daten aus, Streuungsmasse, wie die Daten um dieses Zentrum gestreut sind. Lagemasse Lagemasse
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf. Vorlesung 04 Mathematische Grundlagen II,
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf 1 Was sollen Sie heute lernen? 2 Agenda Wiederholung stetige Renditen deskriptive Statistik Verteilungsparameter
Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung
FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer
Fachrechnen für Tierpfleger
Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:
Der Mittelwert (arithmetisches Mittel)
Der Mittelwert (arithmetisches Mittel) x = 1 n n x i bekanntestes Lagemaß instabil gegen extreme Werte geeignet für intervallskalierte Daten Deskriptive Statistik WiSe 2015/2016 Helmut Küchenhoff (Institut
3) Lagemaße: Mittelwert, Median, Modus
Thema: Beschreibende Statistik LE.1: 40 min Seite 9 3) Lagemaße: Mittelwert, Median, Modus Lagemaße In der beschreibenden Statistik werden Daten erhoben. Diese Daten weisen eine bestimmte Verteilung auf.
8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik
Informationsbestände analysieren Statistik 8. Statistik Nebst der Darstellung von Datenreihen bildet die Statistik eine weitere Domäne für die Auswertung von Datenbestände. Sie ist ein Fachgebiet der Mathematik
Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien
Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische
1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43
1) Ermittle jeweils das arithmetische Mittel. Ordne die Datenerhebungen nach der Größe der arithmetischen Mittel. Beginne mit dem Größten. 1 45, 39, 44, 48, 42, 39, 40, 31 2 35, 31, 46, 35, 31, 42, 51,
Deskriptive Statistik. (basierend auf Slides von Lukas Meier)
Deskriptive Statistik (basierend auf Slides von Lukas Meier) Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst
Deskriptive Statistik
Deskriptive Statistik Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst aufräumen 1 Modell vs. Daten Bis jetzt
Kapitel 1 Beschreibende Statistik
Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)
Statistische Grundlagen I
Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.
Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man:
Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man: a) Die absoluten Häufigkeit: Sie gibt an, wie oft ein Variablenwert vorkommt b) Die relative Häufigkeit: Sie erhält
Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man:
Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man: a) Die absoluten Häufigkeit: Sie gibt an, wie oft ein Variablenwert vorkommt b) Die relative Häufigkeit: Sie erhält
1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober
1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte D. Horstmann: Oktober 2014 4 Graphische Darstellung von Daten und unterschiedliche Mittelwerte Eine Umfrage nach der Körpergröße
Deskriptive Statistik Winfried Zinn
Deskriptive Statistik Winfried Zinn Inhalte Statistik 1 1. Themenblock: Grundlagen der beschreibenden Statistik: Skalenniveaus Häufigkeitsverteilungen Mittelwerte (Lagemaße) Standardabweichung und Varianzen
TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN
TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN Bivariate Analyse für metrisch skalierte Variablen Grundlagen Verfahren für metrische Daten nutzen den vollen mathematischen Informationsgehalt
Kapitel 1: Deskriptive Statistik
Kapitel 1: Deskriptive Statistik Grafiken 1 Statistische Kennwerte 5 z-standardisierung 7 Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen.
Statistische Methoden in den Umweltwissenschaften
Statistische Methoden in den Umweltwissenschaften Stetige und diskrete Wahrscheinlichkeitsverteilungen Lageparameter Streuungsparameter Diskrete und stetige Zufallsvariablen Eine Variable (oder Merkmal
Grundlagen der empirischen Sozialforschung
Grundlagen der empirischen Sozialforschung Sitzung 10 - Datenanalyseverfahren Jan Finsel Lehrstuhl für empirische Sozialforschung Prof. Dr. Petra Stein 22. Dezember 2008 1 / 21 Online-Materialien Die Materialien
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 20. Oktober 2010 1 empirische Verteilung 2 Lageparameter Modalwert Arithmetisches Mittel Median 3 Streuungsparameter
1 Univariate Statistiken
1 Univariate Statistiken Im ersten Kapitel berechnen wir zunächst Kenngrößen einer einzelnen Stichprobe bzw. so genannte empirische Kenngrößen, wie beispielsweise den Mittelwert. Diese können, unter gewissen
Weitere Lagemaße: Quantile/Perzentile I
3 Auswertung von eindimensionalen Daten Lagemaße 3.3 Weitere Lagemaße: Quantile/Perzentile I Für jeden Median x med gilt: Mindestens 50% der Merkmalswerte sind kleiner gleich x med und ebenso mindestens
I.V. Methoden 2: Deskriptive Statistik WiSe 02/03
I.V. Methoden 2: Deskriptive Statistik WiSe 02/03 Vorlesung am 04.11.2002 Figures won t lie, but liars will figure. General Charles H.Grosvenor Dr. Wolfgang Langer Institut für Soziologie Martin-Luther-Universität
Was sind Zusammenhangsmaße?
Was sind Zusammenhangsmaße? Zusammenhangsmaße beschreiben einen Zusammenhang zwischen zwei Variablen Beispiele für Zusammenhänge: Arbeiter wählen häufiger die SPD als andere Gruppen Hochgebildete vertreten
Einfache Varianzanalyse für unabhängige Stichproben
Einfache Varianzanalyse für unabhängige Stichproben VARIANZANALYSE Die Varianzanalyse ist das dem t-test entsprechende Mittel zum Vergleich mehrerer (k 2) Stichprobenmittelwerte. Sie wird hier mit VA abgekürzt,
Bitte am PC mit Windows anmelden!
Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung
1.5 Berechnung von Rangzahlen
1.5 Berechnung von Rangzahlen Bei vielen nichtparametrischen Verfahren spielen die so genannten Rangzahlen eine wesentliche Rolle, denn über diese werden hier die Prüfgrößen berechnet. Dies steht im Gegensatz
Lage- und Streuungsmaße
Statistik 1 für SoziologInnen Lage- und Streuungsmaße Univ.Prof. Dr. Marcus Hudec Streuungsmaße Statistische Maßzahlen, welche die Variabilität oder die Streubreite in den Daten messen. Sie beschreiben
Kapitel 2. Mittelwerte
Kapitel 2. Mittelwerte Im Zusammenhang mit dem Begriff der Verteilung, der im ersten Kapitel eingeführt wurde, taucht häufig die Frage auf, wie man die vorliegenden Daten durch eine geeignete Größe repräsentieren
beruflicher Bildungsabschluss incl. Hochschulabschl. 4Kat.(m) Häufigkeit Prozent Gültig Lehre/Beruffachgesundh.Schule ,2 59,2 59,2
Häufigkeiten Deskriptive Statistiken Häufigkeiten Beruflicher Bildungsabschluss (Mbfbil4) Zielvariablenliste OK Er erscheint: Statistiken beruflicher Bildungsabschluss incl. N Gültig 3445 Fehlend 0 beruflicher
a) x = 1150 ; x = 950 ; x = 800 b) Die Lagemaße unterscheiden sich voneinander. c) Der Median charakterisiert die Stichprobe am besten.
R. Brinkmann http://brinkmann-du.de Seite 6.0.2009 Lösungen Mittelwert, Median II se: E E2 E3 E4 E5 E6 a) Notendurchschnitt 2,6 b) Säulendiagramm siehe ausführliche Lösung. c) Kreisdiagramm siehe ausführliche
Statistische Methoden in den Umweltwissenschaften
Statistische Methoden in den Umweltwissenschaften t-test Varianzanalyse (ANOVA) Übersicht Vergleich von Mittelwerten 2 Gruppen: t-test einfaktorielle ANOVA > 2 Gruppen: einfaktorielle ANOVA Seeigel und
Deskriptive Statistik
Modul G.1 WS 07/08: Statistik 8.11.2006 1 Deskriptive Statistik Unter deskriptiver Statistik versteht man eine Gruppe statistischer Methoden zur Beschreibung von Daten anhand statistischer Kennwerte, Graphiken,
Statistik I. Methodologie der Psychologie
Statistik I Methodologie der Psychologie Thomas Schmidt & Lena Frank Wintersemester 2003/2004 Georg-Elias-Müller-Institut für Psychologie Uni Göttingen Literatur: Glantz, S.A. (2002). Primer of Biostatistics.
Lage- und Streuungsmaße
Sommersemester 2009 Modus Median Arithmetisches Mittel Symmetrie/Schiefe Wölbung/Exzess 4 6 8 10 ALQ Tutorien Begleitend zur Vorlesung, inhaltlich identisch mit der Übung Mögliche Zeiten: Do 10-12, Do
Kapitel 3: Lagemaße. Ziel. Komprimierung der Daten zu einer Kenngröße, welche die Lage, das Zentrum der Daten beschreibt
Kapitel 3: Lagemaße Ziel Komprimierung der Daten zu einer Kenngröße, welche die Lage, das Zentrum der Daten beschreibt Dr. Matthias Arnold 52 Definition 3.1 Seien x 1,...,x n Ausprägungen eines kardinal
STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich)
WS 07/08-1 STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich) Nur die erlernbaren Fakten, keine Hintergrundinfos über empirische Forschung etc. (und ich übernehme keine Garantie) Bei der Auswertung von
Kennwerte eindimensionaler Häufigkeitsverteilungen
Kennwerte eindimensinaler Häufigkeitsverteilungen - Einführung - Statistische Kennwerte vn Verteilungen sind numerische Maße mit der Funktin, zusammenfassend einen Eindruck vn 1) dem Schwerpunkt, 2) der
4 Statistische Maßzahlen
4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer
Beispiel 4 (Einige weitere Aufgaben)
1 Beispiel 4 (Einige weitere Aufgaben) Aufgabe 1 Bestimmen Sie für die folgenden Zweierstichproben, d. h. Stichproben, die jeweils aus zwei Beobachtungen bestehen, a) den Durchschnitt x b) die mittlere
3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0.
Eine Verteilung ist durch die Angabe von einem oder mehreren Mittelwerten nur unzureichend beschrieben. Beispiel: Häufigkeitsverteilungen mit gleicher zentraler Tendenz: geringe Variabilität mittlere Variabilität
Thema: Mittelwert einer Häufigkeitsverteilung. Welche Informationen kann der Mittelwert geben?
Thema: Mittelwert einer Häufigkeitsverteilung Beispiel: Im Mittel werden deutsche Männer 75,1 Jahre alt; sie essen im Mittel pro Jahr 71 kg Kartoffel(-produkte) und trinken im Mittel pro Tag 0.35 l Bier.
Univ.-Prof. Dr. Georg Wydra
Univ.-Prof. Dr. Georg Wydra Methoden zur Auswertung von Untersuchungen 1 SKALENTYPEN UND VARIABLEN 2 ZUR BEDEUTUNG DER STATISTIK IN DER FORSCHUNG 3 STATISTIK ALS VERFAHREN ZUR PRÜFUNG VON HYPOTHESEN 4
Wahrscheinlichkeitsverteilungen
Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet
Aufbau des Experiments Reihung von Versuchsitems und Distraktoren
Reihung von Versuchsitems und Distraktoren Reihung von Versuchsitems und Distraktoren Hinweis D1 (Verhältnis Distraktoren:Versuchsitems): Es sollten Distraktoren eingebaut werden, im Falle von Sprecherbefragungen
T-Test für unabhängige Stichproben
T-Test für unabhängige Stichproben Wir gehen von folgendem Beispiel aus: Wir erheben zwei Zufallstichproben, wobei nur die Probanden der einen Stichprobe einer speziellen experimentellen Behandlung (etwa
Korrelation, Regression und Signifikanz
Professur Forschungsmethodik und Evaluation in der Psychologie Übung Methodenlehre I, und Daten einlesen in SPSS Datei Textdaten lesen... https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://d15cw65ipcts
Der Modus ist. Der Median ist. 3. Übung. Aufgabe 1. a) der häufigste Wert. b) der Wert unter dem 50 % aller anderen Werte liegen.
3. Übung Aufgabe 1 Der Modus ist a) der häufigste Wert. b) der Wert unter dem 50 % aller anderen Werte liegen. c) der Durchschnitt aller Werte. d) der Wert mit der größten Häufigkeitsdichte. e) der Schwerpunkt
= 3. Kapitel 4: Normalverteilung.. und Standardnormalverteilung und: das Konfidenzintervall..
Kapitel : Normalverteilung.. und Standardnormalverteilung und: das Konfidenzintervall.. Mittelwert = Summe aller Einzelwerte / n = durchschnittliche Ausprägung, wenn alle gleich viel hätten. Streuung =
Sommersemester Marktforschung
Dipl.-Kfm. Sascha Steinmann Universität Siegen Lehrstuhl für Marketing [email protected] Sommersemester 2010 Marktforschung Übungsaufgaben zu den Themen 3-6 mit Lösungsskizzen Aufgabe 1:
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung Übung 3 1 Inhalt der heutigen Übung Vorrechnen der Hausübung B.7 Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben C.1: Häufigkeitsverteilung C.2: Tukey
Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter
Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Georg Bol [email protected] Markus Höchstötter, [email protected] Agenda 1. Ziele 2. Lageparameter 3.
TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN
TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN GLIEDERUNG Bivariate Analyse für metrisch skalierte Variablen Grundlagen Streudiagramme und Visualisierungen von Zusammenhängen Positive lineare
Ü B U N G S S K R I P T S T A T I S T I K
Ü B U N G S S K R I P T S T A T I S T I K A. Ploner H. Strelec C. Yassouridis Universität für Bodenkultur Department für Raum, Landschaft und Infrastruktur Institut für Angewandte Statistik & EDV Peter-Jordan-Strasse
Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp
Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:
Statistische Kennzahlen für die Lage
Statistische Kennzahlen für die Lage technische universität ach der passenden grafischen Darstellung der Werte eines Merkmals auf der Gesamtheit der Beobachtungen interessieren jetzt geschickte algebraische
Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management
Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 03 Hochschule Augsburg : Gliederung Einführung Deskriptive Statistik 3 Wahrscheinlichkeitstheorie
