Mathematische und statistische Methoden I

Größe: px
Ab Seite anzeigen:

Download "Mathematische und statistische Methoden I"

Transkript

1 Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum Dr. Malte Persike [email protected] lordsofthebortz.de twitter.com/methodenlehre tinyurl.com/gplusmethodenlehre Folie 1 WiSe 2011/2012 Fachbereich Sozialwissenschaften Psychologisches Institut Johannes Gutenberg Universität Mainz

2 Ordinaldaten Bortz, S Intervallskala Beschreibung: Histogramm Folie 2 Das Histogramm stellt die Häufigkeiten vieler Kategorien in einem Säulendiagramm mit weniger Klassen als Kategorien dar Die Klassen müssen nicht notwendig gleich breit sein Für die Klassenbildung beim Histogramm gelten dieselben Faustregeln wie bei den Die Häufigkeiten können entweder absolute Häufigkeiten (absolutes Histogramm) sein oder relative Häufigkeiten (relatives Histogramm) Bei gleichen Klassenbreiten zeigt zumeist die Höhe einer Säule die Häufigkeit der Elemente in der Klasse. (wie beim Säulen-/Balkendiagramm)

3 Ordinaldaten Intervallskala Beschreibung: Histogramm Beispiel: Verteilung des IQ in diesem Raum. Folie 3 Student IQ f(iq) h(iq) 92 Werte zwischen 89 und Absolutes Relatives Histogramm

4 Ordinaldaten Intervallskala Beschreibung: Histogramm Frage: Warum darf die Höhe der Säule in einem Histogramm nur dann die Häufigkeit der Elemente in den Klassen repräsentieren, wenn diese gleich breit sind? Beispiel: Säule 1 ist etwas höher als Säule 3, allerdings ist die Klassenbreite unterschiedlich groß Folie 4 Aufgrund der Flächenbewertung der menschlichen Wahrnehmung scheint Klasse 3 wesentlich mehr Merkmalsträger zu umfassen als Klasse 1

5 Ordinaldaten Intervallskala Beschreibung: Histogramm Regel: Wählt man ungleiche Klassenbreiten, muss das Histogramm normiert werden (wegen der Flächenbeurteilung der menschlichen Wahrnehmung). Wenn nicht die Höhe, sondern die Fläche A j einer Säule die Häufigkeit repräsentieren soll, gilt für eine Klasse x j : A = f(x j ), und damit f(x j ) = a j d j (a j ist die Höhe der Säule, d j die Klassenbreite) Somit ist die Höhe einer Säule a j = f(x j ) / d j Folie 5 Dies gilt auch für die Darstellung mit absoluten Häufigkeiten h(x j ) Dann ist die Höhe einer Säule a j = h(x j ) / d j

6 Ordinaldaten Intervallskala Beschreibung: Histogramm Regel: Wählt man ungleiche Klassenbreiten, muss das Histogramm normiert werden (wegen der Flächenbeurteilung der menschlichen Wahrnehmung). Wenn nicht die Höhe, sondern die Fläche A j einer Säule die Häufigkeit repräsentieren soll, gilt für eine Klasse x j : A = f(x j ), und damit f(x j ) = a j d j (a j ist die Höhe der Säule, d j die Klassenbreite) bzw. a j = f(x j ) / d j Normierte relative Häufigkeit Folie 6

7 Ordinaldaten Intervallskala Beschreibung: Histogramm Beispiel: Verteilung des IQ in diesem Raum. Folie 7 Student IQ h(iq) f(iq) 92 Werte zwischen 89 und

8 Ordinaldaten Intervallskala Beschreibung: Histogramm Problem: Ein normiertes Histogramm ist in Bezug auf die y-achse nur schwer interpretierbar. Um die relative/absolute Häufigkeit einer Klasse zu bestimmen, muss außer bei einer Klassenbreite von 1 stets gerechnet werden Dies führt bei Histogrammen mit gleicher Klassenbreite zu unnötigem Interpretationsaufwand Normierte relative Häufigkeit Normierte relative Häufigkeit Folie 8

9 Ordinaldaten Intervallskala Beschreibung: Histogramm Problem: Ein normiertes Histogramm ist in Bezug auf die y-achse nur schwer interpretierbar. Um die relative/absolute Häufigkeit einer Klasse zu bestimmen, muss außer bei einer Klassenbreite von 1 stets gerechnet werden Bei gleichen Klassenbreiten wird ein Histogramm daher zumeist wie ein Säulendiagramm skaliert. Normierte relative Häufigkeit Folie 9

10 Ordinaldaten Beschreibung: Histogramm Achtung: Die Wahl der Klassenanzahl kann für die Aussage entscheidend sein. Beispiel: Körpergrößen an der Geisteswissenschaftlichen Fakultät der Uni Mainz Klassenanzahl: 25 Klassenanzahl: 10 f(iq) f(iq) Folie 10

11 Ordinaldaten Intervallskala /verbale Beschreibung: Modalität Je nach Anzahl der (lokalen) Maxima unterscheidet man uni-, bi- und multimodale Verteilungen. Folie 11

12 Ordinaldaten /verbale Beschreibung: Schiefe Symmetrische Verteilungen: Häufigkeiten für die Ausprägungen einer Zufallsvariablen verlaufen (annähernd) gleichartig um den Mittelwert. Linkssteile/rechtsschiefe Verteilungen: Häufigkeiten laufen rechts des Mittelwertes flacher aus. Rechtssteile/linksschiefe Verteilungen: Häufigkeiten laufen links des Mittelwertes flacher aus. Folie 12

13 Ordinaldaten Bortz, S. 62 Intervallskala Beschreibung: Empirische Verteilungsfunktion Die empirische Verteilungsfunktion bei c Klassen ist j F( X x ) F( x ) f ( x ) j j c c1 mit j = 1 k Note x h(x) f(x) F(x) Zur grafischen Darstellung werden also die empirischen relativen Häufigkeiten aufsummiert Folie 13

14 Bortz, S Numerische Beschreibung: Kennwerte Kennwerte I Maße der zentralen Tendenz Mittelwert Streuungsmaße (Dispersionsmaße) Mittlere Differenz (Abweichungs-)Quadratsumme Varianz Standardabweichung Folie 14

15 Numerische Beschreibung: Mittelwert Kennwerte I Folie 15 Der Mittelwert ist bei n Beobachtungen x 1 x n definiert als 1 1 x x x x x n ( 1 2 N) n n i 1 Ist durch extreme Werte beeinflussbar (ausreißerempfindlich) Ist der Schwerpunkt der Beobachtungen, d.h. n i1 x i x 0 i

16 Numerische Beschreibung: Mittelwert Kennwerte I Folie 16 Der Mittelwert stimmt häufig mit keiner beobachteten Realisation überein Der Mittelwert ist äquivariant gegenüber gewissen (z.b. linearen) Transformationen Insbesondere 1. Addition einer Konstanten a zu allen n Beobachtungen x 1 x n x a x a 2. Multiplikation aller n Beobachtungen x 1 x n mit einer Konstanten c a xax

17 Kennwerte I Numerische Beschreibung: Mittelwert Lageregeln für die Maße der zentralen Tendenz Bei symmetrischen Verteilungen: x x x med Bei linkssteilen Verteilungen: x x x med mod mod Bei rechtssteilen Verteilungen x x x med mod Folie 17

18 Bortz, S Kennwerte I Folie 18 Numerische Beschreibung: Mittlere Abweichung Als mittlere Abweichung (MD) von n Beobachtungen x 1 x n in einem Datensatz wird die Summe aller Abweichungsbeträge zum Median bezeichnet. 1 n i n i 1 MD x x Für jeden anderen Wert als für den Median ist der mittlere Abweichungsbetrag größer, d.h. n 1 1 n x x x c i i1 n i1 n i

19 Kennwerte I Folie 19 Numerische Beschreibung: Abweichungsquadratsumme Die Abweichungsquadratsumme (oder auch: Fehlerquadratsumme oder einfach Quadratsumme) ist die Summe der quadrierten Abweichungen aller n Beobachtungen x 1 x n vom Mittelwert. QS x x x n 2 i1 Erfasst die Streuung um den Mittelwert Nur falls keine Streuung besteht, ist QS = 0, d.h. alle beobachteten Werte sind gleich. Sonst: QS> 0 Je größer die Streuung, desto größer ist die QS Problem: Die Fehlerquadratsumme wird um so größer, je mehr Beobachtungen vorliegen i

20 Kennwerte I Folie 20 Numerische Beschreibung: Varianz Die Varianz ist das mittlere Abweichungsquadrat aller n Beobachtungen x 1 x n vom Mittelwert. 2 1 n s x xi x n i 1 2 Erfasst die mittlere Streuung um den Mittelwert Nur falls keine Streuung besteht, ist s² = 0, d.h. alle beobachteten Werte sind gleich. Sonst: s² > 0 Je größer die Streuung um den Mittelwert, desto größer ist die Varianz Ist anfällig gegenüber Ausreißern

21 Kennwerte I Numerische Beschreibung: Varianz Für jeden anderen Wert als für den Mittelwert ist die Summe der Abweichungsquadrate höher 1 1 n n n 2 2 xi x xi c i1 n i1 Der Mittelwert minimiert also die quadrierten Abweichungen aller Beobachtungen. Folie 21

22 Kennwerte I Folie 22 Numerische Beschreibung: Varianz Die Formel für die Varianz lässt sich leicht umformen in eine rechnerisch manchmal günstigere Variante: n 1 1 n i i1 n i1 n x x x x x x Die Varianz ist also die Differenz des Mittelwerts der quadrierten Daten und dem quadrierten Mittelwert der Daten. Dies wird auch als Momentenschreibweise der Varianz bezeichnet. i

23 Kennwerte I Numerische Beschreibung: Standardabweichung Problem: Die Varianz ist nicht äquivariant zu erlaubten Skalentransformationen s ax a s x ( ) ( ) (mit a = const.) Durch Wurzelziehen erhält man die Standardabweichung (SD, standard deviation) 1 n i n i 1 s x s x x x 2 2 Folie 23 Die Standardabweichung ist äquivariant zu den erlaubten Skalentransformationen

24 Kennwerte I Folie 24 Numerische Beschreibung: s² und s Verhalten von Varianz und Standardabweichung bei Transformationen der n Beobachtungen x 1 x n 1. Die Addition einer Konstanten a zu allen Werten x verändert Varianz und Standardabweichung nicht s²(x + a) = s²(x) s(x + a) = s(x) 2. Die Multiplikation aller Werte x mit einer Konstanten a führt zu einer Erhöhung der Varianz um a² und der Standardabweichung um a s²(a x) = a² s²(x) s(a x) = a s(x)

25 Bortz, S. 41, 46 Kennwerte I Mittelwert und Varianz aus kategorisierten Daten Liegen intervallskalierte Daten bereits in kategorisierter Form vor (z.b. in einer Häufigkeitstabelle), so können daraus Mittelwert und Varianz näherungsweise bestimmt werden. Es sei x jmid, OG j UG 2 die Kategoriemitte der j-ten von insgesamt k Kategorien mit der Untergrenze UG j, der Obergrenze OG j und der Häufigkeit f(x j ) j Mittelwert k j1 j, x f x x j mid Varianz k 2 s ( x) f xj xj, mid x j1 2 Folie 25

26 Kennwerte Beschreibung: Fehlerbalkendiagramm Das Fehlerbalkendiagramm (Error Bar) veranschaulicht Mittelwerte und die Streuung von Daten für mindestens eine Stichprobe. Für die Länge der Fehlerbalken existieren verschiedene Konventionen (± 1 SD, ± 1.96 SD, ± 2.58 SD) I Körpergröße in in cm cm (+/ (+/ SD) SD) Folie Frauen Geschlecht Männer

27 Bortz, S Transformationsregel Ziel: Angabe der relativen Lage von Werten in einer Verteilung. 1. Quantile: wie bereits gesehen 2. Angabe einer normierten Differenz eines Messwertes zum Mittelwert Folie 27 Berechnungsvorschrift: Jede Differenz eines Messwertes wird durch die Standardabweichung aller Messwerte geteilt. Die erhaltenen Werte werden als z-werte bezeichnet. z x x s x x

28 Eigenschaften Der z-wert kann auch als Differenz eines normierten Datenwertes vom normierten Mittelwert betrachtet werden, denn z x x x x x s s s x x x Der Mittelwert von z-werten ist immer 0 Die Standardabweichung von z-werten ist immer 1 Folie 28

29 Skalentransformation Mithilfe der z-transformation können Messdaten mit beliebigem Mittelwert und Standardabweichung in Daten transformiert werden, die einen definierten Mittelwert und Standardabweichung aufweisen. Schritt 1: jedes Datenpunktes Schritt 2: Transformation jedes Datenpunktes in die neue Skala x zs x neu neu neu Folie 29 Beispiele: Hamburg-Wechsler IQ-Test (MW=100, s=15), IQ-Skala laut IST (MW=100, s=10), Stanine- Skala (MW=5, s=2),

30 Relevante Excel Funktionen Kennwerte ABS() ^-Operator für Quadrierung, POTENZ() WURZEL() MITTELWERT(), MITTELWERTWENN(), MITTELWERTWENNS() MITTELABW() QUADRATESUMME() VAR.P() STABW.N() STANDARDISIERUNG() Folie 30

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected]

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Methodelehre e e Prof. Dr. G. Meihardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstude jederzeit ach Vereibarug ud ach der Vorlesug. Mathematische ud statistische Methode I Dr. Malte Persike [email protected]

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike [email protected] lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected]

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Statistik & Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike [email protected]

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Statistik & Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike [email protected]

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt & Statistik Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike [email protected]

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/

Mehr

Der Mittelwert (arithmetisches Mittel)

Der Mittelwert (arithmetisches Mittel) Der Mittelwert (arithmetisches Mittel) x = 1 n n x i bekanntestes Lagemaß instabil gegen extreme Werte geeignet für intervallskalierte Daten Deskriptive Statistik WiSe 2015/2016 Helmut Küchenhoff (Institut

Mehr

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Lage- und Streuungsparameter

Lage- und Streuungsparameter Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-06 Dr. Malte Persike [email protected]

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

Forschungsstatistik I

Forschungsstatistik I Psychologie Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/

Mehr

Graphische Darstellung einer univariaten Verteilung:

Graphische Darstellung einer univariaten Verteilung: Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike [email protected]

Mehr

W-Seminar: Versuche mit und am Menschen 2017/2019 Skript

W-Seminar: Versuche mit und am Menschen 2017/2019 Skript 3. Deskriptive Statistik Die deskriptive (auch: beschreibende) Statistik hat zum Ziel, [ ] Daten durch Tabellen, Kennzahlen [ ] und Grafiken übersichtlich darzustellen und zu ordnen. Dies ist vor allem

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected]

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2014 Christodoulides / Waldherr Einführung in Quantitative Methoden- 2.VO 1/57 Die Deskriptivstatistik

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst aufräumen 1 Modell vs. Daten Bis jetzt

Mehr

Forschungsstatistik I

Forschungsstatistik I Psychologie Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/

Mehr

Maße der zentralen Tendenz

Maße der zentralen Tendenz UStatistische Kennwerte Sagen uns tabellarische und graphische Darstellungen etwas über die Verteilung der einzelnen Werte einer Stichprobe, so handelt es sich bei statistischen Kennwerten um eine Kennzahl,

Mehr

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg Lagemaße Übung M O D U S, M E D I A N, M I T T E L W E R T, M O D A L K L A S S E, M E D I A N, K L A S S E, I N T E R P O L A T I O N D E R M E D I A N, K L A S S E M I T T E Zentrale Methodenlehre, Europa

Mehr

Weitere Lagemaße: Quantile/Perzentile I

Weitere Lagemaße: Quantile/Perzentile I 3 Auswertung von eindimensionalen Daten Lagemaße 3.3 Weitere Lagemaße: Quantile/Perzentile I Für jeden Median x med gilt: Mindestens 50% der Merkmalswerte sind kleiner gleich x med und ebenso mindestens

Mehr

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2011 Christodoulides / Waldherr Einführung in Quantitative Methoden- 2.VO 1/62 Summenzeichen

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike [email protected] lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Statistik K urs SS 2004

Statistik K urs SS 2004 Statistik K urs SS 2004 3.Tag Grundlegende statistische Maße Mittelwert (mean) Durchschnitt aller Werte Varianz (variance) s 2 Durchschnittliche quadrierte Abweichung aller Werte vom Mittelwert >> Die

Mehr

Deskriptive Statistik. (basierend auf Slides von Lukas Meier)

Deskriptive Statistik. (basierend auf Slides von Lukas Meier) Deskriptive Statistik (basierend auf Slides von Lukas Meier) Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] WS 008/009 Fachbereich

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected]

Mehr

Fachrechnen für Tierpfleger

Fachrechnen für Tierpfleger Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike [email protected]

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen interessiert, sondern an der Häufigkeit von Intervallen. Typische Fragestellung:

Mehr

Deskriptive Statistik Aufgaben und Lösungen

Deskriptive Statistik Aufgaben und Lösungen Grundlagen der Wirtschaftsmathematik und Statistik Aufgaben und en Lernmaterial zum Modul - 40601 - der Fernuniversität Hagen Inhaltsverzeichnis 1 Daten und Meßskalen 5 1.1 Konkrete Beispiele...................................

Mehr

Verfahren für metrische Variable

Verfahren für metrische Variable Verfahren für metrische Variable Grafische Methoden Histogramm Mittelwertsplot Boxplot Lagemaße Mittelwert, Median, Quantile Streuungsmaße Standardabweichung, Interquartilsabstand Lagemaße und Streumaße

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Ü B U N G S S K R I P T S T A T I S T I K

Ü B U N G S S K R I P T S T A T I S T I K Ü B U N G S S K R I P T S T A T I S T I K A. Ploner H. Strelec C. Yassouridis Universität für Bodenkultur Department für Raum, Landschaft und Infrastruktur Institut für Angewandte Statistik & EDV Peter-Jordan-Strasse

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 6-6) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected]

Mehr

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0.

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0. Eine Verteilung ist durch die Angabe von einem oder mehreren Mittelwerten nur unzureichend beschrieben. Beispiel: Häufigkeitsverteilungen mit gleicher zentraler Tendenz: geringe Variabilität mittlere Variabilität

Mehr

Mittelwert und Standardabweichung

Mittelwert und Standardabweichung Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Mittelwert und Standardabweichung Überblick Mittelwert Standardabweichung Weitere Maße

Mehr

Lösungen zur Klausur zur Statistik Übung am

Lösungen zur Klausur zur Statistik Übung am Lösungen zur Klausur zur Statistik Übung am 28.06.2013 Fabian Kleine Staatswissenschaftliche Fakultät Aufgabe 1 Gegeben sei die folgende geordneten Urliste des Merkmals Y. 30 Punkte Y : 5 5 5 5 10 10 10

Mehr

Statistik I. Methodologie der Psychologie

Statistik I. Methodologie der Psychologie Statistik I Methodologie der Psychologie Thomas Schmidt & Lena Frank Wintersemester 2003/2004 Georg-Elias-Müller-Institut für Psychologie Uni Göttingen Literatur: Glantz, S.A. (2002). Primer of Biostatistics.

Mehr

Der Modus ist. Der Median ist. 3. Übung. Aufgabe 1. a) der häufigste Wert. b) der Wert unter dem 50 % aller anderen Werte liegen.

Der Modus ist. Der Median ist. 3. Übung. Aufgabe 1. a) der häufigste Wert. b) der Wert unter dem 50 % aller anderen Werte liegen. 3. Übung Aufgabe 1 Der Modus ist a) der häufigste Wert. b) der Wert unter dem 50 % aller anderen Werte liegen. c) der Durchschnitt aller Werte. d) der Wert mit der größten Häufigkeitsdichte. e) der Schwerpunkt

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Statistik für SoziologInnen 1 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen

Mehr

4 Statistische Maßzahlen

4 Statistische Maßzahlen 4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 [email protected] Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/

Mehr

Übungsblatt 3 zur Vorlesung Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker

Übungsblatt 3 zur Vorlesung Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker Übungsblatt 3 zur Vorlesung Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker 08.11.01 Modell Temperatur unter Last Anschluss in Grad Celsius in Grad Fahrenheit Corsair Force 10

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Statistik I für Betriebswirte Vorlesung 9

Statistik I für Betriebswirte Vorlesung 9 Statistik I für Betriebswirte Vorlesung 9 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik Vorlesung am 8. Juni 2017 im Audi-Max (AUD-1001) Dr. Andreas Wünsche Statistik I für Betriebswirte

Mehr

Deskriptive Statistik & grafische Darstellung

Deskriptive Statistik & grafische Darstellung Deskriptive Statistik & grafische Darstellung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg [email protected] Statistik 1 S. Garbade (SRH Heidelberg) Deskriptive

Mehr

Verteilungsfunktion und Quantile

Verteilungsfunktion und Quantile Statistik 1 für SoziologInnen Verteilungsfunktion und Quantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit das Kumulieren inhaltlich sinnvoll ist, muss das auszuwertende Merkmal

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 07052013 Mittelwerte und Lagemaße II 1 Anwendung und Berechnung

Mehr

Verteilungsfunktion und dquantile

Verteilungsfunktion und dquantile Statistik 1 für SoziologInnen Verteilungsfunktion und dquantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit die Kumulation inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Gundlagen empirischer Forschung & deskriptive Statistik. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Gundlagen empirischer Forschung & deskriptive Statistik. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Gundlagen empirischer Forschung & deskriptive Statistik Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Grundlagen Vorbereitung einer empirischen Studie Allgemeine Beschreibung

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Statistik 1 für SoziologInnen Lage- und Streuungsmaße Univ.Prof. Dr. Marcus Hudec Streuungsmaße Statistische Maßzahlen, welche die Variabilität oder die Streubreite in den Daten messen. Sie beschreiben

Mehr

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 2 Grundbegriffe htw saar 3 Grundgesamtheit und Stichprobe Ziel: Über eine Grundgesamtheit (Population) soll eine Aussage über ein

Mehr

TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN

TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN Bivariate Analyse für metrisch skalierte Variablen Grundlagen Verfahren für metrische Daten nutzen den vollen mathematischen Informationsgehalt

Mehr

4 Spezifizierende Beschreibung empirischer Verteilungen

4 Spezifizierende Beschreibung empirischer Verteilungen 4 Spezifizierende Beschreibung empirischer Verteilungen 62 4 Spezifizierende Beschreibung empirischer Verteilungen 4.1 Spezifika empirischer Verteilungen 66 4.2 Lagekennwerte 70 4.2.1 Arithmetisches Mittel

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 26.02.2008 1 Warum Statistik und Wahrscheinlichkeits rechnung im Ingenieurwesen? Zusammenfassung der letzten Vorlesung Statistik und Wahrscheinlichkeitsrechnung

Mehr

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN

TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN GLIEDERUNG Bivariate Analyse für metrisch skalierte Variablen Grundlagen Streudiagramme und Visualisierungen von Zusammenhängen Positive lineare

Mehr

Deskriptivstatistik a) Univariate Statistik Weiters zum Thema der statistischen Informationsverdichtung

Deskriptivstatistik a) Univariate Statistik Weiters zum Thema der statistischen Informationsverdichtung 20 Weiters zum Thema der statistischen Informationsverdichtung M a ß z a h l e n Statistiken bei Stichproben Parameter bei Grundgesamtheiten Maßzahlen zur Beschreibung univariater Verteilungen Maßzahlen

Mehr