Mathematische und statistische Methoden I
|
|
|
- Frieda Lorenz
- vor 9 Jahren
- Abrufe
Transkript
1 Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected] WS 00/0 Fachbereich Sozialwissenschaften Psychologisches Institut Johannes Gutenberg Universität Mainz
2 der multiplen Regression. Der multiple Korrelationskoeffizient R Definition: Der multiple Korrelationskoeffizient R repräsentiert die Korrelation zwischen dem Kriterium y und allen Prädiktoren x x k Dabei berücksichtigt R etwaige Interkorrelationen zwischen den Prädiktoren (und entfernt sie) Der multiple Korrelationskoeffizient R ist definiert als R yxx xk j xjy j= k = β r Er ist mathematisch äquivalent zur Korrelation zwischen den gemessenen y-werten und den vorhergesagten y dach -Werten, also R yxx x = ryy k ˆ
3 der multiplen Regression. Der multiple Determinationskoeffizient R² Definition: Der multiple Determinationskoeffizient R² repräsentiert die Varianzaufklärung, die alle Prädiktoren x x k am Kriterium y leisten Der multiple Determinationskoeffizient R² ist definiert als Erklärte Streuung Fehlerstreuung R = = Gesamt-Streuung Gesamt-Streuung Rechnerisch: R Var( yˆ ) Var( e) n = = = Var( y) Var( y) n i= n n i= ( y yˆ ) ( y y)
4 der multiplen Regression 3. Abhängigkeit a) Sind die Prädiktoren unabhängig, so sind die ß- gleich den Kriteriumskorrelationen und die aufgeklärte Varianz ist die Summe der Quadrate der ß- Erklärung: Bei perfekt unabhängigen Prädiktoren ist die Prädiktorinterkorrelationsmatrix R xx gleich der Identitätsmatrix I. Damit gilt für den multiplen Korrelationskoeffizienten R Und R² ist einfach die Summe der quadrierten Kriteriumskorrelationen β = I r β = r R R xy k yxx x = r k xjy j= k yxx x = r k xjy j= xy
5 der multiplen Regression 3. Abhängigkeit a) Sind die Prädiktoren unabhängig, so sind die ß- gleich den Kriteriumskorrelationen und die aufgeklärte Varianz ist die Summe der Quadrate der ß- b) Sind die Prädiktoren abhängig (interkorreliert), so sind 3 Fälle zu unterscheiden:. Der Prädiktor klärt zumindest Teile der Varianz am Kriterium auf, die andere Prädiktoren nicht aufklären: er ist nützlich.. Der Prädiktor enthält Information, die bereits andere Prädiktoren enthalten: er ist redundant. Der Prädiktor unterdrückt irrelevante Varianz in anderen Prädiktoren: er ist ein Suppressor
6 der multiplen Regression 3a. Nützlichkeit Nützlichkeit = Der Beitrag, den eine Variable zur Varianzaufklärung des Kriteriums leistet, der von den anderen Variablen nicht geleistet wird Die Nützlichkeit einer Variablen x j berechnet sich als U = R R j y, x y, x,,..., k + j,,..., k j U j ist also der Betrag, um den R² wächst, wenn die Variable x j in die multiple Regressionsgleichung aufgenommen wird.
7 der multiplen Regression 3b. Redundanz Redundanz = die vielen Variablen messen Aspekte gemeinsam, so dass man prinzipiell weniger Prädiktoren benötigte unerwünschter Aspekt Die Variable x j ist redundant zur Vorhersage von Variable y wenn gilt β r < r x x y x y j j j Prädiktoren enthalten empirisch nahezu immer gemeinsame Varianzanteile und sind somit teilweise redundant. Echte Redundanz liegt aber erst gemäß obiger Definition vor. Multikollinearität: Die Kovarianz eines Prädiktors mit dem Kriterium ist in den anderen Prädiktoren (fast) vollständig enthalten extremer Fall von Redundanz.
8 der multiplen Regression 3c. Suppression r x y r x x r x y =0 x X Y x bindet irrelevante Prädiktorinformation x hängt nicht mit y zusammen, trotzdem erhöht sie R²
9 der multiplen Regression 3c. Suppression Defintion: Eine Variable x j ist ein Suppressor, wenn gilt: U x j > r x y j Die Zunahme der erklärten Varianz durch Aufnahme der Variable ist also größer als die einzelne Varianzaufklärung. Vereinfachung: Bei nur zwei Prädiktoren x und x ist x ein Supressor, wenn gilt: r -r xx xzx. > r xz -rx z
10 Statistischer Fragestellung Neben der Aussage über die Nützlichkeit eines Prädiktors ist man oft daran interessiert, ob er überhaupt mit dem Kriterium zusammenhängt Grundgedanke: Ein Prädiktor, der in keiner Verbindung zum Kriterium steht, sollte den Wert β j = 0 haben. Ein Prädiktor, der an der Veränderung des Kriteriums beteiligt ist, sollte einen Wert β j 0 haben. Problem: Allein aufgrund der zufälligen Auswahl der Merkmalsträger für die Stichprobe wird ein β-gewicht niemals perfekt Null sein ( Stichprobenfehler ).
11 Statistischer Fragestellung Frage: Wie unterschiedlich zu Null muss ein β-gewicht sein, damit wir begründet annehmen können, dass diese Abweichung nicht zufällig ist? Es existieren einfache statistische Verfahren zur (probabilistischen) Beantwortung dieser Fragestellung Ebenso kann geprüft werden, ob der multiple Korrelationskoeffizient zufällig zustande gekommen ist oder auf tatsächlichen systematischen Zusammenhängen zwischen Kriterium und Prädiktoren beruht
12 Grundlagen Linearisierbare Formen Polynome Nichtlineare Regression Grundlagen Bei einer Reihe psychologischer Fragestellungen ergeben sich nichtlineare Zusammenhänge zwischen UV & AV. Beispiele: Reaktionszeit, Blutalkohol und psychomotorische Leistungen, Fehlerraten in Leistungstests bei verschiedenen Aufgabenschwierigkeiten Solche nichtlinearen Zusammenhänge lassen sich in zwei Klassen einteilen:. Zusammenhänge, die sich durch eine einfache (nichtlineare) Transformationen in lineare Zusammenhänge überführen lassen. Zusammenhänge, für die eine nichtlineare Regressionsgleichung gelöst werden muss.
13 Grundlagen Linearisierbare Formen Polynome Nichtlineare Regression Linearisierbare und polynomische Formen Fall : Linearisierende Transformation, z.b. ˆ ( ) ln ˆ ln ln ln 0 0 y = b xb y = b + b x ( ) ( ) ( ) (hier nicht behandelt) Fall : Nicht (einfach) linearisierbar ŷ = b + b x+ b x 0
14 Grundlagen Nichtlineare Regression Beispiel: Logistische Regression 0.8 Linearisierbare Formen Polynome Gemessene Daten verlaufen ogivenförmig und variieren zwischen 0 und Umformung der y-werte durch Logarithmieren bewirkt eine Linearisierung der Daten Mithilfe dieser neuen y-werte kann eine lineare Regression bestimmt werden, um die Parameter b 0 und b zu errechnen
15 Grundlagen Linearisierbare Formen Polynome Grundlagen und Durchführung Häufig können Merkmalszusammenhänge durch Polynome. oder 3. Ordnung gut beschrieben werden, d.h. oder ŷ = b + b x+ b x 0 ŷ = b + b x+ b x + b x Dies ist formal eine lineare multiple Regression, allerdings nicht mit mehreren Prädiktoren, sondern mit einem Prädiktor sowie Transformationen seiner selbst.
16 Grundlagen Linearisierbare Formen Polynome Grundlagen und Durchführung Eine solche polynomische Regression wird berechnet, indem die transformierten Prädiktorterme bestimmt werden Dann wird eine übliche lineare multiple Regression durchgeführt Die Einträge der Korrelationsmatrix sind dabei dann die Korrelationen des Prädiktors mit sich selbst in den transformierten Formen Es können alle von und Gütemaße der multiplen Regression bestimmt werden. Die polyn. Regression ist auch über die KQ-Methode (inkl. Normalgleichungen) herzuleiten. Dies führt auf dasselbe Ergebnis wie der hier verfolgte Ansatz.
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-06 Dr. Malte Persike [email protected]
Forschungsstatistik I
Psychologie Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
Forschungsstatistik I
Psychologie Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt Statistik & Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike [email protected]
Mathematische und statistische Methoden II
Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike [email protected]
Forschungsstatistik I
Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
Multiple Regressionsanalyse - Kurzabriss
Multiple Regressionsanalyse - Kurzabriss Ziele: Schätzung eines Kriteriums aus einer Linearkombination von Prädiktoren Meist zu Screening-Untersuchungen, um den Einfluß von vermuteten Ursachenvariablen
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 6-6) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected]
Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate
Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für
Korrelation Regression. Wenn Daten nicht ohne einander können Korrelation
DAS THEMA: KORRELATION UND REGRESSION Korrelation Regression Wenn Daten nicht ohne einander können Korrelation Korrelation Kovarianz Pearson-Korrelation Voraussetzungen für die Berechnung die Höhe der
Vorlesung: Multivariate Statistik für Psychologen
Vorlesung: Multivariate Statistik für Psychologen 6. Vorlesung: 28.04.2003 Organisatorisches Terminverlegung Übungsgruppen Gruppe 5 alter Termin: Donnerstag, 01.05.03, 12 14 Uhr, IfP SR 9 neuer Termin:
Forschungsstatistik I
Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
Mathematische und statistische Methoden II
Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte
Seminar: Multivariate Verfahren g Dr. Thomas Schäfer Referenten: Wiebke Hoffmann, Claudia Günther
Seminar: Multivariate Verfahren g Dr. Thomas Schäfer Leitung: Referenten: Wiebke Hoffmann, Claudia Günther 18.05.2010 Regressionsanalyse was war das nochmal? Grundlagen Einfaches lineares Regressionsmodell
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
VS PLUS
VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN
Forschungsstatistik I
Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
Korrelation und Regression
FB 1 W. Ludwig-Mayerhofer und 1 und FB 1 W. Ludwig-Mayerhofer und 2 Mit s- und sanalyse werden Zusammenhänge zwischen zwei metrischen Variablen analysiert. Wenn man nur einen Zusammenhang quantifizieren
Teil: lineare Regression
Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge
Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II
Statistik II Lineare Regressionsrechnung Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II - 09.06.2006 1 Mit der Kovarianz und dem Korrelationskoeffizienten können wir den statistischen
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected]
Die Funktion f wird als Regressionsfunktion bezeichnet.
Regressionsanalyse Mit Hilfe der Techniken der klassischen Regressionsanalyse kann die Abhängigkeit metrischer (intervallskalierter) Zielgrößen von metrischen (intervallskalierten) Einflussgrößen untersucht
Kapitel 4: Merkmalszusammenhänge
Kapitel 4: Merkmalszusammenhänge Korrelationen 1 Lineare Regression 3 Literatur 5 Korrelationen Mit Hilfe von G*Power lässt sich analog zum Vorgehen beim t-test (Kapitel 3, Band I) vor einer Untersuchung
Mathematische und statistische Methoden II
Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike [email protected]
Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 20
Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 20 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)
Informationen zur KLAUSUR am
Wiederholung und Fragen 1 Informationen zur KLAUSUR am 24.07.2009 Raum: 032, Zeit : 8:00 9:30 Uhr Bitte Lichtbildausweis mitbringen! (wird vor der Klausur kontrolliert) Erlaubte Hilfsmittel: Alle Unterlagen,
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt Statistik & Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-06 Dr. Malte Persike [email protected]
Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27
Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 27 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)
Mathematische und statistische Methoden II
Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike [email protected] lordsofthebortz.de lordsofthebortz.de/g+
Drittvariablenkontrolle in der linearen Regression: Trivariate Regression
Drittvariablenkontrolle in der linearen Regression: Trivariate Regression 14. Januar 2002 In der Tabellenanalyse wird bei der Drittvariablenkontrolle für jede Ausprägung der Kontrollvariablen eine Partialtabelle
Korrelation und Regression
Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Korrelation und Regression Überblick Kovarianz und Korrelation Korrelation und Kausalität
Kapitel 3 Schließende lineare Regression Einführung. induktiv. Fragestellungen. Modell. Matrixschreibweise. Annahmen.
Kapitel 3 Schließende lineare Regression 3.1. Einführung induktiv Fragestellungen Modell Statistisch bewerten, der vorher beschriebenen Zusammenhänge auf der Basis vorliegender Daten, ob die ermittelte
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected]
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike [email protected]
Vorlesung 4: Spezifikation der unabhängigen Variablen
Vorlesung 4: Spezifikation der unabhängigen Variablen. Fehlspezifikation der unabhängigen Variablen. Auswirkungen einer Fehlspezifikation a. auf die Erwartungstreue der Schätzung b. auf die Effizienz der
Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154
Bivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.154 Grundidee und Typen der Regression Die Regressionsanalyse dient zur Quantifizierung des Zusammenhangs und der statistisch
Aufgaben zu Kapitel 4
Rasch, Friese, Hofmann & aumann (2006). Quantitative Methoden. Band (2. Auflage). Heidelberg: Springer. Aufgaben zu Kapitel 4 Aufgabe a) Berechnen Sie die Korrelation zwischen dem Geschlecht und der Anzahl
Forschungsstatistik I
Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
Analyse von Querschnittsdaten. Spezifikation der unabhängigen Variablen
Analyse von Querschnittsdaten Spezifikation der unabhängigen Variablen Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Annahmen gegeben? kategoriale Variablen Datum 3.0.004 0.0.004
Methoden der Ökonometrie
Dr. Matthias Opnger Lehrstuhl für Finanzwissenschaft WS 2013/14 Dr. Matthias Opnger Methoden d. Ökonometrie WS 2013/14 1 / 21 Dr. Matthias Opnger Büro: C 504 Sprechzeit: nach Vereinbarung E-Mail: [email protected]
Vorlesung 8a. Kovarianz und Korrelation
Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere
Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem
Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem
Mathematische und statistische Methoden II
Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike [email protected] lordsofthebortz.de lordsofthebortz.de/g+
Aufgaben zu Kapitel 4
Aufgaben zu Kapitel 4 Aufgabe 1 a) Berechnen Sie die Korrelation zwischen dem Geschlecht und der Anzahl erinnerter positiver Adjektive. Wie nennt sich eine solche Korrelation und wie lässt sich der Output
Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006
Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand
Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression
Übungsklausur Wahrscheinlichkeit und Regression 1. Welche der folgenden Aussagen treffen auf ein Zufallsexperiment zu? a) Ein Zufallsexperiment ist ein empirisches Phänomen, das in stochastischen Modellen
W09 p. 1. Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung
Der Verhältnisschätzer - Ratio estimator Beispiel: Schätzung der Anzahl Objekte (Bäume) in einem bestimmten Gebiet. Situation: Die Fläche ist unterteilt in Streifen / Transekte. Man wählt zufällig n =
Statistik Klausur Wintersemester 2013/2014 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!
Statistik 1 A 2. Klausur Wintersemester 2013/2014 Hamburg, 18.03.2014 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................
Forschungsstatistik I
Prof. Dr. G. Meinhardt. Stock, Taubertsberg R. 0-0 (Persike) R. 0-1 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet0.sowi.uni-mainz.de/
Regression und Korrelation
Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen
Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp
Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:
Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9.
Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Januar 2011 BOOTDATA11.GDT: 250 Beobachtungen für die Variablen...
TEIL 13: DIE EINFACHE LINEARE REGRESSION
TEIL 13: DIE EINFACHE LINEARE REGRESSION Die einfache lineare Regression Grundlagen Die einfache lineare Regression ist ebenfalls den bivariaten Verfahren für metrische Daten zuzuordnen 1 Sie hat einen
Quantitative Methoden (Vertretung für Prof. Th. Pechmann)
Quantitative Methoden (Vertretung für Prof. Th. Pechmann) Inferenzstatistik I: Zusammenhänge (Korrelationen) Logik inferenzstatistischer Verfahren Andreas Opitz Universität Leipzig Institut für Linguistik
Statistik Klausur Wintersemester 2013/2014 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!
Statistik 1 2. Klausur Wintersemester 2013/2014 Hamburg, 18.03.2014 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................
Ziel der linearen Regression
Regression 1 Ziel der linearen Regression Bei der linearen Regression wird untersucht, in welcher Weise eine abhängige metrische Variable durch eine oder mehrere unabhängige metrische Variablen durch eine
Diagnostik von Regressionsmodellen (1)
Diagnostik von Regressionsmodellen (1) Bei Regressionsanalysen sollte immer geprüft werden, ob das Modell angemessen ist und ob die Voraussetzungen eines Regressionsmodells erfüllt sind. Das Modell einer
Analyse von Querschnittsdaten. Signifikanztests I Basics
Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004
Statistische Methoden in den Umweltwissenschaften
Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau
Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall )
Zusammenhänge von Variablen Regressionsanalysen linearer Zusammenhang ( Idealfall ) kein Zusammenhang nichtlinearer monotoner Zusammenhang (i.d.regel berechenbar über Variablentransformationen mittels
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers
4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis
Lineare vs. nichtlineare Zusammenhänge
Nicht lineare Zusammenhänge Lowess und Potenzleiter Partialkorrelation Thomas Schäfer SS 29 1 Lineare vs. nichtlineare Zusammenhänge Was Sie schon wissen: Zusammenhänge sind die Grundlage der Methodenlehre
Einführung in Quantitative Methoden
in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2011 Christodoulides / Waldherr in Quantitative Methoden- 2.VO 1/47 Historisches Regression geht auf Galton
Anwendungen der Differentialrechnung
KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle
Teil XII. Einfache Lineare Regression. Woche 10: Lineare Regression. Lernziele. Zusammenfassung. Patric Müller
Woche 10: Lineare Regression Patric Müller Teil XII Einfache Lineare Regression ETHZ WBL 17/19, 03.07.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Wahrscheinlichkeit
Eine zweidimensionale Stichprobe
Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,
ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE
ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE 1.1 Füllen Sie bitte folgenden Lückentext aus. Daten, die in Untersuchungen erhoben werden, muss man grundsätzlich nach ihrem unterscheiden.
Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell
Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010
Heinz Holling & Günther Gediga. Statistik - Deskriptive Verfahren
Heinz Holling & Günther Gediga Statistik - Deskriptive Verfahren Übungen Version 15.12.2010 Inhaltsverzeichnis 1 Übung 1; Kap. 4 3 2 Übung 2; Kap. 5 4 3 Übung 3; Kap. 6 5 4 Übung 4; Kap. 7 6 5 Übung 5;
Skalenniveaus =,!=, >, <, +, -
ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,
1.1. Zusammenhänge und Vorhersagen
1.1. Zusammenhänge und Vorhersagen In diesem Kapitel dreht sich alles um Zusammenhänge und Vorhersagen. Anstatt uns zu fragen Was ist größer / mehr / ausgeprägter?, versuchen wir Aussagen zu treffen wie
Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h
5. Die partielle Autokorrelationsfunktion 5.1 Definition, Berechnung, Schätzung Bisher: Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h ρ X (h) = Corr(X t, X
5 Beschreibung und Analyse empirischer Zusammenhänge
5 Beschreibung und Analyse empirischer Zusammenhänge 132 5 Beschreibung und Analyse empirischer Zusammenhänge 5.1 Zusammenhänge zwischen kategorialen Merkmalen 137 5.1.1 Kontingenztabellen 137 Verteilungen
Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell
1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs
Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS
Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelation vs. Regression 2. Ziele der Regressionsanalyse 3. Syntax für
1 Beispiel zur Methode der kleinsten Quadrate
1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25
