Korrelation und Regression
|
|
|
- Julia Baumann
- vor 9 Jahren
- Abrufe
Transkript
1 FB 1 W. Ludwig-Mayerhofer und 1 und
2 FB 1 W. Ludwig-Mayerhofer und 2 Mit s- und sanalyse werden Zusammenhänge zwischen zwei metrischen Variablen analysiert. Wenn man nur einen Zusammenhang quantifizieren will, aber keine Ursache-Wirkungsbeziehung angenommen werden kann, wird ein skoeffizient berechnet. Geht man von einer Ursache-Wirkungsbeziehung aus, kann man mit Hilfe der sanalyse versuchen, die Abhängigkeit des einen Merkmals (Y) vom anderen Merkmal (X) als linearen Zusammenhang durch eine Gleichung auszudrücken
3 FB 1 W. Ludwig-Mayerhofer und 3 Veranschaulichung: Brutto-Arbeitslohn Bildung (typische Dauer in Jahren)
4 FB 1 W. Ludwig-Mayerhofer und 4 Veranschaulichung: 5 Positive Einstellung erw.tätige Mutter Alter
5 FB 1 W. Ludwig-Mayerhofer und 5 : : Vorstufe der Positiver Zusammenhang: Hohe Werte in der einen Variablen treten tendenziell gemeinsam mit hohen Werten in der anderen Variablen auf. Negativer Zusammenhang: Hohe Werte in der einen Variablen treten tendenziell gemeinsam mit niedrigen Werten in der anderen Variablen auf. Die gemeinsame Varianz (im Sinne von: miteinander Variieren ) zweier Variablen. s xy = 1 n n i= 1 ( x i x) ( y i y)
6 FB 1 W. Ludwig-Mayerhofer und 6 Bsp. (fiktiv): Bruttolohn und Bildungsjahre X i Y i X i X quer y i y quer X i X quer * y i y quer Summe Ar. Mittel 3 12 (Gültig für Stichpr.) Kovar.: 4
7 FB 1 W. Ludwig-Mayerhofer und 7 Bsp. (fiktiv): Bruttolohn und Körpergroße x i y i x i x quer y i y quer x i x quer * y i y quer 1,55 - -, ,65 -, ,8, ,75-15, ,85-5,13-65 Summe 15 8,6 Ar. Mittel 3 1,72 Kovar.:
8 FB 1 W. Ludwig-Mayerhofer und 8 Produkt-Moment Moment-, Pearsons (skoeffizient skoeffizient) Standardisierung der : r XY = s s X XY s Y = 1 n n i= 1 1 n n i= 1 ( x x) ( y y) i 1 n 2 ( x ) i x ( yi y) i n i= 1 2 r kann Werte zwischen 1 (perfekter negativer Zusammenhang) und +1 (perfekter positiver Zusammenhang) annehmen.
9 FB 1 W. Ludwig-Mayerhofer und 9 Bsp. (fiktiv): Bruttolohn und Bildungsjahre x i y i x i x quer y i y quer x i x quer * y i y quer Summe Ar. Mittel 3 12 Kovar.: 4 r:,96
10 FB 1 W. Ludwig-Mayerhofer und V4 V3 r=,97 3 V4 V1 r=, V6 V1 r=,33 3 V6 V5 15 r=,4 25
11 FB 1 W. Ludwig-Mayerhofer und V6 V2 3 V2 r=,26 r=,49 V V5 V1 3 r=,6 V1 r=,87 V2 3
12 FB 1 W. Ludwig-Mayerhofer und 12 : Die Grundidee visuell Bruttolohn Gesamtdauer Bildung
13 FB 1 W. Ludwig-Mayerhofer und 13 Grundidee verbal Wir suchen eine Gerade, die den Zusammenhang zwischen den beiden Merkmalen möglichst gut beschreibt. Möglichst gut heißt: Die gesuchte Gerade soll so gewählt werden, dass die Abstände zwischen der Geraden und den empirisch beobachteten Werten minimiert werden. (Aus bestimmten Gründen werden die quadrierten Abstände minimiert.)
14 FB 1 W. Ludwig-Mayerhofer und 14 y = a+ bx ˆi n n 2 e = ( ) i yi yˆ i i= 1 i= 1 Grundidee formal Wir schätzen eine Gleichung i, so dass gilt 2 = Minimum Es werden also die quadrierten Abweichungen der Geraden von den beobachten Werten minimiert ( Methode der Kleinsten Quadrate ; englisch: Ordinary Least Squares = OLS). a und b sind die aus der Stichprobe berechneten Schätzer für die unbekannten Parameter der Grundgesamtheit, meist als α und β bezeichnet.
15 FB 1 W. Ludwig-Mayerhofer und 15 Grundidee graphisch Bitte beachten: Y-Y und X-Achse X müssen bis verlängert gedacht werden 45 y4 ŷ 4 Einkommen y3 ŷ Bildung
16 FB 1 W. Ludwig-Mayerhofer und 16 Im Beispiel (vorherige Seite!) yˆ = + 333, 3x i bzw. sgleichung y = + 333, 3x + e i i i i Die Berechnung von a und b überlassen wir der einschlägigen Statistik-Software.
17 FB 1 W. Ludwig-Mayerhofer und 17 Multiple Yˆ = b + b X + b X Y ˆ = X + 63,5 X 1 2 Die skoeffizienten (oder sgewichte) b 1 und b 2 geben jeweils den um die andere Variable bereinigten Einfluss wieder; man sagt, der Einfluss der anderen Variablen wurde auspartialisiert.
18 FB 1 W. Ludwig-Mayerhofer und 18 bei und Nur lineare Zusammenhänge werden erfasst : -,5, d.h. praktisch gleich null. Aufmerksamkeit 4 2 Das Beispiel ist fiktiv, Sie sind natürlich ständig aufmerksam! Dauer der Vorlesung
19 FB 1 W. Ludwig-Mayerhofer und 19 bei und Nur lineare Zusammenhänge werden erfasst Wohlbefinden g Alkohol/Tag 3 4 Die Gerade ist quasi horizontal was nicht dem eigentlichen Zusammenhang entspricht. In der sanalyse kann man sich aber durch Tricks an die Kurve annähern
20 FB 1 W. Ludwig-Mayerhofer und bei und Einzelne Fälle können starken Einfluss ausüben (nicht zuletzt wegen Multiplikation) über alle Fälle: r=,35. 8 EINKZUF 6 4 ohne Einkommen über 14.: r=, Dauer der Betriebszugehoerigkeit
21 FB 1 W. Ludwig-Mayerhofer und 21 bei und Einzelne Fälle können starken Einfluss ausüben (nicht zuletzt wegen Quadrierung) 5 4 Wohlbefinden 3 Die gleichen Daten wie vorhin plus einige Extremwerte (links unten, rechts oben) erzeugen einen deutlich steigende Gerade 3 4 g Alkohol/Tag
Bivariater Zusammenhang bei metrischen Variablen: Regression und Korrelation
Bivariater Zusammenhang bei metrischen Variablen: Regression und Korrelation PEΣO 12. November 2001 Von der Tabellenanalyse zur Regression Die bivariate Verteilung zweier metrischer Variablen kann konzeptionell
Deskriptive Beschreibung linearer Zusammenhänge
9 Mittelwert- und Varianzvergleiche Mittelwertvergleiche bei k > 2 unabhängigen Stichproben 9.4 Beispiel: p-wert bei Varianzanalyse (Grafik) Bedienungszeiten-Beispiel, realisierte Teststatistik F = 3.89,
Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27
Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 27 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)
Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung
FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer
Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp
Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:
Zusammenfassung 11. Sara dos Reis.
Zusammenfassung 11 Sara dos Reis [email protected] Diese Zusammenfassungen wollen nicht ein Ersatz des Skriptes oder der Slides sein, sie sind nur eine Sammlung von Hinweise zur Theorie, die benötigt
Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9.
Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Januar 2011 BOOTDATA11.GDT: 250 Beobachtungen für die Variablen...
Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 20
Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 20 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected]
Elementare Regressionsrechnung
Elementare Regressionsrechnung Motivation: Streudiagramm zweier metrisch skalierter Merkmale X und Y Y X Dr. Karsten Webel 107 Ziel: Erfassung des Zusammenhangs zwischen X und Y durch eine Gerade der Form
Die Funktion f wird als Regressionsfunktion bezeichnet.
Regressionsanalyse Mit Hilfe der Techniken der klassischen Regressionsanalyse kann die Abhängigkeit metrischer (intervallskalierter) Zielgrößen von metrischen (intervallskalierten) Einflussgrößen untersucht
Übung V Lineares Regressionsmodell
Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung
Statistische Methoden in den Umweltwissenschaften
Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau
1 Beispiel zur Methode der kleinsten Quadrate
1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25
Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154
Bivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.154 Grundidee und Typen der Regression Die Regressionsanalyse dient zur Quantifizierung des Zusammenhangs und der statistisch
Ausführliche Lösungen zu ausgewählten Aufgaben von ÜB 5 und 6. Streudiagramm
y Aufgabe 3 Ausführliche Lösungen zu ausgewählten Aufgaben von ÜB 5 und 6 a) Zur Erstellung des Streudiagramms zeichnet man jeweils einen Punkt für jedes Datenpaar (x i, y i ) aus der zweidimensionalen
Statistik II: Signifikanztests /2
Medien Institut : Signifikanztests /2 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 [email protected] Gliederung 1. Korrelation 2. Exkurs: Kausalität 3. Regressionsanalyse 4. Key Facts 2 I
Forschungsstatistik I
Psychologie Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
7.1 Korrelationsanalyse. Statistik. Kovarianz. Pearson-Korrelation. Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien
Statistik 7.1 Korrelationsanalyse Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien Sommersemester 2012 7 Regressions- und Korrelationsanalyse Kovarianz Pearson-Korrelation Der (lineare)
5. Spezielle stetige Verteilungen
5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für
Eine zweidimensionale Stichprobe
Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,
Statistisches Testen
Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall
Korrelation - Regression. Berghold, IMI
Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines
Statistische Methoden
Modeling of Data / Maximum Likelyhood methods Institut für Experimentelle und Angewandte Physik Christian-Albrechts-Universität zu Kiel 22.05.2006 Datenmodellierung Messung vs Modell Optimierungsproblem:
Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II
Statistik II Lineare Regressionsrechnung Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II - 09.06.2006 1 Mit der Kovarianz und dem Korrelationskoeffizienten können wir den statistischen
Mittelwertvergleiche, Teil II: Varianzanalyse
FB 1 W. Ludwig-Mayerhofer Statistik II 1 Herzlich willkommen zur Vorlesung Mittelwertvergleiche, Teil II: FB 1 W. Ludwig-Mayerhofer Statistik II 2 : Wichtigste Eigenschaften Anwendbar auch bei mehr als
Versuchsplanung und multivariate Statistik Sommersemester 2018
Versuchsplanung und multivariate Statistik Sommersemester 2018 Vorlesung 11: Lineare und nichtlineare Modellierung I Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 6.6.2018
Instrument zur Untersuchung eines linearen Zusammenhangs zwischen zwei (oder mehr) Merkmalen.
Gliederung Grundidee Einfaches lineares Modell KQ-Methode (Suche nach der besten Geraden) Einfluss von Ausreißern Güte des Modells (Bestimmtheitsmaß R²) Multiple Regression Noch Fragen? Lineare Regression
Appendix. Kapitel 2. Ökonometrie I Michael Hauser
1 / 24 Appendix Kapitel 2 Ökonometrie I Michael Hauser 2 / 24 Inhalt Geometrie der Korrelation Freiheitsgrade Der OLS Schätzer: Details OLS Schätzer für Okuns s law nachgerechnet Anforderungen an Theorien
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-06 Dr. Malte Persike [email protected]
7. Stochastische Prozesse und Zeitreihenmodelle
7. Stochastische Prozesse und Zeitreihenmodelle Regelmäßigkeiten in der Entwicklung einer Zeitreihe, um auf zukünftige Entwicklung zu schließen Verwendung zu Prognosezwecken Univariate Zeitreihenanalyse
Brückenkurs Statistik für Wirtschaftswissenschaften
Peter von der Lippe Brückenkurs Statistik für Wirtschaftswissenschaften Weitere Übungsfragen UVK Verlagsgesellschaft mbh Konstanz Mit UVK/Lucius München UVK Verlagsgesellschaft mbh Konstanz und München
Sommersemester Marktforschung
Dipl.-Kfm. Sascha Steinmann Universität Siegen Lehrstuhl für Marketing [email protected] Sommersemester 2010 Marktforschung Übungsaufgaben zu den Themen 3-6 mit Lösungsskizzen Aufgabe 1:
Methoden der Ökonometrie
Dr. Matthias Opnger Lehrstuhl für Finanzwissenschaft WS 2013/14 Dr. Matthias Opnger Methoden d. Ökonometrie WS 2013/14 1 / 21 Dr. Matthias Opnger Büro: C 504 Sprechzeit: nach Vereinbarung E-Mail: [email protected]
Vorlesung: Multivariate Statistik für Psychologen
Vorlesung: Multivariate Statistik für Psychologen 5. Vorlesung: 4.04.003 Agenda. Multiple Regression i. Grundlagen Grundidee, Ziele der multiplen Regression Beispiele ii. iii. Statistisches Modell Modell
entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind.
Bsp 1) Die Wahrscheinlichkeit dafür, dass eine Glühbirne länger als 200 Stunden brennt, beträgt 0,2. Wie wahrscheinlich ist es, dass von 10 Glühbirnen mindestens eine länger als 200 Stunden brennt? (Berechnen
Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler
6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung
Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate
Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für
Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2015 Aufgabe 1 In der aktuellen
Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell
1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs
Bivariate Regressionsanalyse
Universität Bielefeld 15. März 2005 Kovarianz, Korrelation und Regression Kovarianz, Korrelation und Regression Ausgangspunkt ist folgende Datenmatrix: Variablen 1 2... NI 1 x 11 x 12... x 1k 2 x 21 x
Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell
Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften
Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte
Hochschule RheinMain WS 2018/19 Prof. Dr. D. Lehmann Probe-Klausur zur Vorlesung Ökonometrie Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte (die eigentliche Klausur wird
Prof. Dr. Marc Gürtler WS 2015/2016. Prof. Dr. Marc Gürtler. Klausur zur 10/12 SWS-Vertiefung Empirische Finanzwirtschaft Finanzwirtschaft
Prof. Dr. Marc Gürtler WS 015/016 Prof. Dr. Marc Gürtler Klausur zur 10/1 SWS-Vertiefung Empirische Finanzwirtschaft Finanzwirtschaft Lösungsskizze Prof. Dr. Marc Gürtler WS 015/016 Aufgabe 1: (11+5+1+8=56
Teil: lineare Regression
Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge
Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 2013)
Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 203) Aufgabe (9 Punkte) Ein metrisches Merkmal X sei in einer Grundgesamtheit vom Umfang n = 200 diskret klassiert.
Multiple Regressionsanalyse - Kurzabriss
Multiple Regressionsanalyse - Kurzabriss Ziele: Schätzung eines Kriteriums aus einer Linearkombination von Prädiktoren Meist zu Screening-Untersuchungen, um den Einfluß von vermuteten Ursachenvariablen
Anwendungen der Differentialrechnung
KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle
1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n
3.2. Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare von Merkmalsausprägungen (x, y) Beispiele:
Empirische Wirtschaftsforschung
Empirische Wirtschaftsforschung Prof. Dr. Bernd Süßmuth Universität Leipzig Institut für Empirische Wirtschaftsforschung Volkswirtschaftslehre, insbesondere Ökonometrie 6.. Herleitung des OLS-Schätzers
Varianzkomponentenschätzung
Qualitas AG Varianzkomponentenschätzung Peter von Rohr Qualitas AG Peter von Rohr Folien ZL I+II LFW C11 October 29, 2015 2 / 23 Multiple Lineare Regression Annahmen Modell y = Xb + e Varianz der Fehler
Statistische Tests (Signifikanztests)
Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)
erwartete Häufigkeit n=80 davon 50% Frauen fe=40 davon 50% Männer fe=40 Abweichung der beobachteten von den erwarteten Häufigkeiten:
Verfahren zur Analyse von Nominaldaten Chi-Quadrat-Tests Vier-Felder Kontingenztafel Mehrfach gestufte Merkmale Cramers V, Kontingenzkoeffizient, Phi-Koeffizient Muster aller Chi-Quadrat-Verfahren eine
Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)
3 Einfache lineare Regression Einfache lineare Modelle mit R 36 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula =
Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)
3 Einfache lineare Regression Einfache lineare Modelle mit R 3.6 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula
Quantitative Methoden der Agrarmarktanalyse und des Agribusiness
Quantitative Methoden der Agrarmarktanalyse und des Agribusiness Fragen zur Vorlesung Teil 2 SS 2001 Mai 19 Dr. Jens-Peter Loy, Institut für Agrarökonomie (Kommentare bitte per e-mail an [email protected])
Kapitel 1 Beschreibende Statistik
Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)
Schweizer Statistiktage, Aarau, 18. Nov. 2004
Schweizer Statistiktage, Aarau, 18. Nov. 2004 Qualitative Überprüfung der Modellannahmen in der linearen Regressionsrechnung am Beispiel der Untersuchung der Alterssterblichkeit bei Hitzeperioden in der
Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression
1 Einführung Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression Datenauswertung In einem naturwissenschaftlichen Experiment werden Sie meist
Karl Entacher. FH-Salzburg
Ahorn Versteinert [email protected] Statistik @ HTK Karl Entacher FH-Salzburg [email protected] Beispiel 3 Gegeben sind 241 NIR Spektren (Vektoren der Länge 223) zu Holzproben
Lineare Regression. Kapitel Regressionsgerade
Kapitel 5 Lineare Regression 5 Regressionsgerade Eine reelle Zielgröße y hänge von einer reellen Einflussgröße x ab: y = yx) ; zb: Verkauf y eines Produkts in Stückzahl] hängt vom Preis in e] ab Das Modell
Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem
Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem
Einführung. Ablesen von einander zugeordneten Werten
Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,
Regression I. Statistik I. Sommersemester Lineare Regression Zusammenhang und Modell Ein Beispiel: Armut und Gewaltverbrechen Zusammenfassung
Sommersemester 2009 Ein Beispiel: Armut und Gewaltverbrechen Rechtswahl 15 10 5 0 5 10 Arbeitslosigkeit Zum Nachlesen Agresti: 9.1-9.4 Gehring/Weins: 8 Schumann: 8.1-8.2 Was ist ein Zusammenhang? Gemeinsame
Verfahren zur Überprüfung von Zusammenhangshypothesen
Verfahren zur Überprüfung von Zusammenhangshypothesen 0. Allgemeines Wir haben uns bisher mit Unterschiedshypothesen beschäftigt (Unterschiede von Stichproben in Bezug auf abhängige Variablen). Im Folgenden
Wiederholung/Einführung Lineare Regression Zusammenfassung. Regression I. Statistik I. Sommersemester 2009
Sommersemester 2009 Wiederholung/Einführung Ein Beispiel: Armut und Gewaltverbrechen Rechtswahl 15 10 5 0 5 10 Arbeitslosigkeit Zum Nachlesen Agresti: 9.1-9.4 Gehring/Weins: 8 Schumann: 8.1-8.2 Was ist
Der Korrelationskoezient nach Pearson
Der Korrelationskoezient nach Pearson 1 Motivation In der Statistik werden wir uns häug mit empirisch erfassten Daten beschäftigen. Um diese auszuwerten, ist es oftmals notwendig einen Zusammenhang zwischen
Regression und Korrelation
Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen
Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006
Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand
Kurs Empirische Wirtschaftsforschung
Kurs Empirische Wirtschaftsforschung 5. Bivariates Regressionsmodell 1 Martin Halla Institut für Volkswirtschaftslehre Johannes Kepler Universität Linz 1 Lehrbuch: Bauer/Fertig/Schmidt (2009), Empirische
2. Stochastische ökonometrische Modelle. - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen
.1. Stochastische ökonometrische Modelle.1 Einführung Ziele: - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen - Numerische Konkretisierung ökonomischer Modelle und deren Analse. . Variierende
Drittvariablenkontrolle in der linearen Regression: Trivariate Regression
Drittvariablenkontrolle in der linearen Regression: Trivariate Regression 14. Januar 2002 In der Tabellenanalyse wird bei der Drittvariablenkontrolle für jede Ausprägung der Kontrollvariablen eine Partialtabelle
htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK
htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 2 Grundbegriffe htw saar 3 Grundgesamtheit und Stichprobe Ziel: Über eine Grundgesamtheit (Population) soll eine Aussage über ein
Modul G.1 WS 07/08: Statistik
Modul G.1 WS 07/08: Statistik 10.01.2008 1 2 Test Anwendungen Der 2 Test ist eine Klasse von Verfahren für Nominaldaten, wobei die Verteilung der beobachteten Häufigkeiten auf zwei mehrfach gestufte Variablen
Einführung in Quantitative Methoden
in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2011 Christodoulides / Waldherr in Quantitative Methoden- 2.VO 1/47 Historisches Regression geht auf Galton
Statistik II Übung 1: Einfache lineare Regression
Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der
Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell
Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010
Statistik Klausur Wintersemester 2013/2014 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!
Statistik 1 A 2. Klausur Wintersemester 2013/2014 Hamburg, 18.03.2014 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................
6 Korrelations- und Regressionsanalyse: Zusammenhangsanalyse stetiger Merkmale
6 Korrelations- und Regressionsanalyse: Zusammenhangsanalyse stetiger Merkmale 397 6.1 Korrelationsanalyse Jetzt betrachten wir bivariate Merkmale (X, Y ), wobei sowohl X als auch Y stetig bzw. quasi-stetig
Brückenkurs Elementarmathematik
Brückenkurs Elementarmathematik IV. Ungleichungen November 13, 2013 Inhalt 1 Ungleichungen 2 Umformungen von Ungleichungen 2.1 Äquivalenzumformungen 2.2 Addition und Multiplikation von Ungleichungen 3
Statistik Klausur Sommersemester 2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!
Statistik 2 1. Klausur Sommersemester 2013 Hamburg, 26.07.2013 A BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................
Statistik K urs SS 2004
Statistik K urs SS 2004 3.Tag Grundlegende statistische Maße Mittelwert (mean) Durchschnitt aller Werte Varianz (variance) s 2 Durchschnittliche quadrierte Abweichung aller Werte vom Mittelwert >> Die
