Ausführliche Lösungen zu ausgewählten Aufgaben von ÜB 5 und 6. Streudiagramm

Größe: px
Ab Seite anzeigen:

Download "Ausführliche Lösungen zu ausgewählten Aufgaben von ÜB 5 und 6. Streudiagramm"

Transkript

1 y Aufgabe 3 Ausführliche Lösungen zu ausgewählten Aufgaben von ÜB 5 und 6 a) Zur Erstellung des Streudiagramms zeichnet man jeweils einen Punkt für jedes Datenpaar (x i, y i ) aus der zweidimensionalen Urliste. Es ergibt sich der folgende Graph: Streudiagramm x - man erkennt bereits einen positiven Zusammenhang zwischen den Variablen X und Y, denn die meisten Datenpunkte liegen im oberen rechten und unteren linken Quadranten - die Quadranten werden durch die Mittelwerte von X und Y definiert b) Zur Berechnung der Kovarianz benötigt man zuerst die Mittelwerte von X und Y, diese sind: 0 x = x 0 i= i =.8 und y = y 0 i= i =.8 Die Kovarianz kann dann mit folgender Formel berechnet werden: c xy = n 0 i= (x i x )(y i y ) - Es wird also von jeden x i der Mittelwert abgezogen, ebenso von jeden y i der Mittelwert abgezogen, dann werden diese Differenzen für jedes Datenpaar (x, y ), (x 2, y 2 ),, (x 0, y 0 ) jeweils miteinander multipliziert und schließlich aufsummiert. - Die folgende Tabelle zeigt Ihnen die Werte aller Summanden der Kovarianz. 0 ST 8 FK

2 x i y i (x i x ) (y i y ) (x i x )(y i y ) Mittelwerte:.8.8 Summe: 9.6 Varianzen: Kovarianz: Die Summe der Produkte der Differenzen beträgt 9.6 und somit die Kovarianz = Interpretation: - Kovarianz ist größer als Null, dies gibt einen Hinweis auf einen positiven Zusammenhang. - Ausmaß des Zusammenhangs ist nicht erkennbar, da die Größe der Kovarianz von den Maßeinheiten und den Varianzen der Variablen abhängt. - Der Wert 0.96 kann also noch nicht sinnvoll interpretiert werden, es wird ein anderer Koeffizient benötigt, dieser ist z.b. der Korrelationskoeffizient nach Bravais und Pearson r xy, der in Aufgabenteil d) bestimmt werden soll. c) Nun stellen wir uns die Frage, ob es möglich ist, eine Gerade so in das Streudiagramm zu legen, dass Sie die Daten im Durchschnitt gut beschreibt. Eine solche Gerade nennen wir Regressionsgerade. Eine Möglichkeit eine Regressionsgerade zu bestimmen ist die Methode der kleinsten Quadrate (KQ Regression, OLS). Hierbei setzt man sich zum Ziel, die Gerade so zu bestimmen, dass die quadrierten Abstände aller Punkte zur Geraden minimal sind. Es liegt also das folgende Optimierungsproblem vor: Bestimme eine Gerade y = a + bx, so dass n Q(a, b) = (y i (a + bx i )) 2 i= minimal ist. Die Gerade bestimmen wir indem wir a und b, also den Achsenabschnitt und die Steigung bestimmen. Damit ist eine Gerade hinreichend charakterisiert. Würde man nun den Ausdruck Q(a, b) minimieren, so würde man finden, dass für das optimale b gelten muss, dass b = b = c xy s x 2 ST 8 FK

3 Das Dach über dem b schreiben wir, wenn wir einen Schätzer meinen. Der Anstieg unserer Gerade ist also einfach der Quotient aus der Kovarianz von X und Y und der Varianz X. In unserem Beispiel rechnen wir also: b = c xy s2 = 0.96 =, da s x 0.96 x 2 = n (x 0 i= i x ) 2 = 0.96 und c xy = 0.96 Der Anstieg unserer geschätzten Regressionsgerade beträgt also. Den Achsenabschnitt können wir leicht aus der folgenden Beziehung bestimmen. Unsere Regressionsgerade y = a + b x soll auch und insbesondere für die arithmetischen Mittel von X und Y gelten, so dass y = a + b x Gelten soll. Haben wir b bereits bestimmt, so können wir a daraus leicht berechnen. Es ist: a = y b x =.8.8 = 0 Wir schätzen also einen Achsenabschnitt von 0, so dass unsere Regressionsgleichung durch den Koordinatenursprung verlaufen soll. Unsere Gleichung heißt also: y = b x = x - diese beschreibt unsere Datenpunkte auch ganz gut, wie man sieht - die Gerade geht durch vier der Punkte hindurch und die anderen sechs Punkte haben jeweils nur einen vertikalen Abstand von entweder + oder -, was quadriert jeweils ergibt, die Summe der quadrierten Abstände beträgt also genau 6, wir können keine andere Gerade finden, die eine kleinere quadrierte Abweichung aufweist - die Grafik zeigt auch schön, dass man die gerade als einen durchschnittlichen bedingten Mittelwert auffassen kann, sie beschreibt für jedes X die durchschnittliche Ausprägung von Y ST 8 FK

4 Interpretationen: Es ist a, derjenige Wert, den Y durchschnittlich annimmt, wenn X = 0 ist. Es ist b = dy dx also der Anstieg der Regressionsgerade. Daher gilt, dass: wenn X um eine Einheit steigt, so verändert sich Y um b Einheiten. Anpassungsgüte: Nachdem man eine Regression berechnet hat, will man häufig wissen wie gut die Regressionsgerade die Daten beschreibt. Letztlich bedeutet es zu Fragen, wie weit die Punkte von der Geraden entfernt liegen. Ein Maß dafür ist das so genannte R 2. Bei einer linearen Einfachregression, also einer Beziehung y = a + bx kann man das R 2 als R 2 = (r xy ) 2 bestimmen, also einfach als das Quadrat des Korrelationskoeffizienten zwischen X und Y (siehe Aufgabenteil d)). Eine Andere Formel ist: R 2 = n i= (y i y ) 2 = n i=(y i y ) 2 n n i= (y i y ) 2 n n i= (y i y ) 2 = n n i= (y i y ) 2 s2 y = s 2 y s2 (*) y Dieser Ausdruck lässt sich schön interpretieren. Im Zähler steht die Varianz der mit der Regressionsgeraden geschätzten Werte für Y den y. Im Nenner steht die Varianz der wirklichen Werte von Y. Das R 2 gibt uns also den Anteil der erklärten Varianz an der Gesamtvarianz von Y an. Liegen alle Punkte genau auf der Geraden, dann ist R 2 = und wir erklären die gesamte Varianz von Y. Das schlechteste Modell erklärt nichts und hat daher ein R 2 = 0. In unserem Beispiel kann man das R 2 mit der folgenden Tabelle berechnen: x i y i = x i (y i y ) Gibt man die Werte der dritten Zeile in die Formel (*) ein, so erhält man: R 2 = = 0.65 oder man rechnet: R2 = (r xy ) 2 = = ST 8 FK

5 d) Wie bereits in Aufgabenteil b) erwähnt, ist die Kovarianz nicht hinreichend gut interpretierbar. Ein besseres Maß ist der Korrelationskoeffizient r xy. Für dessen Berechnung gibt es mehrere Formeln, die sich natürlich alle ineinander überführen lassen: n i=(x i x )(y i y ) r xy = = n n i= (x i x )(y i y ) n i=(x i x ) 2 n i=(y i y ) 2 n n (x i x ) 2 n (y i y ) 2 = c xy s x 2 s y 2 = c xy s x s y - letztlich ist die kompliziert aussehende erste Formel also nichts anderes als die Kovarianz zwischen X und Y geteilt durch das Produkt der Standardabweichungen von X und Y - dies beseitigt somit auch die oben genannten Probleme der Kovarianz, der Korrelationskoeffizient hat keine Einheit (ist dimensionslos) und wurde um die Abhängigkeit von den Varianzen bereinigt, daher gilt: - Interpretation der Extremwerte des r xy : r xy i= n i= r xy = : r xy = 0: r xy = : Perfekter linearer negativer Zusammenhang zwischen X und Y Kein linearer Zusammenhang Perfekter linearer positiver Zusammenhang zwischen X und Y Berechnung für unser Beispiel: Wir benötigen zuerst die Varianzen von X und Y, um die einfache letzte Formel zu verwenden: s 2 x = n (x 0 i= i x ) 2 = 0.96 und s 2 y = n (y 0 i= i y) 2 =.56 Damit ist der Korrelationskoeffizient gleich: r xy = c xy s x 2 s y 2 = = Somit gibt es in unseren Daten einen deutlichen positiven linearen Zusammenhang zwischen X und Y. ST 8 FK

6 Aufgabe 7 a) Hier muss die Regressionsgerade folgendermaßen aussehen: - Es gibt einen positiven Anstieg und so sind die quadrierten Abstände in Summe minimal und gleich 6. b) Hier muss die Regressionsgerade folgendermaßen aussehen: - Es gibt keine Zusammenhang, Y ist im Durchschnitt immer 2, egal welchen Wert X annimmt, daher ist y = 2, die Summe der quadrierten Abstände ist gleich 4 ST 8 FK

7 Aufgabe 7 Die Präferenzen der UrlauberInnen sind ordinal skaliert, sie können in eine Reihenfolge gebracht aber die Abstände nicht sinnvoll interpretiert werden. Übersetzt man die Angaben der Aufgabe in eine Ordinalskala kann man folgendermaßen vorgehen: Man gibt eine für das liebste Urlaubsziel, eine 2 für das nächstliebste, usw. Man könnte alternativ auch eine 5 für das liebste, eine 4 für das nächstliebste, usw. vergeben. Hauptsache man macht es konsistent. Nach der ersten Variante würde die folgende Tabelle entstehen: H N B S M Japan Frankreich Polen d 2 i (P J) d 2 i (P F) Die Tabelle enthält nun die Ränge der Urlaubsziele der TouristInnen der einzelnen Länder. In den letzten beiden Zeilen stehen die quadrierten Rangdifferenzen für Japan vs. Polen und Frankreich vs. Polen. Mit Hilfe dieser kann man den Rangkorrelationskoeffizienten mit der einfachen Berechnungsformel bestimmen: r s = 6 n i= d i 2 n(n 2 ) Das ergibt in unseren Fall die beiden Koeffizienten: r s JP = 6 n i= ( ) 5(5 2 ) s = 6 n i= (+) r FP 5(5 2 ) = 0.9 = 0.8 Es gibt also einen starken positiven monotonen Zusammenhang zwischen den Präferenzen der polnischen und der französischen TouristInnen und einen starken negativen monotonen Zusammenhang zwischen denen der polnischen und der japanischen TouristInnen. ST 8 FK

8 Aufgabe 8 Die folgende Tabelle fasst die Rangbildung und die Lösung zusammen: Person rg(p) rg(p2) rg(p)-3.5 rg(p2)-3.5 Produkt V(rg(P) V(rg(P2)) Mittelwert Summe Kovarianz Korrelation Die Lösung ist im Grunde die ganz normale Bestimmung des Korrelationskoeffizienten. Besonderheiten sind: - Verwendung von Rängen - Bestimmung des mittleren Ranges als Mittelwert - Konstruktion der Ränge Anmerkungen:. Der mittlere Rang ist immer n+, mit n als Anzahl der Beobachtungen, die in eine 2 Rangfolge gebracht werden müssen. Mathematisch gesehen ist es nämlich die Partialsumme einer arithmetischen Reihe mit d =. 2. Würde man die Ränge anders vergeben, so wären die nicht mehr Summentreu und würden auch einen anderen mittleren Rang ergeben. Im Folgenden ist dazu ein Beispiel zu sehen. Würde man die Ränge so vergeben, dass die höchsten Rang bekommen, die zweiten Rang 2, etc., würde man also auf mittlere Ränge verzichten, so sähe die Tabelle wie folgt aus: Person rg(p) rg(p2) Mittelwert Offensichtlich sind nun die mittleren Ränge unterschiedlich. Daher wäre der Korrelationskoeffizient auch verzerrt. Er würde hier ergeben. Es gilt also grundsätzlich mittlere Ränge zu verwenden, falls nötig (vergleiche Aufgabe 8 mit Aufgabe 7) und falls mittlere Ränge vergeben worden sind, die Standardformel für die Korrelation zu verwenden. ST 8 FK

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II Statistik II Lineare Regressionsrechnung Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II - 09.06.2006 1 Mit der Kovarianz und dem Korrelationskoeffizienten können wir den statistischen

Mehr

Lösungen zur Klausur zur Statistik Übung am

Lösungen zur Klausur zur Statistik Übung am Lösungen zur Klausur zur Statistik Übung am 28.06.2013 Fabian Kleine Staatswissenschaftliche Fakultät Aufgabe 1 Gegeben sei die folgende geordneten Urliste des Merkmals Y. 30 Punkte Y : 5 5 5 5 10 10 10

Mehr

Bivariater Zusammenhang bei metrischen Variablen: Regression und Korrelation

Bivariater Zusammenhang bei metrischen Variablen: Regression und Korrelation Bivariater Zusammenhang bei metrischen Variablen: Regression und Korrelation PEΣO 12. November 2001 Von der Tabellenanalyse zur Regression Die bivariate Verteilung zweier metrischer Variablen kann konzeptionell

Mehr

(f(xi ) y i ) 2. minimal ist: man will also die Summe der quadratischen Abweichungen minimieren ... f(x i ) y i, i=1 (t x i) 2

(f(xi ) y i ) 2. minimal ist: man will also die Summe der quadratischen Abweichungen minimieren ... f(x i ) y i, i=1 (t x i) 2 Mathematik für Biologen, Biotechnologen und Biochemiker Lineare Regression Gegeben seien Datenpaare (, ), (, ),, ( n, n ) Wir stellen die Frage, ob sich die Zahlen i als Werte einer linearen Funktion i

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Kapitel XI - Korrelationsrechnung

Kapitel XI - Korrelationsrechnung Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Kapitel XI - Korrelationsrechnung Markus Höchstötter Uni Karlsruhe Karlsruhe, SS 2008 Kapitel XI - Korrelationsrechnung

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9.

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Januar 2011 BOOTDATA11.GDT: 250 Beobachtungen für die Variablen...

Mehr

6Korrelationsanalyse:Zusammengangsanalysestetiger Merkmale

6Korrelationsanalyse:Zusammengangsanalysestetiger Merkmale 6Korrelationsanalyse:Zusammengangsanalysestetiger Merkmale Jetzt betrachten wir bivariate Merkmale (X, Y ), wobei sowohl X als auch Y stetig bzw. quasi-stetig und mindestens ordinalskaliert, typischerweise

Mehr

6 Korrelations- und Regressionsanalyse: Zusammenhangsanalyse stetiger Merkmale

6 Korrelations- und Regressionsanalyse: Zusammenhangsanalyse stetiger Merkmale 6 Korrelations- und Regressionsanalyse: Zusammenhangsanalyse stetiger Merkmale 397 6.1 Korrelationsanalyse Jetzt betrachten wir bivariate Merkmale (X, Y ), wobei sowohl X als auch Y stetig bzw. quasi-stetig

Mehr

TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN

TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN Bivariate Analyse für metrisch skalierte Variablen Grundlagen Verfahren für metrische Daten nutzen den vollen mathematischen Informationsgehalt

Mehr

Bivariate Regressionsanalyse

Bivariate Regressionsanalyse Universität Bielefeld 15. März 2005 Kovarianz, Korrelation und Regression Kovarianz, Korrelation und Regression Ausgangspunkt ist folgende Datenmatrix: Variablen 1 2... NI 1 x 11 x 12... x 1k 2 x 21 x

Mehr

Geg.: Eine Menge von Elementen, z.b.

Geg.: Eine Menge von Elementen, z.b. 1.3 Zweidimensionale Häufigkeitsverteilungen Geg.: Eine Menge von Elementen, z.b. Schüler einer Schule Soldaten eines Bataillons Schrauben einer Stichprobe Tage eines Jahrhunderts Betrachtet werden zwei

Mehr

TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN

TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN GLIEDERUNG Bivariate Analyse für metrisch skalierte Variablen Grundlagen Streudiagramme und Visualisierungen von Zusammenhängen Positive lineare

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun http://blog.ruediger-braun.net Heinrich-Heine-Universität Düsseldorf 10. Dezember 2014 1 Datenpaare Korrelation 2 Lineare Regression Problemstellung Beispiel

Mehr

Statistik II: Signifikanztests /2

Statistik II: Signifikanztests /2 Medien Institut : Signifikanztests /2 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Korrelation 2. Exkurs: Kausalität 3. Regressionsanalyse 4. Key Facts 2 I

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 05. Dezember 2012 1 Datenpaare Korrelation 2 Lineare Regression Problemstellung Beispiel Bleibelastung 3 Regression

Mehr

Lage- und Streuungsparameter

Lage- und Streuungsparameter Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch

Mehr

Sommersemester Marktforschung

Sommersemester Marktforschung Dipl.-Kfm. Sascha Steinmann Universität Siegen Lehrstuhl für Marketing steinmann@marketing.uni-siegen.de Sommersemester 2010 Marktforschung Übungsaufgaben zu den Themen 3-6 mit Lösungsskizzen Aufgabe 1:

Mehr

Deskriptive Beschreibung linearer Zusammenhänge

Deskriptive Beschreibung linearer Zusammenhänge 9 Mittelwert- und Varianzvergleiche Mittelwertvergleiche bei k > 2 unabhängigen Stichproben 9.4 Beispiel: p-wert bei Varianzanalyse (Grafik) Bedienungszeiten-Beispiel, realisierte Teststatistik F = 3.89,

Mehr

Skalenniveaus =,!=, >, <, +, -

Skalenniveaus =,!=, >, <, +, - ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 21. Oktober 2010 1 Datenpaare Korrelation Lineare Regression Regression im exponentiellen Modell Datenpaare Häufig

Mehr

Welche der folgenden Aussagen sind richtig? (x aus 5) A Ein metrisches Merkmal, das überabzählbar viele Ausprägungen besitzt heißt diskret.

Welche der folgenden Aussagen sind richtig? (x aus 5) A Ein metrisches Merkmal, das überabzählbar viele Ausprägungen besitzt heißt diskret. Grundlagen der Statistik 25.9.2014 7 Aufgabe 7 Welche der folgenden Aussagen sind richtig? (x aus 5) A Ein metrisches Merkmal, das überabzählbar viele Ausprägungen besitzt heißt diskret. B Ein Merkmal

Mehr

Die Funktion f wird als Regressionsfunktion bezeichnet.

Die Funktion f wird als Regressionsfunktion bezeichnet. Regressionsanalyse Mit Hilfe der Techniken der klassischen Regressionsanalyse kann die Abhängigkeit metrischer (intervallskalierter) Zielgrößen von metrischen (intervallskalierten) Einflussgrößen untersucht

Mehr

6 Korrelationsanalyse: Zusammenhangsanalyse stetiger. Merkmale

6 Korrelationsanalyse: Zusammenhangsanalyse stetiger. Merkmale 6 Korrelationsanalyse: Zusammenhangsanalyse stetiger Merkmale 6.1 Korrelationsanalyse Jetzt betrachten wir bivariate Merkmale (X, Y ), wobei sowohl X als auch Y stetig bzw. quasi-stetig und mindestens

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

simple lineare Regression kurvilineare Regression Bestimmtheitsmaß und Konfidenzintervall

simple lineare Regression kurvilineare Regression Bestimmtheitsmaß und Konfidenzintervall Regression Korrelation simple lineare Regression kurvilineare Regression Bestimmtheitsmaß und Konfidenzintervall Zusammenhänge zw. Variablen Betrachtet man mehr als eine Variable, so besteht immer auch

Mehr

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n 3.2. Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare von Merkmalsausprägungen (x, y) Beispiele:

Mehr

W-Seminar: Versuche mit und am Menschen 2017/2019 Skript

W-Seminar: Versuche mit und am Menschen 2017/2019 Skript 3. Deskriptive Statistik Die deskriptive (auch: beschreibende) Statistik hat zum Ziel, [ ] Daten durch Tabellen, Kennzahlen [ ] und Grafiken übersichtlich darzustellen und zu ordnen. Dies ist vor allem

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand

Mehr

Bivariate Zusammenhänge

Bivariate Zusammenhänge Bivariate Zusammenhänge 40 60 80 Bivariater Zusammenhang: Zusammenhang zwischen zwei Variablen weight (kg) Gibt es einen Zusammenhang zwischen Größe & Gewicht? (am Beispieldatensatz) Offensichtlich positiver

Mehr

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen 6.10.2016 Hochschule Esslingen Übungsblatt 2 Statistik Stichworte: arithmetischer Mittelwert, empirische Varianz, empirische Standardabweichung, empirischer

Mehr

Verfahren zur Überprüfung von Zusammenhangshypothesen

Verfahren zur Überprüfung von Zusammenhangshypothesen Verfahren zur Überprüfung von Zusammenhangshypothesen 0. Allgemeines Wir haben uns bisher mit Unterschiedshypothesen beschäftigt (Unterschiede von Stichproben in Bezug auf abhängige Variablen). Im Folgenden

Mehr

Biometrieübung 10 Lineare Regression. 2. Abhängigkeit der Körpergröße von der Schuhgröße bei Männern

Biometrieübung 10 Lineare Regression. 2. Abhängigkeit der Körpergröße von der Schuhgröße bei Männern Biometrieübung 10 (lineare Regression) - Aufgabe Biometrieübung 10 Lineare Regression Aufgabe 1. Düngungsversuch In einem Düngeversuch mit k=9 Düngungsstufen x i erhielt man Erträge y i. Im (X, Y)- Koordinatensystem

Mehr

Elementare Regressionsrechnung

Elementare Regressionsrechnung Elementare Regressionsrechnung Motivation: Streudiagramm zweier metrisch skalierter Merkmale X und Y Y X Dr. Karsten Webel 107 Ziel: Erfassung des Zusammenhangs zwischen X und Y durch eine Gerade der Form

Mehr

TEIL 13: DIE EINFACHE LINEARE REGRESSION

TEIL 13: DIE EINFACHE LINEARE REGRESSION TEIL 13: DIE EINFACHE LINEARE REGRESSION Die einfache lineare Regression Grundlagen Die einfache lineare Regression ist ebenfalls den bivariaten Verfahren für metrische Daten zuzuordnen 1 Sie hat einen

Mehr

i =1 i =2 i =3 x i y i 4 0 1

i =1 i =2 i =3 x i y i 4 0 1 Aufgabe (5+5=0 Punkte) (a) Bei einem Minigolfturnier traten 6 Spieler gegeneinander an. Die Anzahlen der von ihnen über das gesamte Turnier hinweg benötigten Schläge betrugen x = 24, x 2 = 27, x = 2, x

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel.

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel. Zusammenfassung und wichtiges zur Prüfungsvorbereitung 9. Dezember 2008 Begriffe Kenntnis der wichtigen Begriffe und Unterscheidung dieser. Beispiele: Merkmal, Merkmalsraum, etc. Skalierung: Nominal etc

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau

Mehr

Korrelation Regression. Wenn Daten nicht ohne einander können Korrelation

Korrelation Regression. Wenn Daten nicht ohne einander können Korrelation DAS THEMA: KORRELATION UND REGRESSION Korrelation Regression Wenn Daten nicht ohne einander können Korrelation Korrelation Kovarianz Pearson-Korrelation Voraussetzungen für die Berechnung die Höhe der

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

5 Beschreibung und Analyse empirischer Zusammenhänge

5 Beschreibung und Analyse empirischer Zusammenhänge 5 Beschreibung und Analyse empirischer Zusammenhänge 132 5 Beschreibung und Analyse empirischer Zusammenhänge 5.1 Zusammenhänge zwischen kategorialen Merkmalen 137 5.1.1 Kontingenztabellen 137 Verteilungen

Mehr

3.1 Zusammenhang zwischen einem qualitativen und einem quantitativen Merkmal

3.1 Zusammenhang zwischen einem qualitativen und einem quantitativen Merkmal Kapitel 3 Bivariate Analyse In Kapitel 2 haben wir gesehen, wie man ein Merkmal auswertet. Mit Hilfe statistischer Verfahren kann man aber auch untersuchen, ob zwischen mehreren Merkmalen Abhängigkeiten

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. mit dem R Commander. A Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. mit dem R Commander. A Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst mit dem R Commander A Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist

Mehr

2 Regressionsgerade und Korrelation

2 Regressionsgerade und Korrelation 17 2 Regressionsgerade und Korrelation In diesem Kapitel wird gezeigt, wie man üperprüfen kann, ob zwei Datensätze zusammenhängen und wie sich ein allfälliger (linearer) Zusammenhang quantitativ beschreiben

Mehr

Karl Entacher. FH-Salzburg

Karl Entacher. FH-Salzburg Ahorn Versteinert Bernhard.Zimmer@fh-salzburg.ac.at Statistik @ HTK Karl Entacher FH-Salzburg karl.entacher@fh-salzburg.ac.at Beispiel 3 Gegeben sind 241 NIR Spektren (Vektoren der Länge 223) zu Holzproben

Mehr

Statistik für Naturwissenschaftler

Statistik für Naturwissenschaftler Hans Walser Statistik für Naturwissenschaftler 3000 2500 KVG-Leistungen pro versicherte Person Durchschnitt Schweiz JU TI NE VD GE BS BL 2000 FR SO ZH TG AG BE VS SH SZGL SG 500 OW LU ZG GR UR AR Anzahl

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2011 Christodoulides / Waldherr in Quantitative Methoden- 2.VO 1/47 Historisches Regression geht auf Galton

Mehr

Anwendungsaufgaben. a. Anhand des Streudiagramms (. Abb. 1) lässt sich ein linearer Zusammenhang vermuten. Aufgabe 1. Anhang 1: Lösungen der Aufgaben

Anwendungsaufgaben. a. Anhand des Streudiagramms (. Abb. 1) lässt sich ein linearer Zusammenhang vermuten. Aufgabe 1. Anhang 1: Lösungen der Aufgaben Anhang 1: Lösungen der Aufgaben 15 +1). Korrelationskoeffizienten unterschiedlicher Stichproben oder verschiedener Variablen können so miteinander verglichen werden, was mit der Kovarianz nicht möglich

Mehr

Didaktisches Seminar über Stochastik. Themen: ffl Korrelation von zwei Zufallsvariablen

Didaktisches Seminar über Stochastik. Themen: ffl Korrelation von zwei Zufallsvariablen Didaktisches Seminar über Stochastik Themen: ffl Gemeinsame Verteilung von zwei Zufallsvariablen ffl Lineare Regression ffl Korrelation von zwei Zufallsvariablen Michael Ralph Pape Mai 1998 1 1 GEMEINSAME

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs Statistik für Wirtschaftswissenschaften Weitere Übungsfragen UVK Verlagsgesellschaft mbh Konstanz Mit UVK/Lucius München UVK Verlagsgesellschaft mbh Konstanz und München

Mehr

Inhaltsverzeichnis (Ausschnitt)

Inhaltsverzeichnis (Ausschnitt) 4 Zweidimensionale Daten Inhaltsverzeichnis (Ausschnitt) 4 Zweidimensionale Daten Häufigkeitsverteilungen unklassierter Daten Häufigkeitsverteilungen klassierter Daten Bedingte Häufigkeitsverteilungen

Mehr

Einführung in die Korrelationsrechnung

Einführung in die Korrelationsrechnung Einführung in die Korrelationsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Korrelationsrechnung

Mehr

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 20

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 20 Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 20 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)

Mehr

(a) Richtig, die Varianz ist eine Summe quadratischer Größen.

(a) Richtig, die Varianz ist eine Summe quadratischer Größen. Aufgabe Welche der folgenden Aussagen sind richtig? (a) Richtig, die Varianz ist eine Summe quadratischer Größen. (b) Falsch, die Abweichung ordinaler Merkmale vom Median ist nicht definiert - also auch

Mehr

Musterlösung zur Aufgabensammlung Statistik I Teil 3

Musterlösung zur Aufgabensammlung Statistik I Teil 3 Musterlösung zur Aufgabensammlung Statistik I Teil 3 2008, Malte Wissmann 1 Zusammenhang zwischen zwei Merkmalen Nominale, Ordinale Merkmale und Mischungen Aufgabe 12 a) x\ y 1.Klasse 2.Klasse 3.Klasse

Mehr

Lineare Funktion. Wolfgang Kippels 21. März 2011

Lineare Funktion. Wolfgang Kippels 21. März 2011 Lineare Funktion Wolfgang Kippels. März 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

TEIL 13: DIE LINEARE REGRESSION

TEIL 13: DIE LINEARE REGRESSION TEIL 13: DIE LINEARE REGRESSION Dozent: Dawid Bekalarczyk GLIEDERUNG Dozent: Dawid Bekalarczyk Lineare Regression Grundlagen Prognosen / Schätzungen Verbindung zwischen Prognose und Zusammenhang zwischen

Mehr

Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression

Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression 1 Einführung Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression Datenauswertung In einem naturwissenschaftlichen Experiment werden Sie meist

Mehr

Hochschule Darmstadt FB Mathematik und Naturwissenschaften. Statistik. für Wirtschaftsingenieure (B.Sc.) Sommersemester 2017

Hochschule Darmstadt FB Mathematik und Naturwissenschaften. Statistik. für Wirtschaftsingenieure (B.Sc.) Sommersemester 2017 für Wirtschaftsingenieure (B.Sc.) Sommersemester 017 Dr. rer. nat. habil. E-mail: adam-georg.balogh@h-da.de 1 Hochschule Darmstadt, Fachbereich MN Sommersemester 017 Testklausur zur Vorlesung Wirtschaftsstatistik

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften Modul 202 Regressionsgerade und Korrelation Lernumgebung. Teil Hans Walser: Modul 202, Regressionsgerade und Korrelation. Lernumgebung. ii Inhalt Messwertpaare...

Mehr

Statistik K urs SS 2004

Statistik K urs SS 2004 Statistik K urs SS 2004 3.Tag Grundlegende statistische Maße Mittelwert (mean) Durchschnitt aller Werte Varianz (variance) s 2 Durchschnittliche quadrierte Abweichung aller Werte vom Mittelwert >> Die

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF. DR. ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 04.06.2013 Zweidimensionale Datensätze 1. Kontingenztabelle

Mehr

Eigene MC-Fragen (Teil II) "Kap. 9 Zusammenhangsmaße

Eigene MC-Fragen (Teil II) Kap. 9 Zusammenhangsmaße Eigene MC-Fragen (Teil II) "Kap. 9 Zusammenhangsmaße 1. Kreuze die richtige Aussage an! positiv sind, ist r stets identisch mit s xy. negativ sind, ist r stets identisch mit s xy. positiv sind, ist das

Mehr

Der Korrelationskoezient nach Pearson

Der Korrelationskoezient nach Pearson Der Korrelationskoezient nach Pearson 1 Motivation In der Statistik werden wir uns häug mit empirisch erfassten Daten beschäftigen. Um diese auszuwerten, ist es oftmals notwendig einen Zusammenhang zwischen

Mehr

Statistik I. Aufgabe 1

Statistik I. Aufgabe 1 Statistik I, WS 2004/05, Seite 1 von 8 Statistik I Hinweise zur Bearbeitung Hilfsmittel: - Taschenrechner (ohne Datenbank oder die Möglichkeit diesen zu programmieren) - selbst erstellte Formelsammlung

Mehr

Kontingenztabelle: Führerschein Ja Nein Ja Nein Auto. Wie viel Prozent der Studierenden besitzen kein Auto?

Kontingenztabelle: Führerschein Ja Nein Ja Nein Auto. Wie viel Prozent der Studierenden besitzen kein Auto? Aufgabe 1: Eine (nicht repräsentative) Umfrage unter 200 Studierenden auf dem Campus der Ruhr-Universität ergab: 130 Studierende besitzen ein Auto, 160 einen Führerschein und 128 sowohl Auto als auch Führerschein.

Mehr

Datenanalyse mit Excel und Gretl

Datenanalyse mit Excel und Gretl Dozent: Christoph Hindermann christoph.hindermann@uni-erfurt.de Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 1 Teil 2: Gretl Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 2 Modellannahmen

Mehr

Es sei x 1. Zeigen Sie mittles vollständiger Induktion, dass dann für jede natürliche Zahl n 0 gilt: n x k = 1 xn+1 1 x.

Es sei x 1. Zeigen Sie mittles vollständiger Induktion, dass dann für jede natürliche Zahl n 0 gilt: n x k = 1 xn+1 1 x. Aufgabe 1. (5 Punkte) Es sei x 1. Zeigen Sie mittles vollständiger Induktion, dass dann für jede natürliche Zahl n 0 gilt: n x k = 1 xn+1 k=0 1 x. Aufgabe 2. (7 Punkte) Bestimmen Sie das folgende Integral

Mehr

Komplexe Zahlen. z = a + i b

Komplexe Zahlen. z = a + i b Komplexe Zahlen Definition 7. Da keine reelle Zahl existiert, deren Quadrat -1 ist, definieren wir die imaginäre Einheit i durch die Gleichung i 2 = 1. Als die Menge aller komplexen Zahlen C definieren

Mehr

Musterlösung zur Übungsklausur Statistik

Musterlösung zur Übungsklausur Statistik Musterlösung zur Übungsklausur Statistik WMS15B Oettinger 9/216 Aufgabe 1 (a) Falsch: der Modus ist die am häufigsten auftretende Merkmalsausprägung in einer Stichprobe. (b) Falsch: die beiden Größen sind

Mehr

Aufgabe zum Thema: Gebrochen - rationale Funktionen

Aufgabe zum Thema: Gebrochen - rationale Funktionen Aufgabe zum Thema: Gebrochen - rationale Funktionen Eine gebrochen-rationale Funktion Z (x) hat als Zähler- N (x) funktion Z (x) eine lineare Funktion und als Nennerfunktion N (x) eine ganz-rationale Funktion

Mehr

Durchführung einer Regression über das Resttermverfahren am Beispiel einer bilogarithmischen Funktion

Durchführung einer Regression über das Resttermverfahren am Beispiel einer bilogarithmischen Funktion Durchführung einer Regression über das Resttermverfahren am Beispiel einer bilogarithmischen Funktion Dipl.- Ing. Björnstjerne Zindler, M.Sc. Erstellt: 21. November 2014 Letzte Revision: 6. Dezember 2014

Mehr

Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 2013)

Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 2013) Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 203) Aufgabe (9 Punkte) Ein metrisches Merkmal X sei in einer Grundgesamtheit vom Umfang n = 200 diskret klassiert.

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften 2 3 3 4 6 4 5 0 0 5 6 5 20 5 6 Tabellen (leicht gekürzte Version) Hans Walser: Tabellen ii Inhalt Binomische Verteilung.... Binomische Verteilung (ohne

Mehr

Teil / Ein paar statistische Grundlagen 25. Kapitel 1 Was Statistik ist und Warum sie benötigt Wird 2 7

Teil / Ein paar statistische Grundlagen 25. Kapitel 1 Was Statistik ist und Warum sie benötigt Wird 2 7 Inhaltsverzeichnis Einführung 21 Über dieses Buch 21 Törichte Annahmen über den Leser 22 Wie dieses Buch aufgebaut ist 23 Teil I: Ein paar statistische Grundlagen 23 Teil II: Die beschreibende Statistik

Mehr

Korrelation und Regression

Korrelation und Regression FB 1 W. Ludwig-Mayerhofer und 1 und FB 1 W. Ludwig-Mayerhofer und 2 Mit s- und sanalyse werden Zusammenhänge zwischen zwei metrischen Variablen analysiert. Wenn man nur einen Zusammenhang quantifizieren

Mehr

Modul G.1 WS 07/08: Statistik

Modul G.1 WS 07/08: Statistik Modul G.1 WS 07/08: Statistik 10.01.2008 1 2 Test Anwendungen Der 2 Test ist eine Klasse von Verfahren für Nominaldaten, wobei die Verteilung der beobachteten Häufigkeiten auf zwei mehrfach gestufte Variablen

Mehr

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0.

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0. Eine Verteilung ist durch die Angabe von einem oder mehreren Mittelwerten nur unzureichend beschrieben. Beispiel: Häufigkeitsverteilungen mit gleicher zentraler Tendenz: geringe Variabilität mittlere Variabilität

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Graphische Repräsentation von Kontingenztabellen Beispiel Autounfälle Verletzung leicht

Mehr

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

Die Beziehung zwischen ordinal skalierten Variablen

Die Beziehung zwischen ordinal skalierten Variablen Die Beziehung zwischen ordinal skalierten Variablen Schüler Englisch Deutsch a 5 5 b 4 besser 4 besser Konkordante Paare: Die Untersuchungseinheiten können im Hinblick auf X und Y dieselbe Rangordnung

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Funktionen. D. Horstmann: Oktober

Funktionen. D. Horstmann: Oktober Funktionen D. Horstmann: Oktober 2016 128 Funktionen Definition 9. Eine Funktion f ist eine Rechenvorschrift, die jedem Element einer Menge D genau ein Element einer Zielmenge Z zuweist. Die Menge D heißt

Mehr

Kapitel 1 Beschreibende Statistik

Kapitel 1 Beschreibende Statistik Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)

Mehr

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 2 Grundbegriffe htw saar 3 Grundgesamtheit und Stichprobe Ziel: Über eine Grundgesamtheit (Population) soll eine Aussage über ein

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst aufräumen 1 Modell vs. Daten Bis jetzt

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung

Mehr

Lösungen zur deskriptiven Statistik

Lösungen zur deskriptiven Statistik Lösungen zur deskriptiven Statistik Aufgabe 1. Bei einer Stichprobe von n = Studenten wurden folgende jährliche Ausgaben (in e) für Urlaubszwecke ermittelt. 1 58 5 35 6 8 1 6 55 4 47 56 48 1 6 115 8 5

Mehr

Lernrückblick. 1 a) Ich weiß, wie ich ein Schrägbild in der Kabinettprojektion zeichne: 2 a) Ich kann einen Körper aus folgenden Ansichten zeichnen:

Lernrückblick. 1 a) Ich weiß, wie ich ein Schrägbild in der Kabinettprojektion zeichne: 2 a) Ich kann einen Körper aus folgenden Ansichten zeichnen: 1 a) Ich weiß, wie ich ein Schrägbild in der Kabinettprojektion zeichne: b) Beispiel 2 a) Ich kann einen Körper aus folgenden Ansichten zeichnen: b) Beispiel 3 Entscheide dich. Ich fühle mich fit im Bereich

Mehr