Forschungsstatistik I
|
|
|
- Cathrin Winkler
- vor 9 Jahren
- Abrufe
Transkript
1 Prof. Dr. G. Meinhardt. Stock, Taubertsberg R. 0-0 (Persike) R. 0-1 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] SS 009 Fachbereich Sozialwissenschaften Psychologisches Institut Johannes Gutenberg Universität Mainz
2 Vorzeichentest für abhängige Stichproben Oft ist man bei einem ordinalskalierten Merkmal bei abhängigen Stichproben lediglich an einem höher/niedriger Urteil interessiert. Beispiele: Verringert sich eine Zwangsstörung nach einer Therapie? Verbessert sich Führungsverhalten infolge eines Outdoor-Selbstfindungstraining? Hier findet der Vorzeichentest Anwendung, der aufgrund seiner Einfachheit sehr rasch zu berechnen ist.
3 Vorzeichentest für abhängige Stichproben Datenlage: Bei abhängigen Stichproben liegen zwei Messungen vor, für die eine Höher/Niedriger/Gleich Beziehung formuliert werden kann. Beispiel: Bei N = 1 Probanden urbaner Herkunft wird ein Rhetoriktraining für mündliche Prüfungsleistungen angewandt und die Verbesserung gemessen. Verbesserungen werden mit kodiert, Verschlechterungen mit -, konstante Konzentrastionsleistungen mit =. Daten: -,,, -, =, -,,,,,,,
4 Vorzeichentest für abhängige Stichproben Sei n die Anzahl von Beobachtungen und n - die Anzahl von - Beobachtungen, so sollte unter der H 0 gelten, dass n = n = N n N = N m= n n m mit (m = Anzahl = ) Gleiche Beobachtungen ( = ) werden beim Vorzeichentest ignoriert, da sie ohnehin die H 0 (kein Unterschied) unterstützen
5 Vorzeichentest für abhängige Stichproben Die Wahrscheinlichkeit für (ebenso wie die für - ) sollte nun binomialverteilt sein mit p=0. und n = N* Man könnte nun einen Binomialtest durchführen, um folgende Hypothesen zu prüfen: H : n = n ; H : n n H : n n ; H : n > n H : n n ; H : n < n Der Vorzeichentest nimmt an, dass wegen der Symmetrie von p und q unter H 0 praktisch immer die Normalverteilungsapproximation verwendet werden kann.
6 Vorzeichentest für abhängige Stichproben Der Erwartungswert der Summe positiver (bzw. negativer) Vorzeichen ist ( ) = ( ) = = En En N* p N * Die Standardabweichung ist σ ( ) = = n N* p q N *
7 Vorzeichentest für abhängige Stichproben Man gelangt zu der Prüfgröße (mit Yates-Korrektur): z = n N N 0. mit n = n oder n - z ist standardnormalverteilt mit μ=0 und σ=1. Es gelten also zur Bewertung der Prüfgröße beim Vorzeichentest die üblichen kritischen Werte
8 Ziel: Test, ob sich zwei abhängige Stichproben in ihrer Ausprägung auf einem ordinalskalierten Merkmal unterscheiden Beispiele: Verbessert sich die Leistung in mündlichen Prüfungen nach einem Rhetorik-Training? Sinkt das subjektive Laustärke-Empfinden von Bewohnern in der Einflugschneise des Frankfurter Flughafens nach einem Einführungskurs Zen-Meditation? Voraussetzungen: Die Merkmalsträger in den Stichproben müssen paarweise zuordenbar sein. Die dem Merkmal tatsächlich zugrunde liegende Verteilungsfunktion soll stetig sein.
9 Datenlage: Man hat an zwei abhängigen Stichproben der Größe N ein ordinalskaliertes Merkmal erhoben. Es werden die Leistungen von N=1 Schülern in zwei äquivalenten Mathematiktests beurteilt (von einem Prüfer). Vor der Korrektur des zweiten Tests erhält der Prüfer die Information, die Schüler stammten aus einer Hochbegabtenklasse. X1:,, 0,,, 1, 8, 1, 18,, 1 X: 1, 1,,,, 1, 18, 1, 0, 19, Frage: Werden die Leistungen im. Test besser beurteilt?
10 Testidee: Für jede Beobachtungseinheit können Differenzen zwischen den beiden Stichproben berechnet werden (d i = y i x i ). Zwar ist der absolute Betrag dieser Differenzen nicht interpretierbar, die Differenzen sind aber ordinalskaliert. Größere Differenzen bedeuten also größere Veränderungen zwischen den Stichproben. Unter der H 0, d.h. bei gleichen Wahrscheinlichkeitsverteilungen in beiden Stichproben, sollten nun die Verbundwahrscheinlichkeiten, dass eine gegebene Differenz ein positives bzw. negatives Vorzeichen hat, identisch sein (p(d=d d>0) = 0.)
11 Methode: Zur Durchführung des Wilcoxon Vorzeichenrang Tests werden nun zunächst die Differenzen d i zwischen beiden Stichproben gebildet. Nr. t1 t d
12 Dann werden die Absolutwerte d i dieser Differenzen gebildet. Nr. t1 t d d
13 Nun erhalten diesen Absolutwerte Rangplätze rg( d i ). Achtung: Der Vorzeichenrang Test erfordert, dass die kleinste Differenz den kleinsten Rang erhält! Nr. t1 t d d rg(d)
14 Schließlich werden die Vorzeichen der Differenzen festgestellt. Diese werden für die Berechnung der Prüfgröße Nr. t1 t d d rg(d) - = =
15 Nulldifferenzen (Anzahl: m) werden a priori von der Rangplatzvergabe ausgeschlossen. Damit reduziert sich die Anzahl zu berücksichtigender Differenzen auf N* = N m Sei T die Rangsumme der Differenzen mit positivem Vorzeichen und T - die Rangsumme der d i mit negativem Vorzeichen, so gilt für die Summe aller Ränge R R = T T = N ( N 1) * * Der kleinere der beiden T-Werte ist bereits die Prüfgröße. Die Verteilung ist tabelliert für kleine N.
16 Bei größeren Stichproben (N>) ist die Prüfgröße T approximativ normalverteilt. Der Erwartungswert ist die Hälfte aller möglichen Vergleiche (dies ist der Wert, wenn T = T - ) μ Der Standardfehler lautet σ T = T = N ( N ) * * 1 ( 1) ( 1) * * * N N N
17 Damit ergibt sich die Prüfgröße (mit Yates-Korrektur) z = T μ T σ T 0. T = T oder T -. Sie ist standardnormalverteilt mit μ=0 und σ=1. Bei Ties berechnet sich der korrigierte Standardfehler als 1 N N N t t ( 1) ( 1) k * * * i i= 1 σ U, Korr = mit t i = Personen, die sich Rang i teilen (Länge der Rangbindung) k = Anzahl der Gruppen mit Rangbindungen i
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
Mathematische und statistische Methoden II
Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
Forschungsstatistik I
Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
Forschungsstatistik I
Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
Forschungsstatistik I
Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
6.4 Der Kruskal-Wallis Test
6.4 Der Kruskal-Wallis Test Der Test von Kruskal und Wallis, auch H-Test genannt, ist ein Test, mit dem man die Verteilungen von Teilstichproben auf Unterschiede untersuchen kann. Bei diesem Test geht
Forschungsstatistik I
Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jedereit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-main.de/
Mathematische und statistische Methoden II
Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike [email protected]
Forschungsstatistik I
Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] WS 008/009 Fachbereich
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected]
Mathematische und statistische Methoden II
Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike [email protected]
Mathematische und statistische Methoden II
Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike [email protected] lordsofthebortz.de lordsofthebortz.de/g+
1.6 Der Vorzeichentest
.6 Der Vorzeichentest In diesem Kapitel soll der Vorzeichentest bzw. Zeichentest vorgestellt werden, mit dem man Hypothesen bezüglich des Medians der unabhängig und identisch stetig verteilten Zufallsvariablen
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 6-6) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected]
Zusammenfassung PVK Statistik
Zusammenfassung PVK Statistik (Diese Zusammenfassung wurde von Carlos Mora erstellt. Die Richtigkeit der Formeln ist ohne Gewähr.) Verteilungen von diskreten Zufallsvariablen Beschreibung Binomialverteilung
5. Seminar Statistik
Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation
Biometrieübung 7 t-test (gepaarte Daten) & Wilcoxon-Test
Biometrieübung 7 (t-test gepaarte Daten & Wilcoxon-Test) - Aufgabe Biometrieübung 7 t-test (gepaarte Daten) & Wilcoxon-Test Aufgabe 1 Hirschläufe An 10 Hirschen wurde die Länge der rechten Vorder- und
T-Test für unabhängige Stichproben
T-Test für unabhängige Stichproben Wir gehen von folgendem Beispiel aus: Wir erheben zwei Zufallstichproben, wobei nur die Probanden der einen Stichprobe einer speziellen experimentellen Behandlung (etwa
11. Nichtparametrische Tests
11. Nichtparametrische Tests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 In Kapitel 8 und 9 haben wir vorausgesetzt, daß die Beobachtungswerte normalverteilt sind. In diesem Fall kann
Forschungsstatistik I
Psychologie Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
Tests für Erwartungswert & Median
Mathematik II für Biologen 26. Juni 2015 Prolog Varianz des Mittelwerts Beispiel: Waage z-test t-test Vorzeichentest Wilcoxon-Rangsummentest Varianz des Mittelwerts Beispiel: Waage Zufallsvariable X 1,...,X
Chi-Quadrat-Verteilung
Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist
Statistik II für Betriebswirte Vorlesung 2
Statistik II für Betriebswirte Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 26. Oktober 2016 Prof. Dr. Hans-Jörg Starkloff Statistik II für Betriebswirte Vorlesung
Statistische Methoden in den Umweltwissenschaften
Statistische Methoden in den Umweltwissenschaften Post Hoc Tests A priori Tests (Kontraste) Nicht-parametrischer Vergleich von Mittelwerten 50 Ergebnis der ANOVA Sprossdichte der Seegräser 40 30 20 10
Mathematische und statistische Methoden II
Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike [email protected] lordsofthebortz.de lordsofthebortz.de/g+
Einfaktorielle Varianzanalyse
Kapitel 16 Einfaktorielle Varianzanalyse Im Zweistichprobenproblem vergleichen wir zwei Verfahren miteinander. Nun wollen wir mehr als zwei Verfahren betrachten, wobei wir unverbunden vorgehen. Beispiel
Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015
Hypothesentests für Erwartungswert und Median Statistik (Biol./Pharm./HST) FS 2015 Normalverteilung X N μ, σ 2 X ist normalverteilt mit Erwartungswert μ und Varianz σ 2 pdf: pdf cdf:??? cdf 1 Zentraler
Prüfen von Unterschiedshypothesen für ordinale Variablen: Mann-Whitney Test und Ko
Prüfen von Unterschiedshypothesen für ordinale Variablen: Mann-Whitney Test und Ko Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg [email protected] Statistik
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
Ablaufschema beim Testen
Ablaufschema beim Testen Schritt 1 Schritt 2 Schritt 3 Schritt 4 Schritt 5 Schritt 6 Schritt 7 Schritt 8 Schritt 9 Starten Sie die : Flashanimation ' Animation Ablaufschema Testen ' siehe Online-Version
Klausur zur Vorlesung
Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen
Vorlesung: Statistik II für Wirtschaftswissenschaft
Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2
Sommersemester Marktforschung
Dipl.-Kfm. Sascha Steinmann Universität Siegen Lehrstuhl für Marketing [email protected] Sommersemester 2010 Marktforschung Übungsaufgaben zu den Themen 3-6 mit Lösungsskizzen Aufgabe 1:
Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.
Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )
Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler
6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung
Kapitel 2 Wahrscheinlichkeitsrechnung
Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt
Überblick über die Verfahren für Ordinaldaten
Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische
1.8 Kolmogorov-Smirnov-Test auf Normalverteilung
1.8 Kolmogorov-Smirnov-Test auf Normalverteilung Der Kolmogorov-Smirnov-Test ist einer der klassischen Tests zum Überprüfen von Verteilungsvoraussetzungen. Der Test vergleicht die Abweichungen der empirischen
Ein- und Zweistichprobentests
(c) Projekt Neue Statistik 2003 - Lernmodul: Ein- Zweistichprobentests Ein- Zweistichprobentests Worum geht es in diesem Modul? Wiederholung: allgemeines Ablaufschema eines Tests Allgemeine Voraussetzungen
Wichtige Definitionen und Aussagen
Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge
Klassifikation von Signifikanztests
Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests
Forschungsstatistik I
Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1-
SPSSinteraktiv Signifikanztests (Teil ) - - Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil - t-test bei einer Stichprobe - SPSS-Output Der t-test bei einer Stichprobe wird
Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische Verfahren nicht erfüllt sind
Schäfer A & Schöttker-Königer T, Statistik und quantitative Methoden für (2015) Arbeitsblatt 1 SPSS Kapitel 6 Seite 1 Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen
Kapitel 8: Verfahren für Rangdaten
Kapitel 8: Verfahren für Rangdaten Der Mann-Whitney U-Test 1 Der Wilcoxon-Test 3 Der Kruskal-Wallis H-Test 4 Vergleich von Mann-Whitney U-Test und Kruskal-Wallis H-Test 6 Der Mann-Whitney U-Test In Kapitel
WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.
Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
Mathematik 2 Probeprüfung 1
WWZ Wirtschaftswissenschaftliche Fakultät der Universität Basel Dr. Thomas Zehrt Bitte in Druckbuchstaben ausfüllen: Name Vorname Mathematik 2 Probeprüfung 1 Zeit: 90 Minuten, Maximale Punktzahl: 72 Zur
W-Statistik-Klausur
W-Statistik-Klausur 06.07.06 Aufgabe Auf einem Flughafen kann die Wartezeit zwischen zwei Anschlussflügen als normalverteilt mit dem Erwartungswert 0 Minuten und der Standardabweichung 60 Minuten angesehen
Statistische Tests zu ausgewählten Problemen
Einführung in die statistische Testtheorie Statistische Tests zu ausgewählten Problemen Teil 4: Nichtparametrische Tests Statistische Testtheorie IV Einführung Beschränkung auf nichtparametrische Testverfahren
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt Statistik & Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike [email protected]
Kenngrößen von Zufallsvariablen
Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert
Klausur Statistik 2 RE Statistik für Soziologen Do,
Klausur Statistik 2 RE Statistik für Soziologen Do, 24. 9. 2009 Name...Vorname... Matrikelnummer... Einsichtnahme: Fr, 2. Oktober BITTE DEUTLICH UND LESERLICH SCHREIBEN! Es wird nur gewertet, was in diesem
Statistik II. Statistische Tests. Statistik II
Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen
Das Zweistichprobenproblem
Kapitel 5 Das Zweistichprobenproblem In vielen Anwendungen will man überprüfen, ob sich zwei oder mehr Verfahren, Behandlungen oder Methoden in ihrer Wirkung auf eine Variable unterscheiden. Wir werden
Normalverteilung. Erwartungswert, Median und Modus sind identisch. Symmetrieeigenschaft um den Erwartungswert
Normalverteilung Stetige Wahrscheinlichkeitsverteilung, die zahlreiche natur, wirtschafts und sozialwissenschaftliche Merkmalsausprägungen mit guter Näherung abbilden kann und somit von elementarer Bedeutung
Die Familie der χ 2 (n)-verteilungen
Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +
Die Familie der χ 2 (n)-verteilungen
Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +
S1. a. Drücken Sie allgemein p durch die anderen in der Formel verwendeten Größen aus! Wie groß ist p, wenn a = 0.08, u = 1.96 und n = 120?
S1. a. Drücken Sie allgemein p durch die anderen in der Formel verwendeten Größen aus! Wie groß ist p, wenn a = 0.08, u = 1.96 und n = 120? a = u p ( 1 p) n b. Wenn am 28. Oktober (Nach Auszählen der Briefwähler)
Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen
Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung
5. Spezielle stetige Verteilungen
5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir
Klassifikation von Signifikanztests
Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen
Mann-Whitney-U-Test für zwei unabhängige Stichproben
Mann-Whitney-U-Test für zwei unabhängige Stichproben Wir haben bis jetzt einen einzigen Test für unabhängige Stichproben kennen gelernt, nämlich den T-Test. Wie wir bereits wissen, sind an die Berechnung
Forschungsstatistik I
Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] WS 2008/2009
Lösungen zu den Übungsaufgaben in Kapitel 10
Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert
