Forschungsstatistik I

Größe: px
Ab Seite anzeigen:

Download "Forschungsstatistik I"

Transkript

1 Prof. Dr. G. Meinhardt. Stock, Taubertsberg R. 0-0 (Persike) R. 0-1 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] SS 009 Fachbereich Sozialwissenschaften Psychologisches Institut Johannes Gutenberg Universität Mainz

2 Vorzeichentest für abhängige Stichproben Oft ist man bei einem ordinalskalierten Merkmal bei abhängigen Stichproben lediglich an einem höher/niedriger Urteil interessiert. Beispiele: Verringert sich eine Zwangsstörung nach einer Therapie? Verbessert sich Führungsverhalten infolge eines Outdoor-Selbstfindungstraining? Hier findet der Vorzeichentest Anwendung, der aufgrund seiner Einfachheit sehr rasch zu berechnen ist.

3 Vorzeichentest für abhängige Stichproben Datenlage: Bei abhängigen Stichproben liegen zwei Messungen vor, für die eine Höher/Niedriger/Gleich Beziehung formuliert werden kann. Beispiel: Bei N = 1 Probanden urbaner Herkunft wird ein Rhetoriktraining für mündliche Prüfungsleistungen angewandt und die Verbesserung gemessen. Verbesserungen werden mit kodiert, Verschlechterungen mit -, konstante Konzentrastionsleistungen mit =. Daten: -,,, -, =, -,,,,,,,

4 Vorzeichentest für abhängige Stichproben Sei n die Anzahl von Beobachtungen und n - die Anzahl von - Beobachtungen, so sollte unter der H 0 gelten, dass n = n = N n N = N m= n n m mit (m = Anzahl = ) Gleiche Beobachtungen ( = ) werden beim Vorzeichentest ignoriert, da sie ohnehin die H 0 (kein Unterschied) unterstützen

5 Vorzeichentest für abhängige Stichproben Die Wahrscheinlichkeit für (ebenso wie die für - ) sollte nun binomialverteilt sein mit p=0. und n = N* Man könnte nun einen Binomialtest durchführen, um folgende Hypothesen zu prüfen: H : n = n ; H : n n H : n n ; H : n > n H : n n ; H : n < n Der Vorzeichentest nimmt an, dass wegen der Symmetrie von p und q unter H 0 praktisch immer die Normalverteilungsapproximation verwendet werden kann.

6 Vorzeichentest für abhängige Stichproben Der Erwartungswert der Summe positiver (bzw. negativer) Vorzeichen ist ( ) = ( ) = = En En N* p N * Die Standardabweichung ist σ ( ) = = n N* p q N *

7 Vorzeichentest für abhängige Stichproben Man gelangt zu der Prüfgröße (mit Yates-Korrektur): z = n N N 0. mit n = n oder n - z ist standardnormalverteilt mit μ=0 und σ=1. Es gelten also zur Bewertung der Prüfgröße beim Vorzeichentest die üblichen kritischen Werte

8 Ziel: Test, ob sich zwei abhängige Stichproben in ihrer Ausprägung auf einem ordinalskalierten Merkmal unterscheiden Beispiele: Verbessert sich die Leistung in mündlichen Prüfungen nach einem Rhetorik-Training? Sinkt das subjektive Laustärke-Empfinden von Bewohnern in der Einflugschneise des Frankfurter Flughafens nach einem Einführungskurs Zen-Meditation? Voraussetzungen: Die Merkmalsträger in den Stichproben müssen paarweise zuordenbar sein. Die dem Merkmal tatsächlich zugrunde liegende Verteilungsfunktion soll stetig sein.

9 Datenlage: Man hat an zwei abhängigen Stichproben der Größe N ein ordinalskaliertes Merkmal erhoben. Es werden die Leistungen von N=1 Schülern in zwei äquivalenten Mathematiktests beurteilt (von einem Prüfer). Vor der Korrektur des zweiten Tests erhält der Prüfer die Information, die Schüler stammten aus einer Hochbegabtenklasse. X1:,, 0,,, 1, 8, 1, 18,, 1 X: 1, 1,,,, 1, 18, 1, 0, 19, Frage: Werden die Leistungen im. Test besser beurteilt?

10 Testidee: Für jede Beobachtungseinheit können Differenzen zwischen den beiden Stichproben berechnet werden (d i = y i x i ). Zwar ist der absolute Betrag dieser Differenzen nicht interpretierbar, die Differenzen sind aber ordinalskaliert. Größere Differenzen bedeuten also größere Veränderungen zwischen den Stichproben. Unter der H 0, d.h. bei gleichen Wahrscheinlichkeitsverteilungen in beiden Stichproben, sollten nun die Verbundwahrscheinlichkeiten, dass eine gegebene Differenz ein positives bzw. negatives Vorzeichen hat, identisch sein (p(d=d d>0) = 0.)

11 Methode: Zur Durchführung des Wilcoxon Vorzeichenrang Tests werden nun zunächst die Differenzen d i zwischen beiden Stichproben gebildet. Nr. t1 t d

12 Dann werden die Absolutwerte d i dieser Differenzen gebildet. Nr. t1 t d d

13 Nun erhalten diesen Absolutwerte Rangplätze rg( d i ). Achtung: Der Vorzeichenrang Test erfordert, dass die kleinste Differenz den kleinsten Rang erhält! Nr. t1 t d d rg(d)

14 Schließlich werden die Vorzeichen der Differenzen festgestellt. Diese werden für die Berechnung der Prüfgröße Nr. t1 t d d rg(d) - = =

15 Nulldifferenzen (Anzahl: m) werden a priori von der Rangplatzvergabe ausgeschlossen. Damit reduziert sich die Anzahl zu berücksichtigender Differenzen auf N* = N m Sei T die Rangsumme der Differenzen mit positivem Vorzeichen und T - die Rangsumme der d i mit negativem Vorzeichen, so gilt für die Summe aller Ränge R R = T T = N ( N 1) * * Der kleinere der beiden T-Werte ist bereits die Prüfgröße. Die Verteilung ist tabelliert für kleine N.

16 Bei größeren Stichproben (N>) ist die Prüfgröße T approximativ normalverteilt. Der Erwartungswert ist die Hälfte aller möglichen Vergleiche (dies ist der Wert, wenn T = T - ) μ Der Standardfehler lautet σ T = T = N ( N ) * * 1 ( 1) ( 1) * * * N N N

17 Damit ergibt sich die Prüfgröße (mit Yates-Korrektur) z = T μ T σ T 0. T = T oder T -. Sie ist standardnormalverteilt mit μ=0 und σ=1. Bei Ties berechnet sich der korrigierte Standardfehler als 1 N N N t t ( 1) ( 1) k * * * i i= 1 σ U, Korr = mit t i = Personen, die sich Rang i teilen (Länge der Rangbindung) k = Anzahl der Gruppen mit Rangbindungen i

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/

Mehr

6.4 Der Kruskal-Wallis Test

6.4 Der Kruskal-Wallis Test 6.4 Der Kruskal-Wallis Test Der Test von Kruskal und Wallis, auch H-Test genannt, ist ein Test, mit dem man die Verteilungen von Teilstichproben auf Unterschiede untersuchen kann. Bei diesem Test geht

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jedereit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-main.de/

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike [email protected]

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] WS 008/009 Fachbereich

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected]

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike [email protected]

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike [email protected] lordsofthebortz.de lordsofthebortz.de/g+

Mehr

1.6 Der Vorzeichentest

1.6 Der Vorzeichentest .6 Der Vorzeichentest In diesem Kapitel soll der Vorzeichentest bzw. Zeichentest vorgestellt werden, mit dem man Hypothesen bezüglich des Medians der unabhängig und identisch stetig verteilten Zufallsvariablen

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 6-6) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected]

Mehr

Zusammenfassung PVK Statistik

Zusammenfassung PVK Statistik Zusammenfassung PVK Statistik (Diese Zusammenfassung wurde von Carlos Mora erstellt. Die Richtigkeit der Formeln ist ohne Gewähr.) Verteilungen von diskreten Zufallsvariablen Beschreibung Binomialverteilung

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

Biometrieübung 7 t-test (gepaarte Daten) & Wilcoxon-Test

Biometrieübung 7 t-test (gepaarte Daten) & Wilcoxon-Test Biometrieübung 7 (t-test gepaarte Daten & Wilcoxon-Test) - Aufgabe Biometrieübung 7 t-test (gepaarte Daten) & Wilcoxon-Test Aufgabe 1 Hirschläufe An 10 Hirschen wurde die Länge der rechten Vorder- und

Mehr

T-Test für unabhängige Stichproben

T-Test für unabhängige Stichproben T-Test für unabhängige Stichproben Wir gehen von folgendem Beispiel aus: Wir erheben zwei Zufallstichproben, wobei nur die Probanden der einen Stichprobe einer speziellen experimentellen Behandlung (etwa

Mehr

11. Nichtparametrische Tests

11. Nichtparametrische Tests 11. Nichtparametrische Tests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 In Kapitel 8 und 9 haben wir vorausgesetzt, daß die Beobachtungswerte normalverteilt sind. In diesem Fall kann

Mehr

Forschungsstatistik I

Forschungsstatistik I Psychologie Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/

Mehr

Tests für Erwartungswert & Median

Tests für Erwartungswert & Median Mathematik II für Biologen 26. Juni 2015 Prolog Varianz des Mittelwerts Beispiel: Waage z-test t-test Vorzeichentest Wilcoxon-Rangsummentest Varianz des Mittelwerts Beispiel: Waage Zufallsvariable X 1,...,X

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 Statistik II für Betriebswirte Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 26. Oktober 2016 Prof. Dr. Hans-Jörg Starkloff Statistik II für Betriebswirte Vorlesung

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Post Hoc Tests A priori Tests (Kontraste) Nicht-parametrischer Vergleich von Mittelwerten 50 Ergebnis der ANOVA Sprossdichte der Seegräser 40 30 20 10

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike [email protected] lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Einfaktorielle Varianzanalyse

Einfaktorielle Varianzanalyse Kapitel 16 Einfaktorielle Varianzanalyse Im Zweistichprobenproblem vergleichen wir zwei Verfahren miteinander. Nun wollen wir mehr als zwei Verfahren betrachten, wobei wir unverbunden vorgehen. Beispiel

Mehr

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015 Hypothesentests für Erwartungswert und Median Statistik (Biol./Pharm./HST) FS 2015 Normalverteilung X N μ, σ 2 X ist normalverteilt mit Erwartungswert μ und Varianz σ 2 pdf: pdf cdf:??? cdf 1 Zentraler

Mehr

Prüfen von Unterschiedshypothesen für ordinale Variablen: Mann-Whitney Test und Ko

Prüfen von Unterschiedshypothesen für ordinale Variablen: Mann-Whitney Test und Ko Prüfen von Unterschiedshypothesen für ordinale Variablen: Mann-Whitney Test und Ko Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg [email protected] Statistik

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Ablaufschema beim Testen

Ablaufschema beim Testen Ablaufschema beim Testen Schritt 1 Schritt 2 Schritt 3 Schritt 4 Schritt 5 Schritt 6 Schritt 7 Schritt 8 Schritt 9 Starten Sie die : Flashanimation ' Animation Ablaufschema Testen ' siehe Online-Version

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Sommersemester Marktforschung

Sommersemester Marktforschung Dipl.-Kfm. Sascha Steinmann Universität Siegen Lehrstuhl für Marketing [email protected] Sommersemester 2010 Marktforschung Übungsaufgaben zu den Themen 3-6 mit Lösungsskizzen Aufgabe 1:

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler 6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung 1.8 Kolmogorov-Smirnov-Test auf Normalverteilung Der Kolmogorov-Smirnov-Test ist einer der klassischen Tests zum Überprüfen von Verteilungsvoraussetzungen. Der Test vergleicht die Abweichungen der empirischen

Mehr

Ein- und Zweistichprobentests

Ein- und Zweistichprobentests (c) Projekt Neue Statistik 2003 - Lernmodul: Ein- Zweistichprobentests Ein- Zweistichprobentests Worum geht es in diesem Modul? Wiederholung: allgemeines Ablaufschema eines Tests Allgemeine Voraussetzungen

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/

Mehr

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1-

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1- SPSSinteraktiv Signifikanztests (Teil ) - - Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil - t-test bei einer Stichprobe - SPSS-Output Der t-test bei einer Stichprobe wird

Mehr

Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische Verfahren nicht erfüllt sind

Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische Verfahren nicht erfüllt sind Schäfer A & Schöttker-Königer T, Statistik und quantitative Methoden für (2015) Arbeitsblatt 1 SPSS Kapitel 6 Seite 1 Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen

Mehr

Kapitel 8: Verfahren für Rangdaten

Kapitel 8: Verfahren für Rangdaten Kapitel 8: Verfahren für Rangdaten Der Mann-Whitney U-Test 1 Der Wilcoxon-Test 3 Der Kruskal-Wallis H-Test 4 Vergleich von Mann-Whitney U-Test und Kruskal-Wallis H-Test 6 Der Mann-Whitney U-Test In Kapitel

Mehr

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X. Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Mathematik 2 Probeprüfung 1

Mathematik 2 Probeprüfung 1 WWZ Wirtschaftswissenschaftliche Fakultät der Universität Basel Dr. Thomas Zehrt Bitte in Druckbuchstaben ausfüllen: Name Vorname Mathematik 2 Probeprüfung 1 Zeit: 90 Minuten, Maximale Punktzahl: 72 Zur

Mehr

W-Statistik-Klausur

W-Statistik-Klausur W-Statistik-Klausur 06.07.06 Aufgabe Auf einem Flughafen kann die Wartezeit zwischen zwei Anschlussflügen als normalverteilt mit dem Erwartungswert 0 Minuten und der Standardabweichung 60 Minuten angesehen

Mehr

Statistische Tests zu ausgewählten Problemen

Statistische Tests zu ausgewählten Problemen Einführung in die statistische Testtheorie Statistische Tests zu ausgewählten Problemen Teil 4: Nichtparametrische Tests Statistische Testtheorie IV Einführung Beschränkung auf nichtparametrische Testverfahren

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Statistik & Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike [email protected]

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

Klausur Statistik 2 RE Statistik für Soziologen Do,

Klausur Statistik 2 RE Statistik für Soziologen Do, Klausur Statistik 2 RE Statistik für Soziologen Do, 24. 9. 2009 Name...Vorname... Matrikelnummer... Einsichtnahme: Fr, 2. Oktober BITTE DEUTLICH UND LESERLICH SCHREIBEN! Es wird nur gewertet, was in diesem

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Das Zweistichprobenproblem

Das Zweistichprobenproblem Kapitel 5 Das Zweistichprobenproblem In vielen Anwendungen will man überprüfen, ob sich zwei oder mehr Verfahren, Behandlungen oder Methoden in ihrer Wirkung auf eine Variable unterscheiden. Wir werden

Mehr

Normalverteilung. Erwartungswert, Median und Modus sind identisch. Symmetrieeigenschaft um den Erwartungswert

Normalverteilung. Erwartungswert, Median und Modus sind identisch. Symmetrieeigenschaft um den Erwartungswert Normalverteilung Stetige Wahrscheinlichkeitsverteilung, die zahlreiche natur, wirtschafts und sozialwissenschaftliche Merkmalsausprägungen mit guter Näherung abbilden kann und somit von elementarer Bedeutung

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

S1. a. Drücken Sie allgemein p durch die anderen in der Formel verwendeten Größen aus! Wie groß ist p, wenn a = 0.08, u = 1.96 und n = 120?

S1. a. Drücken Sie allgemein p durch die anderen in der Formel verwendeten Größen aus! Wie groß ist p, wenn a = 0.08, u = 1.96 und n = 120? S1. a. Drücken Sie allgemein p durch die anderen in der Formel verwendeten Größen aus! Wie groß ist p, wenn a = 0.08, u = 1.96 und n = 120? a = u p ( 1 p) n b. Wenn am 28. Oktober (Nach Auszählen der Briefwähler)

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Mann-Whitney-U-Test für zwei unabhängige Stichproben

Mann-Whitney-U-Test für zwei unabhängige Stichproben Mann-Whitney-U-Test für zwei unabhängige Stichproben Wir haben bis jetzt einen einzigen Test für unabhängige Stichproben kennen gelernt, nämlich den T-Test. Wie wir bereits wissen, sind an die Berechnung

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] WS 2008/2009

Mehr

Lösungen zu den Übungsaufgaben in Kapitel 10

Lösungen zu den Übungsaufgaben in Kapitel 10 Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert

Mehr