Ablaufschema beim Testen
|
|
|
- Wilhelmine Schmitz
- vor 9 Jahren
- Abrufe
Transkript
1 Ablaufschema beim Testen Schritt 1 Schritt 2 Schritt 3 Schritt 4 Schritt 5 Schritt 6 Schritt 7 Schritt 8 Schritt 9 Starten Sie die : Flashanimation ' Animation Ablaufschema Testen ' siehe Online-Version und versuchen Sie - bevor Sie das Lernmodul durchlesen - das allgemeine Ablaufschema von statistischen Tests in die richtige Reihenfolge zu bringen. Schritt 1 Quantifizieren des inhaltlichen Problems Die interessierende Forschungsfrage muss so erfasst werden, dass sie mit messbaren Größen dargestellt werden kann. (Das Ablaufschema können Sie auch in unterschiedlichen Statistiklehrbüchern nachlesen, wie z.b. in Fahrmeir et al. (2002)) Beispiel: Schritt 1 Quantifizieren des inhaltlichen Problems In einem Experiment soll untersucht werden, ob sich die Reaktionszeiten des Menschen bedingt auf ein akustisches und ein optisches Signal unterscheiden. Es werden zufällig zwei Gruppen gebildet. Die eine Gruppe mit 6 Personen wird einem akustischen Signal ausgesetzt, die andere mit 8 Probanden einem optischen. seien die Reaktionszeiten in 1/100 sec nach einem akustischen Signal. Page 1
2 seien die Reaktionszeiten in 1/100 sec nach einem optischen Signal. Quelle: Beispiel frei nach Bosch (1983). Schritt 2 Formulierung der Modellannahmen Wie ist verteilt? Liegt eine Zufallsstichprobe vor? Können Annahmen über die Varianz getroffen werden? Beispiel: Schritt 2 Formulierung der Modellannahmen Es kann vorausgesetzt werden, dass die Daten zumindest ordinal skaliert sind und dass einer Verteilungsfunktion folgt sowie (Wir wissen nicht, ob beide Stichproben aus normalverteilten Grundgesamtheiten stammen.) Allerdings kann keine genauere Annahme über den Typ der zugrunde liegenden Verteilung getroffen werden. Wir gehen davon aus, dass die Verteilungen und vom selben Typ sind und dass Varianzhomogenität herrscht. Anmerkung Sie können dem Beispiel besser folgen, wenn Sie sich das oder das bereits angeschaut haben. Schritt 3 Formulierung des statistischen Testproblems Das quantifizierte inhaltliche Problem muss nun in ein statistisches Testproblem über die Modellparameter umgesetzt werden. Beispiel: Schritt 3 Formulierung des statistischen Testproblems Es ist zu überprüfen, ob sich die Reaktionszeiten zwischen den Gruppen unterscheiden. Wegen der Modellannahmen kann es sich nur um einen Lageunterschied handeln. Damit ergibt sich folgendes Testproblem: Nullhypothese Alternativhypothese gegen Die Werte von unterscheiden sich (tendenziell) von den Werten von Page 2
3 Schritt 4 Festlegung des Signifikanzniveaus Das Signifikanzniveau muss festgelegt werden. Mit wird gleichzeitig auch die Wahrscheinlichkeit für den Fehler 1. Art geregelt. Übliche Werte von sind 0.01, 0.05, 0.1. Beispiel: Schritt 4 Festlegung des Signifikanzniveaus Das Experiment soll mit einem Signifikanzniveau von durchführt werden. Schritt 5 Konstruktion der Prüfgröße Die Prüfgröße muss sensibel für das Testproblem sein und eine bekannte Wahrscheinlichkeitsverteilung unter der Nullhypothese (Prüfverteilung) haben. Beispiel: Schritt 5 Konstruktion der Prüfgröße Zur Überprüfung des Problems wird der Wilcoxon-Rangsummen-Test verwendet. Es ist unter den in Schritt 2 aufgestellten Annahmen ein sinnvoller Test, da die zugehörige Prüfgröße und die Berechnung ihrer Verteilung unter nur die dort formulierten Annahmen benötigen. Die Prüfgröße soll über die Beobachtungen der Stichprobe gebildet werden: Schritt 6 Bestimmung des Ablehnbereichs Berechnung der kritischen Werte mit Hilfe des vorgegebenen Signifikanzniveaus und der Wahrscheinlichkeitsverteilung unter Beispiel: Schritt 6 Bestimmung des Ablehnbereichs Der Ablehnbereich wird durch Festlegung die des kritischen Werts bestimmt, der aus der Verteilung der Prüfgröße unter ermittelt wird. Diese ist vertafelt bzw. kann mit Hilfe kombinatorischer Überlegungen hergeleitet werden. (Siehe das.) Mit ergibt sich: Damit gilt: Sie können die Werte im Page 3
4 Applet Wilcoxon (afb.jar) überprüfen. Schritt 7 Berechnung der Prüfgröße Aus den realisierten Daten wird der konkrete Prüfgrößenwert berechnet. Beispiel: Schritt 7 Berechnung der Prüfgröße In dem Experiment wurden folgende Reaktionszeiten ermittelt und in der gepoolten Stichprobe zusammengefasst: Die Prüfgröße berechnet sich als: Schritt 8 Testentscheidung Es wird entschieden, ob die Nullhypothese zugunsten der Alternative verworfen werden kann. Dazu wird die Prüfgröße mit den kritischen Werten verglichen bzw. der p-wert bestimmt. Beispiel: Schritt 8 Testentscheidung über den kritischen Wert: Die Nullhypothese wird abgelehnt, falls Da kann zum 5%-Niveau nicht abgelehnt werden. Testentscheidung über den p-wert: Berechne den p-wert als und lehne ab, falls der p-wert < Den Prüfgrößenwert haben wir mit 36 berechnet. Für den Zweistichprobenfall müssen jedoch beide Seiten der Alternative betrachtet werden. Deshalb wird das Gegenstück der Rangsumme 36 auf der rechten Verteilungshälfte gesucht, so dass gilt. Mit kann die Nullhypothese nicht verworfen werden. (Siehe dazu auch das.) Schritt 9 Interpretation des Ergebnisses Welche Konsequenzen hat die Testentscheidung? Bei wird... Page 4
5 Nichtverwerfen von Verwerfen von die bisherige Situation beibehalten. angenommen. Die untere Entscheidung ist (höchstens) mit Wahrscheinlichkeit falsch. Aber Vorsicht bei der oberen Entscheidung: Ein Nichtverwerfen der Nullhypothese ist kein statistischer Beweis für die unter getroffenen Annahmen. Beispiel: Schritt 9 Interpretation des Ergebnisses Das Experiment konnte nicht beweisen, dass sich die Reaktionszeit des Menschen aufgrund akustischer oder optischer Signale unterscheidet. Literaturangabe Fahrmeir, L., Künstler, R., Pigeot, I. und Tutz, G. (2002). Statistik. Der Weg zur Datenanalyse. 4. Auflage, Springer, Berlin. Bosch, K. (1983). Aufgaben und Lösungen zur angewandten Statistik. Vieweg, Braunschweig. (c) Projekt Neue Statistik 2003, Freie Universität Berlin, Center für Digitale Systeme Kontakt: Page 5
Testentscheidungen. Worum geht es in diesem Modul? Kritische Werte p-wert
Testentscheidungen Worum geht es in diesem Modul? Kritische Werte p-wert Worum geht es in diesem Modul? Testentscheidungen: Annahme- und Ablehnbereich Bei der Durchführung eines statistischen Tests kommen
Idee des Testens. Heuristische Verfahren
Idee des Testens Heuristische Verfahren Datensituation Testproblem Überprüfen der Hypothese Rangvergabe Prüfgröße Prüfverteilung Testentscheidungen - Signifikanzniveau Testentscheidung - Kritischer Wert
So berechnen Sie einen Schätzer für einen Punkt
htw saar 1 EINFÜHRUNG IN DIE STATISTIK: SCHÄTZEN UND TESTEN htw saar 2 Schätzen: Einführung Ziel der Statistik ist es, aus den Beobachtungen eines Merkmales in einer Stichprobe Rückschlüsse über die Verteilung
T-Test für den Zweistichprobenfall
T-Test für den Zweistichprobenfall t-test (unbekannte, gleiche Varianzen) Test auf Lageunterschied zweier normalverteilter Grundgesamtheiten mit unbekannten, aber gleichen Varianzen durch Vergleich der
Kapitel 3 Schließende Statistik
Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:
Ein- und Zweistichprobentests
(c) Projekt Neue Statistik 2003 - Lernmodul: Ein- Zweistichprobentests Ein- Zweistichprobentests Worum geht es in diesem Modul? Wiederholung: allgemeines Ablaufschema eines Tests Allgemeine Voraussetzungen
Statistische Tests (Signifikanztests)
Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)
Einführung in die Induktive Statistik: Testen von Hypothesen
Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte
GRUNDPRINZIPIEN statistischen Testens
Fragestellungen beim Testen GRUNDPRINZIPIEN statistischen Testens. Vergleiche Unterscheidet sich die Stichprobenbeobachtung von einer vorher spezifizierten Erwartung ( Hypothese ) mit ausreichender Sicherheit?
2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese:
2.4.1 Grundprinzipien statistischer Hypothesentests Hypothese: Behauptung einer Tatsache, deren Überprüfung noch aussteht (Leutner in: Endruweit, Trommsdorff: Wörterbuch der Soziologie, 1989). Statistischer
Statistik II. Statistische Tests. Statistik II
Statistik II Statistische Tests Statistik II - 5.5.2006 1 Ausgangslage Wir können Schätzen (z.b. den Erwartungswert) Wir können abschätzen, wie zuverlässig unsere Schätzungen sind: In welchem Intervall
8. Konfidenzintervalle und Hypothesentests
8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars
THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ
WEBINAR@LUNCHTIME THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ EINLEITENDES BEISPIEL SAT: Standardisierter Test, der von Studienplatzbewerbern an amerikanischen Unis gefordert
Gauß-Test für den Zweistichprobenfall
Gauß-Test für den Zweistichprobenfall Zweiseitiger Gauß-Test Allgemeine Formulierung der Hypothesen Test auf Lageunterschied zweier normalverteilter Grundgesamtheiten mit bekannten Varianzen durch Vergleich
3 Grundlagen statistischer Tests (Kap. 8 IS)
3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung
5. Seminar Statistik
Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation
Allgemeines zu Tests. Statistische Hypothesentests
Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer
Statistik II. Statistische Tests. Statistik II
Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen
Statistisches Testen
Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall
Vorlesung: Statistik II für Wirtschaftswissenschaft
Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2
R. Brinkmann Seite
R. Brinkmann http://brinkmann-du.de Seite 1 17.3.21 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit
12 Rangtests zum Vergleich zentraler Tendenzen
12 Rangtests zum Vergleich zentraler Tendenzen 12.1 Allgemeine Bemerkungen 12.2 Gepaarte Stichproben: Der Wilcoxon Vorzeichen- Rangtest 12.3 Unabhängige Stichproben: Der Wilcoxon Rangsummentest und der
R. Brinkmann Seite
R. Brinkmann http://brinkmann-du.de Seite 1 24.2.214 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit
Exakter Binomialtest als Beispiel
Prinzipien des statistischen Testens Entscheidungsfindung Exakter Binomialtest als Beispiel Statistische Tests Nullhypothese Alternativhypothese Fehlentscheidungen Ausgangspunkt: Forschungshypothese Beispiele:.
4.1. Nullhypothese, Gegenhypothese und Entscheidung
rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals
Wahrscheinlichkeit 1-α: richtige Entscheidung - wahrer Sachverhalt stimmt mit Testergebnis überein. Wahrscheinlichkeit α: falsche Entscheidung -
wahrer Sachverhalt: Palette ist gut Palette ist schlecht Entscheidung des Tests: T K; Annehmen von H0 ("gute Palette") positive T > K; Ablehnen von H0 ("schlechte Palette") negative Wahrscheinlichkeit
Grundlagen der Statistik
Grundlagen der Statistik Übung 15 009 FernUniversität in Hagen Alle Rechte vorbehalten Fachbereich Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe
Statistische Überlegungen: Eine kleine Einführung in das 1 x 1
Statistische Überlegungen: Eine kleine Einführung in das 1 x 1 PD Dr. Thomas Friedl Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Ulm München, 23.11.2012 Inhaltsübersicht Allgemeine
Statistische Tests zu ausgewählten Problemen
Einführung in die statistische Testtheorie Statistische Tests zu ausgewählten Problemen Teil 4: Nichtparametrische Tests Statistische Testtheorie IV Einführung Beschränkung auf nichtparametrische Testverfahren
Schließende Statistik: Hypothesentests (Forts.)
Mathematik II für Biologen 15. Mai 2015 Testablauf (Wdh.) Definition Äquivalente Definition Interpretation verschiedener e Fehler 2. Art und Macht des Tests Allgemein im Beispiel 1 Nullhypothese H 0 k
Fallzahlplanung bei unabhängigen Stichproben
Fallzahlplanung bei unabhängigen Stichproben Seminar Aktuelle biometrische Probleme Benjamin Hofner [email protected] 12. Januar 2005 Übersicht 1. Einführung und Grundlagen der Fallzahlplanung
Statistik II für Betriebswirte Vorlesung 1
Statistik II für Betriebswirte Vorlesung 1 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. Oktober 2017 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 1 Version:
T-Test für unabhängige Stichproben
T-Test für unabhängige Stichproben Wir gehen von folgendem Beispiel aus: Wir erheben zwei Zufallstichproben, wobei nur die Probanden der einen Stichprobe einer speziellen experimentellen Behandlung (etwa
7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9.
7. Übung: Aufgabe 1 b), c), e) Aufgabe a), c), e) Aufgabe 3 c), e) Aufgabe 4 b) Aufgabe 5 a) Aufgabe 6 b) Aufgabe 7 e) Aufgabe 8 c) Aufgabe 9 a), c), e) Aufgabe 10 b), d) Aufgabe 11 a) Aufgabe 1 b) Aufgabe
Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen
Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Induktive Statistik Prof. Dr. W.-D. Heller
3) Testvariable: T = X µ 0
Beispiel 4.9: In einem Molkereibetrieb werden Joghurtbecher abgefüllt. Der Sollwert für die Füllmenge dieser Joghurtbecher beträgt 50 g. Aus der laufenden Produktion wurde eine Stichprobe von 5 Joghurtbechern
Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz
Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis
Hypothesentests mit SPSS. Beispiel für einen t-test
Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle
Welche der folgenden Aussagen sind richtig? (x aus 5) A Ein metrisches Merkmal, das überabzählbar viele Ausprägungen besitzt heißt diskret.
Grundlagen der Statistik 25.9.2014 7 Aufgabe 7 Welche der folgenden Aussagen sind richtig? (x aus 5) A Ein metrisches Merkmal, das überabzählbar viele Ausprägungen besitzt heißt diskret. B Ein Merkmal
Jost Reinecke. 7. Juni 2005
Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung
Mann-Whitney-U-Test für zwei unabhängige Stichproben
Mann-Whitney-U-Test für zwei unabhängige Stichproben Wir haben bis jetzt einen einzigen Test für unabhängige Stichproben kennen gelernt, nämlich den T-Test. Wie wir bereits wissen, sind an die Berechnung
Beurteilende Statistik
Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten
2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht
43 Signifikanztests Beispiel zum Gauß-Test Bei einer Serienfertigung eines bestimmten Typs von Messgeräten werden vor der Auslieferung eines jeden Gerätes 10 Kontrollmessungen durchgeführt um festzustellen,
Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe
Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,
SozialwissenschaftlerInnen II
Statistik für SozialwissenschaftlerInnen II Henning Best [email protected] Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Testen von Hypothesen
Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10
6 Hypothesentests Gauß-Test für den Mittelwert bei bekannter Varianz 6.3 Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10 G(µ) 0 α 0. 0.4 0.6 0.8 1 n = 10 n =
Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests
ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen
Tutorial: Anpassungstest
Tutorial: Anpassungstest An einem Institut gibt es vier UniversitätslehrerInnen, die auch Diplomarbeiten betreuen. Natürlich erfordert die Betreuung einer Diplomarbeit einiges an Arbeit und Zeit und vom
Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003
Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter
6.4 Der Kruskal-Wallis Test
6.4 Der Kruskal-Wallis Test Der Test von Kruskal und Wallis, auch H-Test genannt, ist ein Test, mit dem man die Verteilungen von Teilstichproben auf Unterschiede untersuchen kann. Bei diesem Test geht
1.8 Kolmogorov-Smirnov-Test auf Normalverteilung
1.8 Kolmogorov-Smirnov-Test auf Normalverteilung Der Kolmogorov-Smirnov-Test ist einer der klassischen Tests zum Überprüfen von Verteilungsvoraussetzungen. Der Test vergleicht die Abweichungen der empirischen
2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X
Hypothesentests Bisher betrachtet: Punkt- bzw. Intervallschätzung des unbekannten Mittelwerts Hierzu: Verwendung der 1 theoretischen Information über Verteilung von X empirischen Information aus Stichprobenrealisation
Modul 141 Statistik. 1. Studienjahr 11. Sitzung Signifikanztests
Modul 141 Statistik 1. Studienjahr 11. Sitzung Signifikanztests Inhalt der 11. Sitzung 1. Parametrische Signifikanztests 2. Formulierung der Hypothesen 3. Einseitige oder zweiseitige Fragestellung 4. Signifikanzniveau
7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x)
7. Hypothesentests Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang X habe die unbekannte VF F X (x) Interessieren uns für einen unbekannten Parameter θ der Verteilung von X 350 Bisher:
Mathematik 2 Dr. Thomas Zehrt
Wirtschaftswissenschaftliches Zentrum 1 Universität Basel Mathematik Dr. Thomas Zehrt Testen Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere Kapitel
Mögliche Fehler beim Testen
Mögliche Fehler beim Testen Fehler. Art (Irrtumswahrscheinlichkeit α), Zusammenfassung: Die Nullhypothese wird verworfen, obwohl sie zutrifft. Wir haben uns blamiert, weil wir etwas Wahres abgelehnt haben.
Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: n (2k 1) = n 2.
Aufgabe 1. (5 Punkte) Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: n k=1 (2k 1) = n 2. Aufgabe 2. (7 Punkte) Gegeben sei das lineare Gleichungssystem x + 2z = 0 ay
Statistik II. Weitere Statistische Tests. Statistik II
Statistik II Weitere Statistische Tests Statistik II - 19.5.2006 1 Überblick Bisher wurden die Test immer anhand einer Stichprobe durchgeführt Jetzt wollen wir die statistischen Eigenschaften von zwei
Vorlesung: Statistik II für Wirtschaftswissenschaft
Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2
Das Zweistichprobenproblem
Kapitel 5 Das Zweistichprobenproblem In vielen Anwendungen will man überprüfen, ob sich zwei oder mehr Verfahren, Behandlungen oder Methoden in ihrer Wirkung auf eine Variable unterscheiden. Wir werden
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir
Klausur zur Vorlesung
Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen
Sommersemester Marktforschung
Dipl.-Kfm. Sascha Steinmann Universität Siegen Lehrstuhl für Marketing [email protected] Sommersemester 2010 Marktforschung Übungsaufgaben zu den Themen 3-6 mit Lösungsskizzen Aufgabe 1:
Biometrieübung 7 t-test (gepaarte Daten) & Wilcoxon-Test
Biometrieübung 7 (t-test gepaarte Daten & Wilcoxon-Test) - Aufgabe Biometrieübung 7 t-test (gepaarte Daten) & Wilcoxon-Test Aufgabe 1 Hirschläufe An 10 Hirschen wurde die Länge der rechten Vorder- und
Kapitel III: Einführung in die schließende Statistik
Kapitel III: Einführung in die schließende Statistik Das zweite Kapitel beschäftigte sich mit den Methoden der beschreibenden Statistik. Im Mittelpunkt der kommenden Kapitel stehen Verfahren der schließenden
Methodenlehre. Vorlesung 13. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg
Methodenlehre Vorlesung 13 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 19.05.15 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie
Klausur Statistik 2 RE Statistik für Soziologen Do,
Klausur Statistik 2 RE Statistik für Soziologen Do, 24. 9. 2009 Name...Vorname... Matrikelnummer... Einsichtnahme: Fr, 2. Oktober BITTE DEUTLICH UND LESERLICH SCHREIBEN! Es wird nur gewertet, was in diesem
Statistik Zusätzliche Beispiele SS 2018 Blatt 3: Schließende Statistik
Statistik Zusätzliche Beispiele SS 2018 Blatt 3: Schließende Statistik 1. I Ein Personalchef führt so lange Vorstellungsgespräche durch bis der erste geeignete Bewerber darunter ist und stellt diesen an.
Fit for Abi & Study Stochastik
Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen
Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1
Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.
9 Prinzipien der statistischen Hypothesenprüfung
9 Prinzipien der statistischen Hypothesenprüfung Prinzipien der statistischen Hypothesenprüfung Bei der Schätzung eines Populationsparamters soll dessen Wert aus Stichprobendaten erschlossen werden. Wenn
Je genauer und sicherer, desto größer muss der Stichprobenumfang sein
2.3 Intervallschätzung 2.3.5 Bestimmung des Stichprobenumfangs Eine große praktische Bedeutung haben Konfidenzintervalle auch für die Stichprobenplanung. Sie werden herangezogen, um den benötigten Stichprobenumfang
Statistische Tests für unbekannte Parameter
Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung
Hypothesentests. Hypothese Behauptung eines Sachverhalts, dessen Überprüfung noch aussteht.
Hypothese Behauptung eines Sachverhalts, dessen Überprüfung noch aussteht. Wissenschaftliche Vorgehensweise beim Hypothesentest Forscher formuliert eine Alternativhypothese H 1 (die neue Erkenntnis, die
Konkretes Durchführen einer Inferenzstatistik
Konkretes Durchführen einer Inferenzstatistik Die Frage ist, welche inferenzstatistischen Schlüsse bei einer kontinuierlichen Variablen - Beispiel: Reaktionszeit gemessen in ms - von der Stichprobe auf
Der χ 2 -Test. Überblick. Beispiel 1 (χ 2 -Anpassungstest)
Der χ 2 -Test Überblick Beim χ 2 -Test handelt es sich um eine Familie ähnlicher Tests, die bei nominal- oder ordinalskalierten Merkmalen mit zwei oder mehr Ausprägungen angewendet werden können. Wir behandeln
Grundlegende Eigenschaften von Punktschätzern
Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur
Kapitel 13. Grundbegriffe statistischer Tests
Kapitel 13 Grundbegriffe statistischer Tests Oft hat man eine Vermutung über die Verteilung einer Zufallsvariablen X. Diese Vermutung formuliert man als Hypothese H 0.Sokönnte man daran interessiert sein
Statistische Tests funktionieren generell nach obigem Schema; der einzige Unterschied besteht in der unterschiedlichen Berechnung der Testgröße.
Statistische Tests Testen von Hypothesen Fehlerarten wichtigste statistische Tests Hypothesen Jeder statistische Test beruht auf der Widerlegung einer zuvor aufgestellten Hypothese. Die Widerlegung ist
Statistische Tests für unbekannte Parameter
Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung
Der χ2-test Der χ2-test
Der χ 2 -Test Überblick Beim χ 2 -Test handelt es sich um eine Familie ähnlicher Tests, die bei nominal- oder ordinalskalierten Merkmalen mit zwei oder mehr Ausprägungen angewendet werden können. Wir behandeln
Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften
Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Grundlagen der Biometrie, WS 2011/12 Vorlesung: Dienstag 8.15-9.45,
Grundlagen der schließenden Statistik
Grundlagen der schließenden Statistik Schätzer, Konfidenzintervalle und Tests 1 46 Motivation Daten erhoben (Umfrage, Messwerte) Problem: Bei Wiederholung des Experiments wird man andere Beobachtungen
Wilcoxon-Rangsummen-Test
Wilcoxon-Rangsummen-Test Theorie: Wilcoxon-Rangsummen-Test Der Wilcoxon-Rangsummen-Test prüft, ob sich die Verteilungen der Grundgesamtheiten zweier Stichproben bezüglich ihrer Lage unterscheiden. Ein
Wahrscheinlichkeitsrechnung und Statistik
10. Vorlesung - 017 Quantil der Ordnung α für die Verteilung des beobachteten Merkmals X ist der Wert z α R für welchen gilt z 1 heißt Median. P(X < z α ) α P(X z α ). Falls X stetige zufällige Variable
Statistik Klausur Sommersemester 2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!
Statistik 2 1. Klausur Sommersemester 2013 Hamburg, 26.07.2013 A BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................
Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de
rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent
Einführung in Quantitative Methoden
Einführung in Quantitative Methoden Pantelis Christodoulides & Karin Waldherr 4. Juni 2014 Christodoulides / Waldherr Einführung in Quantitative Methoden 1/35 Ein- und Zweiseitige Hypothesen H 0 : p =
