Mathematik 2 Dr. Thomas Zehrt
|
|
|
- Jörg Eberhardt
- vor 6 Jahren
- Abrufe
Transkript
1 Wirtschaftswissenschaftliches Zentrum 1 Universität Basel Mathematik Dr. Thomas Zehrt Testen Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere Kapitel 11,,(Punkt)schätzen und Kapitel 1,,Testen Inhaltsverzeichnis 1 Grundbegriffe der Testtheorie 1.1 Übersicht Parametrische Testprobleme Wichtige parametrische Tests 6.1 Der einfache Gaußtest Weitere Tests *Nichtparametrische Tests* Anpassungstests Der χ -Anpassungstest Der Kolmogorov-Smirnov Anpassungstest Übungsaufgaben 18
2 1 Grundbegriffe der Testtheorie 1.1 Übersicht Test parametrischer Test bekannter Verteilungstyp mit unbekanntem Parameter, Hypothese betrifft diesen Parameter nichtparametrischer Test unbekannte Verteilung(en) Einstichproben problem Zweistichproben problem Anpassungs test wie gut passt die beobachtete zur hypothetischen Verteilung Homogenitäts test Verteilung zweier Zufallsvariablen wird verglichen 1. Parametrische Testprobleme Sei X eine Zufallsvariable mit den möglichen Verteilungen { } Hypothesenraum: Ω = = P θ (X = x) : θ Θ P θ Bei einem (parametrischen) Testproblem wird der Hypothesenraum in zwei Teilmengen aufgeteilt: die zu testende Nullhypothese H 0 : θ Θ 0 und die Alternative H 1 : θ Θ 1 entscheiden soll. Die Nullhypothese H 0 ist diejenige Hypothese, welche auf ihren Wahrheitsgehalt hin überprüft werden soll. Sie beinhaltet den Zustand des Parameters der Grundgesamtheit, der bis zum jetzigen Zeitpunkt bekannt ist oder als allgemein akzeptiert gilt. Die Alternativhypothese H 1 ist ein Teil der zur Nullhypothese entgegengesetzten Aussage. Sie ist die eigentliche Forschungshypothese und drückt aus, was mittels der statistischen Untersuchung gezeigt werden soll. Es gilt stets: Θ 0 Θ 1 = und bei Signifikanztests (die wir im weiteren ausschliesslich behandeln werden) auch Θ 0 Θ 1 = Θ. Die typischen Situationen dabei sind: H 0 H 1 1. H 0 : θ = θ 0 H 1 : θ = θ 1, θ 0 θ 1 einfache Hypothese. H 0 : θ = θ 0 H 1 : θ θ 0 zweiseitigen Fragestellung 3. H 0 : θ θ 0 H 1 : θ > θ 0 einseitige Fragestellung 4. H 0 : θ θ 0 H 1 : θ < θ 0 einseitige Fragestellung
3 3 Eine Funktion T (X) = T (X 1,..., X n ) der Stichprobenvariablen X = (X 1,..., X n ) heisst Testgrösse. Für die konkrete Stichprobe (x 1,..., x n ) ergibt sich t = T (x 1,..., x n ) als Realisierung der Testgösse. Der Wertebereich der Zufallsgrösse T (X) wird in folgende zwei Teile zerlegt: Verwerfungsbereich (oder auch kritischer Bereich bzw. Ablehnbereich) R Annahmebereich R = R c. Aufgrund der Realisierung (x 1,..., x n ) wird dann folgende Testentscheidung getroffen: H 0 ablehnen, falls t = T (x 1,..., x n ) R H 0 beibehalten, falls t = T (x 1,..., x n ) R = R c Innerhalb des gewählten Modells gibt es nun vier Möglichkeiten, wie die Realität und die Testentscheidung zusammentreffen können. Realität H 0 ist richtig H 0 ist falsch Testentscheidung H 0 Fehler. Art, beibehalten ok β-fehler H 0 Fehler 1. Art, verwerfen α-fehler ok Bei der Testkonstruktion gibt man die Wahrscheinlichkeit α eines Fehlers 1. Art vor. Diese Schranke bezeichnet man als Signifikanzniveau und der Test heisst Signifikanztest zum Niveau α. Der kritische Bereich R wird dann so konstruiert, dass die Wahrscheinlichkeit eines Fehlers 1. Art nicht grösser als α wird: P (H 0 verwerfen H }{{} 0 richtig ) α T (X) R Dabei sollte aber die Wahrscheinlichkeit eines Fehlers. Art P (H 0 beibehalten H 0 falsch ) nicht zu gross werden.
4 4 Beim Testen wird nur die Wahrscheinlichkeit eines Fehlers 1. Art durch α kontrolliert. Wenn also H 0 wirklich gilt, werden wir sicher nur in α 100% der durchführten Tests für H 1 entscheiden. Die Entscheidung für H 1 ist somit statistisch gesichert und wir sprechen dann von einem signifikanten Ergebnis. Die Wahrscheinlichkeit für einen Fehler. Art wird dagegen nicht kontrolliert und die Entscheidung H 0 beizubehalten ist statistisch nicht abgesichert. Es spricht nur nichts gegen H 0. Allgemeines Vorgehen: 1. Verteilungsannahme über die Zufallsvariable X (bzw. über deren Verteilungsfunktion F ) machen. Formulieren der Nullhypothese und der Alternative. 3. Vorgabe der Irrtumswahrscheinlichkeit α 4. Konstruktion einer geeigneten Testgrösse T (X) = T (X 1,..., X n ) als Funktion der Stichprobenvariablen X, deren Verteilung unter der Nullhypothese vollständig bekannt sein muss. 5. Wahl eines kritischen Bereichs R aus dem möglichen Wertebereich von T (X), so dass P (T (X) R H 0 richtig ) α gilt. 6. Bestimmung der Realisierung t = T (x 1,..., x n ) der Testgrösse T (X) anhand einer konkreten Stichprobe. 7. Entscheidungsregel: Liegt t in R, so wird die Nullhypothese abgelehnt, sonst beibehalten.
5 5 Der p-wert Beim Einsatz von Statistiksoftware zum Hypothesentest wird der kritische Bereich meist nicht angezeigt. Stattdessen wird der konkrete Wert t der Stichprobe zusammen mit dem zugehörigen p-wert angezeigt. Definition 1.1 Der p-wert ist definiert als die Wahrscheinlichkeit unter Gültigkeit von H 0, dass die Testgrösse T den konkreten Wert t oder einen im Sinne der Alternativhypothese noch extremeren Wert annimmt. Konkret bedeutet das: rechtsseitiger Test: p-wert = P ( T t H 0 stimmt ) linksseitiger Test: p-wert = P ( T t H 0 stimmt ) zweiseitiger Test: p-wert = P ( T t H 0 stimmt ) Der p-wert kann ebenfalls als Entscheidungskriterium für das Verwerfen der Nullhypothese genutzt werden. Je kleiner der p-wert ist, desto stärker sprechen die Daten gegen die Nullhypothese und damit für die Alternativhypothese. Gebräuchliche Grenzen sind: p-wert > : schwache Beweislast gegen H < p-wert : mässige Beweislast gegen H < p-wert : moderate Beweislast gegen H < p-wert : starke Beweislast gegen H 0
6 6 Wichtige parametrische Tests.1 Der einfache Gaußtest Prüfen des Mittelwertes bei bekannter Varianz (einfacher Gaußtest) Gegeben: X N(µ, σ ) mit σ = σ0 bekannt Zu prüfen: Besitzt µ (unbekannt) einen bestimmten Wert µ = µ 0? 1. Verteilungsannahme: X N(µ, σ 0). Festlegen von H 0 und H 1 I: H 0 : µ = µ 0 gegen H 1 : µ µ 0 II: H 0 : µ µ 0 gegen H 1 : µ > µ 0 III: H 0 : µ µ 0 gegen H 1 : µ < µ 0 3. Vorgabe von α: α = Konstruktion der Testgrösse: Stichprobenmittelwert X = 1 n n i=1 H X 0 i N(µ0, σ0/n) Standardisierung T (X) = X µ 0 σ 0 n H 0 N(0, 1) 5. Kritischer Bereich: H 0 H 1 R I: µ = µ 0 µ µ 0 (, z 1 α ) (z 1 α, ) II: µ µ 0 µ > µ 0 (z 1 α, ) III: µ µ 0 µ < µ 0 (, z α ) 6. Realisierung der Testgrösse: Aus einer konkreten Stichprobe x 1,..., x n wird der Stichprobenmittelwert x = 1 n n i=1 x i und daraus die Realisierung der Testgrösse ermittelt t = x µ 0 n σ 0 7. Testentscheidung: Liegt t in R, so muss die Nullhypothese verworfen werden. Daraus folgt insgesamt: Lehne H 0 ab, wenn I. t > z 1 α II. t > z 1 α III. t < z 1 α = z α
7 7 Beispiel.1 Für den zweiseitigen Test H 0 : µ = µ 0 und H 1 : µ µ 0 wissen wir also, dass die Testgrösse T unter der Nullhypothese standardnormalverteilt ist. Wir kennen also die Wahrscheinlichkeiten, mit denen T bestimmte Werte realisiert. Natürlich werden wir die Nullhypothese µ = µ 0 verwerfen, wenn der Stichprobenmittelwert X (der den Erwartungswert µ 0 hat) viel kleiner oder viel grösser als µ 0 ist. Das ist gleichbedeutend damit, dass die Testgrösse T einen zu kleinen oder einen zu grossen Wert realisiert. Zu klein bedeutet dabei, dass t < z 1 α, zu gross bedeutet t > z 1 α Wegen der Symmetrie der Standardglockenkurve gilt auch noch: z 1 α = z α
8 8 Aufgabe.1 Bei der Produktion von Bolzen beträgt der Sollwert für den Duchmesser 10 mm. Der Bolzendurchmesser X sei dabei normalverteilt mit dem unbekannten Erwartungswert µ und der durch die Konstruktion der Maschine festgelegten Standardabweichung σ = 0.5 mm. Zur Überprüfung der Einstellung werden 100 Teile entnommen und daraus der mittlere Duchmesser x = mm berechnet. Prüfen Sie die Hypothese H 0 : µ = 10 mm mit der Irrtumswahrscheinlichkeit α = Lösung: 1. H 0 : µ = 10 = µ 0. H 1 : µ Test(Name): Gauss-Test 4. T (allgemein): T = X µ 0 n σ 0 5. t (speziell): t = = vollständiger Verwerfungsbereich: R = (, z 1 α 1 α, ) = (, z ) (z 0.975, ) = (, 1.96) (1.96, ) 7. Entscheidung: H 0 ablehnen, da 3 R
9 9. Weitere Tests Signifikanztests für µ und σ einer normalverteilten Grundgesamtheit (Signifikanzniveau α) Hypothesen Voraussetzungen Testgrösse T Verteilung von T Kritischer Bereich H 0 H 1 Gauß-Test µ = µ 0 µ µ 0 t > z 1 α µ µ 0 µ > µ 0 σ = σ0 bekannt X µ 0 n N(0, 1)-Verteilung t > z1 α σ 0 µ µ 0 µ < µ 0 t < z 1 α Einfacher t-test µ = µ 0 µ µ 0 t > t n 1;1 α µ µ 0 µ > µ 0 σ unbekannt X µ 0 n S X tn 1 -Verteilung t > t n 1;1 α µ µ 0 µ < µ 0 t < t n 1;1 α χ -Streuungstest σ = σ 0 σ σ 0 t > χ n 1;1 α oder t < χ n 1; α σ σ0 σ > σ0 (n 1) SX µ unbekannt σ0 χ n 1 -Verteilung t > χ n 1;1 α σ σ0 σ < σ0 t < χ n 1;α Ergänzung (nicht prüfungsrelevant) σ = σ0 σ σ0 t > χ n;1 α σ σ0 σ > σ0 n SX µ bekannt σ0 χ n-verteilung t > χ n;1 α σ σ0 σ < σ0 t < χ n;α oder t < χ n; α
10 10 Signifikanztests zum Vergleich zweier Erwartungswerte µ X und µ Y und Varianzen σx und σ Y von normalverteilten Grundgesamtheiten (Signifikanzniveau α) Hypothesen Voraussetzungen Testgrösse T Verteilung von T Kritischer Bereich H 0 H 1 Doppelter t-test µ X = µ Y µ X µ Y (X 1,.., X n1 ), (Y 1,.., Y n ) unabh. Stichproben X Y S n1 n n 1 + n mit t > t n1 +n ;1 α µ X µ Y µ X > µ Y σ X = σ Y S = t n1 +n -Verteilung t > t n1 +n ;1 α µ X µ Y µ X < µ Y X N(µ X, σx ) (n 1 1)S X +(n 1)S Y n 1 +n Y N(µ Y, σy ) t < t n1 +n ;1 α Welch-Test µ X = µ Y µ X µ Y (X 1,.., X n1 ), (Y 1,.., Y n ) X Y S X n1 t m-verteilung t > t m;1 α + S Y n unabh. Stichproben m = µ X µ Y µ X > µ Y σ X σ Y ( (SX /n 1+SY /n ) ) t > t m;1 α (S X /n 1 ) + (S Y /n ) n 1 1 n 1 µ X µ Y µ X < µ Y X N(µ X, σx ) ganzzahlig gerundet t < t m;1 α Y N(µ Y, σy ) F-Test σx = σ Y σx σ Y (X 1,.., X n1 ), (Y 1,.., Y n ) SX /S Y F n1 1,n 1-Verteilung t > F n1 1,n 1;1 α oder unabh. Stichproben t < F n1 1,n 1; α σ X σ Y σ X > σ Y µ X, µ Y unbekannt S X /S Y F n1 1,n 1-Verteilung t > F n1 1,n 1;1 α σx σ Y σx < σ Y X N(µ X, σx ) S Y /S X F n 1,n 1 1-Verteilung t > F n 1,n 1 1;1 α Y N(µ Y, σy ) Beachte: Gilt X F m,n, so ist 1/X F n,m und für die Quantile folgt F m,n;α = 1 F n,m;1 α.
11 11 Hypothesen Voraussetzungen Testgrösse T Verteilung von T Kritischer Bereich H 0 H 1 paired t-test µ X = µ Y µ X µ Y (X 1,.., X n), (Y 1,.., Y n) (verbundene) Stichproben D S D n mit t > tn 1;1 α µ X µ Y µ X > µ Y D = X Y N(0, σ D ) S D = 1 n 1 n (D i D) t n 1 -Verteilung t > t n 1;1 α µ X µ Y µ X < µ Y t < t n 1;1 α i=1
12 1 Aufgabe. Zur Überprüfung einer Produktionsanlage, die Kilotüten mit Mehl abfüllt, werden 0 Tüten entnommen, gewogen und daraus das mittlere Gewicht x = g und die Standardabweichung s = g berechnet. Es kann davon ausgegangen werden, dass das Gewicht normalverteilt ist. Prüfen Sie, ob die Anlage im Mittel wesentlich weniger (α = 0.05) als 1000 g abfüllt. Lösung: 1. H 0 :. H 1 : 3. Test(Name): 4. T (allgemein): 5. t (speziell): 6. vollständiger Verwerfungsbereich: 7. Entscheidung: (H 0 wird abgelehnt, denn t = 6.58 < 1.73 = t 19;0.95 )
13 13 Aufgabe.3 Zur Überprüfung einer Produktionsanlage, die Kilotüten mit Mehl abfüllt, werden 0 Tüten entnommen, gewogen und daraus das mittlere Gewicht x = g und die Standardabweichung s = g berechnet. Es kann davon ausgegangen werden, dass das Gewicht normalverteilt ist. Unterscheidet sich die empirische Streuung s wesentlich (α = 0.05) von σ 0 = 0.3 (g ) Lösung: 1. H 0 :. H 1 : 3. Test(Name): 4. T (allgemein): 5. t (speziell): 6. vollständiger Verwerfungsbereich: 7. Entscheidung: (H 0 wird abgelehnt, denn t = > 3.85 = χ 19;0.975)
14 14 Aufgabe.4 In einer landwirtschaftlichen Versuchsanstalt erhielten 9 von Masttieren (Gruppe I) Grünfutterzumischungen, während die übrigen 13 Tiere (Gruppe II) ausschliesslich mit dem proteinhaltigen Mastfutter gefüttert wurden. Nach einer gewissen Zeit wurden folgende Gewichtszunahmen in kg bei den Tieren festgestellt. Gruppe I: 7.0, 11.8, 10.1, 8.5, 10.7, 13., 9.4, 7.9, 11.1 und Gruppe II: 13.4, 14.6, 10.4, 11.9, 1.7, 16.1, 10.7, 8.3, 13., 10.3, 11.3, 1.9, 9.7 Testen Sie die Nullhypothese σ I = σ II Lösung: 1. H 0 : mit Hilfe des F-Tests (für α = 0.1).. H 1 : 3. Test(Name): 4. T (allgemein): 5. t (speziell): 6. vollständiger Verwerfungsbereich: 7. Entscheidung: (H 0 wird nicht abgelehnt)
15 15 3 *Nichtparametrische Tests* 3.1 Anpassungstests Bei einem Anpassungstest wird untersucht, wie gut sich eine beobachtete Verteilung der hypothetischen Verteilung,,anpasst. Die Nullhypothese ist hier stets die Vermutung, dass eine ganz bestimmte (hypothetische) Verteilung vorliegt. Es kann also (statistisch) nur bewiesen werden, dass dieser bestimmte Verteilungstyp nicht vorliegt Der χ -Anpassungstest Gegeben: Zufallsvariable X (ordinal oder stetig) Zu prüfen: Besitzt X die Verteilungsfunktion F 0? 1. Verteilungsannahme: X hat die Verteilungsfunktion F 0. Festlegen von H 0 und H 1 H 0 :,,Die Verteilungsfunktion F einer Stichprobe stimmt mit F 0 überein: F (x) = F 0 (x) H 1 : F (x) F 0 (x) 3. Vorgabe von α: α = Konstruktion der Testgrösse: Eine Stichprobe X = (X 1,..., X n ) wird in k Klassen eingeteilt: Klasse 1... k Total Anz. Beobacht. n 1 n... n k n T (X) = k i=1 (N i n p i ) n p i H 0 χ k 1 r N i absolute Häufigkeit der Stichprobe für die Klasse i (das sind Zufallsvariablen mit den Realisierungen n i ) p i die mit Hilfe der (hypothetischen) Verteilungsfunktion F 0 berechneten Wahrscheinlichkeiten dafür, dass X einen Wert in der Klasse i annimmt n p i die unter H 0 erwartete Häufigkeit in der Klasse i r Anzahl Parameter von F 0 5. Kritischer Bereich: (χ k 1 r;1 α, ) Testentscheidung: Lehne H 0 ab, wenn t > χ k 1 r;1 α
16 16 Aufgabe 3.1 Eine Versuchsreihe mit n = 50 Würfen einer belgischen 1-Euromünze zeigt 140-mal den (massigen) Kopf des belgischen Königs Albert und nur 110-mal die Zahl. Entscheiden Sie mittels χ -Anpassungstest (und mit α = 0.05), ob die Münze fair ist. Lösung: 1. Verteilungsannahme: Ausgang 1 sei,,kopf und Ausgang sei,,zahl, dann ist X (Anzahl,,Kopf ) gleichverteilt mit p(x = 1) = p(x = ) = 1/. H 0 : Verteilung der Stichprobe entspricht der Gleichverteilung 3. Vorgabe von α: α = /6. k = Verteilung von T : χ 1 0 = χ 1 Klasse 1 Anz. Beobacht. n 1 = 140 n = 110 t = i=1 (n i n p i ) n p i = ( /) 50 1/ + ( /) 50 1/ = Kritischer Bereich: Es gilt c 1;0.95 = 3.84 also K = (3.84, ) 7. Testentscheidung: t = 3.6 < χ 1;0.95 = 3.84 also kann die Nullhypothese nicht verworfen werden.
17 Der Kolmogorov-Smirnov Anpassungstest Ein Nachteil beim χ -Anpassungstest ist die (willkürliche) Klasseneinteilung, die (insbesondere bei kleinen Stichproben) das Testergebnis beeinflusst. Hier ist der Kolmogorov- Smirnov Anpassungstest besser geeignet! Gegeben: Zufallsvariable X (ordinal oder stetig) Zu prüfen: Besitzt X die Verteilungsfunktion F 0? 1. Verteilungsannahme: X hat die Verteilungsfunktion F 0. Festlegen von H 0 und H 1 H 0 :,,Die Verteilungsfunktion F einer Stichprobe stimmt mit F 0 überein: F (x) = F 0 (x) H 1 : F (x) F 0 (x) 3. Vorgabe von α: α = Konstruktion der Testgrösse: Eine Stichprobe (x 1,..., x n ) wird geordnet x (1)... x (n) und die Verteilungsfunktion konstruiert. Testgrösse: 0 für < x < x (1) ˆF (x) := i/n für x (i) x < x (i+1) 1 für x (n) x < D = sup x R F 0 (x) ˆF (x) 5. Kritischer Bereich: (d n;1 α, ) wobei 6. - n d n;1 α n > 40 d n;1 α / n 7. Testentscheidung: Lehne H 0 ab, wenn t > d n;1 α gilt.
18 18 4 Übungsaufgaben 1. In einem verregneten Land beträgt die Regenwahrscheinlichkeit in den Herbstmonaten 50%. Jeden Morgen im Herbst fragt sich Susi, ob sie einen Regenschirm mitnehmen soll oder nicht. Um zu einer Entscheidung zu kommen, wirft sie eine faire Münze. Wirft sie Kopf, nimmt sie einen Regenschirm mit, ansonsten lässt sie den Schirm zu Hause. (a) Betrachten Sie die Situation wie einen statistischen Test. Wie müssen die Hypothesen gewählt werden, damit der Fehler 1.Art die schlimmere Auswirkung darstellt? (b) Bestimmen Sie die Wahrscheinlichkeit für den Fehler 1. Art.. Bei der Produktion von Bolzen beträgt der Sollwert für den Durchmesser 10 mm. Der Bolzendurchmesser X sei dabei normalverteilt mit dem unbekannten Erwartungswert µ und der durch die Konstruktion der Maschine festgelegten Standardabweichung σ = 0.5 mm. Zur Überprüfung der Einstellung werden 100 Teile entnommen und daraus der mittlere Duchmesser x = mm berechnet. Prüfen Sie die Hypothese H 0 : µ = 10 mm mit der Irrtumswahrscheinlichkeit α = Zur Überprüfung einer Produktionsanlage, die Kilotüten mit Mehl abfüllt, werden 0 Tüten entnommen, gewogen und daraus das mittlere Gewicht x = g und die Standardabweichung s = g berechnet. Es kann davon ausgegangen werden, dass das Gewicht normalverteilt ist. Prüfen Sie, ob die Anlage im Mittel wesentlich weniger (α = 0.05) als 1000 g abfüllt. 4. Zur Überprüfung einer Produktionsanlage, die Kilotüten mit Mehl abfüllt, werden 0 Tüten entnommen, gewogen und daraus das mittlere Gewicht x = g und die Standardabweichung s = g berechnet. Es kann davon ausgegangen werden, dass das Gewicht normalverteilt ist. Unterscheidet sich die empirische Streuung s wesentlich (α = 0.05) von σ 0 = 0.3 (g )? 5. In einer landwirtschaftlichen Versuchsanstalt erhielten 9 von Masttieren (Gruppe I) Grünfutterzumischungen, während die übrigen 13 Tiere (Gruppe II) ausschliesslich mit dem proteinhaltigen Mastfutter gefüttert wurden. Nach einer gewissen Zeit wurden folgende Gewichtszunahmen in kg bei den Tieren festgestellt. Gruppe I: 7.0, 11.8, 10.1, 8.5, 10.7, 13., 9.4, 7.9, 11.1 und Gruppe II: 13.4, 14.6, 10.4, 11.9, 1.7, 16.1, 10.7, 8.3, 13., 10.3, 11.3, 1.9, 9.7 Testen Sie die Nullhypothese σi = σ II mit Hilfe des F-Tests (für α = 0.1).
19 19 Lösungen einiger Übungsaufgaben 1. (a) Testproblem: Regen oder kein Regen Entscheidungsregel: Ich glaube, dass es regnen wird, wenn Münzwurf,Kopf, zeigt. Entscheidung / Realität Regen kein Regen,,Kopf Regen Schirm trocken Schirm umsonst,,zahl kein Regen kein Schirm nass trocken Mögliche Fehler: Schirm umsonst mitgenommen bzw. nass werden(ist wohl die schlimmere Konsequenz) Damit der Fehler 1. Art die schlimmere Konsequenz darstellt, müssen die Hypothesen wie folgt gewählt werden: H 0 : Regen H 1 : kein Regen (b) P ( H 0 verworfen H 0 stimmt ) = = t > z = 1.96, H 0 wird abgelehnt = t < t 19;0.95 = 1.73, H 0 wird abgelehnt = t > χ 19;0.975 = 3.85, H 0 wird abgelehnt 5. t = und.85, H 0 wird nicht abgelehnt
Statistik II für Betriebswirte Vorlesung 1
Statistik II für Betriebswirte Vorlesung 1 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. Oktober 2017 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 1 Version:
4.1. Nullhypothese, Gegenhypothese und Entscheidung
rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals
Vorlesung: Statistik II für Wirtschaftswissenschaft
Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2
Klassifikation von Signifikanztests
Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests
7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x)
7. Hypothesentests Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang X habe die unbekannte VF F X (x) Interessieren uns für einen unbekannten Parameter θ der Verteilung von X 350 Bisher:
Hypothesentests. Hypothese Behauptung eines Sachverhalts, dessen Überprüfung noch aussteht.
Hypothese Behauptung eines Sachverhalts, dessen Überprüfung noch aussteht. Wissenschaftliche Vorgehensweise beim Hypothesentest Forscher formuliert eine Alternativhypothese H 1 (die neue Erkenntnis, die
Klassifikation von Signifikanztests
Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen
STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik
Kapitel 15 Statistische Testverfahren 15.1. Arten statistischer Test Klassifikation von Stichproben-Tests Einstichproben-Test Zweistichproben-Test - nach der Anzahl der Stichproben - in Abhängigkeit von
3 Grundlagen statistischer Tests (Kap. 8 IS)
3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung
Wichtige Definitionen und Aussagen
Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge
Statistisches Testen
Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall
Klassifikation von Signifikanztests
Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen
3) Testvariable: T = X µ 0
Beispiel 4.9: In einem Molkereibetrieb werden Joghurtbecher abgefüllt. Der Sollwert für die Füllmenge dieser Joghurtbecher beträgt 50 g. Aus der laufenden Produktion wurde eine Stichprobe von 5 Joghurtbechern
Klassifikation von Signifikanztests
Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen
Kapitel 3 Schließende Statistik
Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:
Vorlesung: Statistik II für Wirtschaftswissenschaft
Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2
Einführung in die Induktive Statistik: Testen von Hypothesen
Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte
Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management
für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Testverteilungen Chi-Quadrat-Verteilung Sind X 1,..., X n iid N(0; 1)-verteilte
Die Familie der χ 2 (n)-verteilungen
Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +
Die Familie der χ 2 (n)-verteilungen
Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +
Grundlagen der Statistik
Grundlagen der Statistik Übung 15 009 FernUniversität in Hagen Alle Rechte vorbehalten Fachbereich Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe
2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese:
2.4.1 Grundprinzipien statistischer Hypothesentests Hypothese: Behauptung einer Tatsache, deren Überprüfung noch aussteht (Leutner in: Endruweit, Trommsdorff: Wörterbuch der Soziologie, 1989). Statistischer
2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X
Hypothesentests Bisher betrachtet: Punkt- bzw. Intervallschätzung des unbekannten Mittelwerts Hierzu: Verwendung der 1 theoretischen Information über Verteilung von X empirischen Information aus Stichprobenrealisation
Statistische Tests für unbekannte Parameter
Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung
Statistik II für Betriebswirte Vorlesung 2
Statistik II für Betriebswirte Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 26. Oktober 2016 Prof. Dr. Hans-Jörg Starkloff Statistik II für Betriebswirte Vorlesung
Allgemeines zu Tests. Statistische Hypothesentests
Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer
2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht
43 Signifikanztests Beispiel zum Gauß-Test Bei einer Serienfertigung eines bestimmten Typs von Messgeräten werden vor der Auslieferung eines jeden Gerätes 10 Kontrollmessungen durchgeführt um festzustellen,
Wahrscheinlichkeitsrechnung und Statistik
10. Vorlesung - 017 Quantil der Ordnung α für die Verteilung des beobachteten Merkmals X ist der Wert z α R für welchen gilt z 1 heißt Median. P(X < z α ) α P(X z α ). Falls X stetige zufällige Variable
Lösungen zum Aufgabenblatt 14
Lösungen zum Aufgabenblatt 14 61. Das Gewicht von Brötchen (gemessen in g) sei zufallsabhängig und werde durch eine normalverteilte Zufallsgröße X N(µ, 2 ) beschrieben, deren Varianz 2 = 49 g 2 bekannt
Kapitel 13. Grundbegriffe statistischer Tests
Kapitel 13 Grundbegriffe statistischer Tests Oft hat man eine Vermutung über die Verteilung einer Zufallsvariablen X. Diese Vermutung formuliert man als Hypothese H 0.Sokönnte man daran interessiert sein
Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe
Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,
Statistik II. Statistische Tests. Statistik II
Statistik II Statistische Tests Statistik II - 5.5.2006 1 Ausgangslage Wir können Schätzen (z.b. den Erwartungswert) Wir können abschätzen, wie zuverlässig unsere Schätzungen sind: In welchem Intervall
Statistische Tests für unbekannte Parameter
Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung
Wahrscheinlichkeit 1-α: richtige Entscheidung - wahrer Sachverhalt stimmt mit Testergebnis überein. Wahrscheinlichkeit α: falsche Entscheidung -
wahrer Sachverhalt: Palette ist gut Palette ist schlecht Entscheidung des Tests: T K; Annehmen von H0 ("gute Palette") positive T > K; Ablehnen von H0 ("schlechte Palette") negative Wahrscheinlichkeit
Statistische Tests (Signifikanztests)
Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)
Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10
6 Hypothesentests Gauß-Test für den Mittelwert bei bekannter Varianz 6.3 Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10 G(µ) 0 α 0. 0.4 0.6 0.8 1 n = 10 n =
3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft
3. Das Prüfen von Hypothesen Hypothese?! Stichprobe 3.1. Signifikanztests in der Wirtschaft Prüfung, ob eine (theoretische) Hypothese über die Verteilung eines Merkmals X und ihre Parameter mit einer (empirischen)
Statistik II. Statistische Tests. Statistik II
Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen
Die Abfüllmenge ist gleich dem Sollwert 3 [Deziliter].
Eine Methode, um anhand von Stichproben Informationen über die Grundgesamtheit u gewinnen, ist der Hypothesentest (Signifikantest). Hier wird erst eine Behauptung oder Vermutung (Hypothese) über die Parameter
7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9.
7. Übung: Aufgabe 1 b), c), e) Aufgabe a), c), e) Aufgabe 3 c), e) Aufgabe 4 b) Aufgabe 5 a) Aufgabe 6 b) Aufgabe 7 e) Aufgabe 8 c) Aufgabe 9 a), c), e) Aufgabe 10 b), d) Aufgabe 11 a) Aufgabe 1 b) Aufgabe
8. Konfidenzintervalle und Hypothesentests
8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars
5. Seminar Statistik
Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation
Modul 141 Statistik. 1. Studienjahr 11. Sitzung Signifikanztests
Modul 141 Statistik 1. Studienjahr 11. Sitzung Signifikanztests Inhalt der 11. Sitzung 1. Parametrische Signifikanztests 2. Formulierung der Hypothesen 3. Einseitige oder zweiseitige Fragestellung 4. Signifikanzniveau
Wahrscheinlichkeitsrechnung und Statistik. 11. Vorlesung /2019
Wahrscheinlichkeitsrechnung und Statistik 11. Vorlesung - 2018/2019 Quantil der Ordnung α für die Verteilung des beobachteten Merkmals X ist der Wert z α R für welchen gilt z 1 2 heißt Median. P(X < z
11. Parametrische Tests 11.1 Konzeption von statistischen Tests
11. Parametrische Tests 11.1 Konzeption von statistischen Tests Statistische Tests dienen zur Überprüfung von Hypothesen über die Grundgesamtheit auf der Basis der vorliegenden Beobachtungen einer Stichprobe.
Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz
Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis
R. Brinkmann Seite
R. Brinkmann http://brinkmann-du.de Seite 1 17.3.21 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit
Beurteilende Statistik
Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten
Softwaretechnik. Prof. Dr. Rainer Koschke. Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen
Softwaretechnik Prof. Dr. Rainer Koschke Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen Wintersemester 2010/11 Überblick I Statistik bei kontrollierten Experimenten
Schließende Statistik: Hypothesentests (Forts.)
Mathematik II für Biologen 15. Mai 2015 Testablauf (Wdh.) Definition Äquivalente Definition Interpretation verschiedener e Fehler 2. Art und Macht des Tests Allgemein im Beispiel 1 Nullhypothese H 0 k
Fit for Abi & Study Stochastik
Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen
Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1
Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,
Bereiche der Statistik
Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden
R. Brinkmann Seite
R. Brinkmann http://brinkmann-du.de Seite 1 24.2.214 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit
THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ
WEBINAR@LUNCHTIME THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ EINLEITENDES BEISPIEL SAT: Standardisierter Test, der von Studienplatzbewerbern an amerikanischen Unis gefordert
KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert
KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert 0. Das eigentliche Forschungsziel ist: Beweis der eigenen Hypothese H 1 Dafür muss Nullhypothese H 0 falsifiziert werden können Achtung!
k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr
Die so genannte Gütefunktion g gibt allgemein die Wahrscheinlichkeit an, mit der ein Test die Nullhypothese verwirft. Für unser hier entworfenes Testverfahren gilt ( ) k np g(n, p) = Pr p [T K] = Pr p
Statistik I für Betriebswirte Vorlesung 14
Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli
Statistik II. IV. Hypothesentests. Martin Huber
Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test
Biomathematik für Mediziner
Institut für Medizinische Biometrie, Informatik und Epidemiologie der Universität Bonn (Direktor: Prof. Dr. Max P. Baur) Biomathematik für Mediziner Klausur SS 2002 Aufgabe 1: Franz Beckenbauer will, dass
Je genauer und sicherer, desto größer muss der Stichprobenumfang sein
2.3 Intervallschätzung 2.3.5 Bestimmung des Stichprobenumfangs Eine große praktische Bedeutung haben Konfidenzintervalle auch für die Stichprobenplanung. Sie werden herangezogen, um den benötigten Stichprobenumfang
Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/453
[email protected] VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/453 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung
73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments
73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind
DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr
2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X
Mathematik 2 Probeprüfung 1
WWZ Wirtschaftswissenschaftliche Fakultät der Universität Basel Dr. Thomas Zehrt Bitte in Druckbuchstaben ausfüllen: Name Vorname Mathematik 2 Probeprüfung 1 Zeit: 90 Minuten, Maximale Punktzahl: 72 Zur
Test auf den Erwartungswert
Test auf den Erwartungswert Wir interessieren uns für den Erwartungswert µ einer metrischen Zufallsgröße. Beispiele: Alter, Einkommen, Körpergröße, Scorewert... Wir können einseitige oder zweiseitige Hypothesen
Statistik II. Version A. 1. Klausur Sommersemester 2011 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!
Statistik II Version A 1. Klausur Sommersemester 2011 Hamburg, 27.07.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................
Ablaufschema beim Testen
Ablaufschema beim Testen Schritt 1 Schritt 2 Schritt 3 Schritt 4 Schritt 5 Schritt 6 Schritt 7 Schritt 8 Schritt 9 Starten Sie die : Flashanimation ' Animation Ablaufschema Testen ' siehe Online-Version
Biostatistik, Winter 2011/12
Biostatistik, Winter 2011/12 / Übungsaufgaben Prof. Dr. Achim Klenke http://www.aklenke.de 13. Vorlesung: 10.02.2012 1/51 Aufgabe 1 Aufgabenstellung Übungsaufgaben Ein Pharmakonzern möchte ein neues Schlankheitsmedikament
Jost Reinecke. 7. Juni 2005
Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung
Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL)
Prof. Dr. M. Maathuis ETH Zürich Winter 2010 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Schreiben Sie für Aufgabe 2-4 stets alle Zwischenschritte und -rechnungen sowie Begründungen auf. Aufgabe
Beurteilende Statistik
Beurteilende Statistik SIGNIFIKANZ UND HYPOTHESENTESTS 12.02.2018 HOLGER WUSCHKE BEURTEILENDE STATISTIK 1 12.02.2018 HOLGER WUSCHKE BEURTEILENDE STATISTIK 2 12.02.2018 HOLGER WUSCHKE BEURTEILENDE STATISTIK
Grundlagen der Statistik
Grundlagen der Statistik Übung 13 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe
Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.
.3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil
2. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017
. Lösung weitere Übungsaufgaben Statistik II WiSe 016/017 1. Aufgabe: Bei der Produktion eines Werkstückes wurde die Bearbeitungszeit untersucht. Für die als normalverteilt angesehene zufällige Bearbeitungszeit
Schließende Statistik
Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.
Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung
Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Induktive Statistik Prof. Dr. W.-D.
Klausur zur Vorlesung
Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen
Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1
Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.
Wahrscheinlichkeit und Statistik BSc D-INFK
Prof. Dr. P. Bühlmann ETH Zürich Winter 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete
1. Grundbegri e der Stochastik
Wiederholung von Grundwissen der Stochastik. Grundbegri e der Stochastik Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt
