Forschungsstatistik I
|
|
|
- Sophia Bösch
- vor 8 Jahren
- Abrufe
Transkript
1 Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R (Persike) R (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] SS 009 Fachbereich Sozialwissenschaften Psychologisches Institut Johannes Gutenberg Universität Mainz
2 Anpassungstests Test von Verteilungsannahmen Ziel: Prüfung, ob Stichprobendaten einer angenommenen Verteilung (z.b. NV, binomial) folgen Unterscheidung: a) Stetige, mindestens intervallskalierte Daten b) Natürlich kategoriale Daten c) Künstlich kategoriale, d.h. gruppierte Daten Zur Prüfung der Verteilungsannahme bei intervallskalierten Daten kann der verwendet werden Zur Prüfung der Verteilung kategorialer Daten wird der verwendet
3 QQ-Plot Rechenbsp. Interpretation Test auf Verteilungsannahmen Der QQ-Plot Idee: Wenn Stichprobendaten normalverteilt sind, sollten die empirischen Quantile mit den theoretischen Quantilen übereinstimmen. Gegeben sei die beobachtete Realisation y. Wenn unterhalb von y für eine theoretisch normalverteilte Zufallsvariable p Werte liegen [also P(Y y) bzw. F(y)] solte auch in den Stichprobendaten unterhalb von y ein Anteil p der Werte liegen. Theoretisches Quantil Empirisches Quantil
4 QQ-Plot Rechenbsp. Verteilung intervallskalierter Daten Der QQ-Plot Bei n Beobachtungen existieren n direkt bestimmbare empirische Quantile. Das Quantil für das i-te Datum (i = 1 n) der sortierten Datenreihe wird berechnet als Interpretation p i = i 0.5 n Über die Subtraktion von 0.5 ist der Tatsache Rechnung getragen, dass das 100% Quantil für die Normalverteilung nicht definiert (bzw. ) ist Die theoretischen Quantile für die erhaltenen z-werte können nun aus den (standardisierten) Daten anhand der inversen Normalverteilung Φ -1 bestimmt werden.
5 QQ-Plot Rechenbsp. Verteilung intervallskalierter Daten Der QQ-Plot - Verfahren Schritt 1: Sortieren der Stichprobendaten nach aufsteigender Größe Interpretation Nr Datum Sortiert z p Qp e
6 Verteilung intervallskalierter Daten Der QQ-Plot - Verfahren Schritt : z-transformation der Rohdaten Qp Sortiert Datum z p e Nr x x z s = QQ-Plot Rechenbsp. Interpretation
7 QQ-Plot Rechenbsp. Verteilung intervallskalierter Daten Der QQ-Plot - Verfahren Schritt 3: Bestimmung der Quantilszahlen p p i i 0.5 = n Interpretation Nr Datum Sortiert z p Qp e
8 QQ-Plot Rechenbsp. Verteilung intervallskalierter Daten Der QQ-Plot - Verfahren Schritt 4: Bestimmung der erwarteten Quantile Q p aus der inversen standardnormalen Verteilung Φ -1 (p, x, s) Interpretation Nr Datum Sortiert z p Qp e
9 QQ-Plot Rechenbsp. Verteilung intervallskalierter Daten Der QQ-Plot - Verfahren Schritt 5: Zeichnen des QQ-Plots 3 Interpretation Beobachtetes Quantil Erwartetes Quantil
10 Beispiele Normalverteilung
11 Beispiele Linkssteile Verteilung (positive Schiefe)
12 Beispiele Rechtssteile Verteilung (negative Schiefe)
13 Beispiele Verteilung mit negativer Kurtosis ( runder )
14 Beispiele Verteilung mit positiver Kurtosis ( spitzer )
15 QQ-Plot Rechenbsp. Verteilung intervallskalierter Daten Der QQ-Plot - Verfahren Schritt 6: Bestimmung der Güte der Passung Interpretation Für jeden (standardisierten) Rohdatenwert kann ein Erwartungswert y Qp bestimmt werden, nämlich das zugehörige Quantil aus der theoretischen Verteilungsfunktion 1 s y y n ( ˆ ) e = i Qp N i = 1 Die so berechnete Varianz ist die sogenannte Fehlervarianz oder unaufgeklärte Varianz Damit gilt wieder: r Fehlervarianz = 1 = 1 Gesamtvarianz s s e y
16 QQ-Plot Rechenbsp. Interpretation Verteilung intervallskalierter Daten Der QQ-Plot - Verfahren Schritt 6: Bestimmung der Güte der Passung r² ist dann der Anteil der aufgeklärten Varianz an der Gesamtvarianz, ebenfalls als η² ( eta ) bezeichnet. η s s = e 100% s Zur Bewertung des η² gibt es Faustregeln. Ein Anteil von mindestens 70% ist als akzeptabel zu bewerten, mindestens 80% als gut, mindestens 90% als sehr gut.
17 QQ-Plot Verteilung intervallskalierter Daten Der QQ-Plot - Verfahren Rechenbsp. Schritt 6a: Bestimmung der Abweichung e zwischen beobachtetem und erwartetem Quantil. e= z z Qp Interpretation Nr Datum Sortiert z p Qp e
18 QQ-Plot Rechenbsp. Interpretation Verteilung intervallskalierter Daten Der QQ-Plot - Verfahren Schritt 6b: Bestimmung des Anteils der erklärten Varianz an der Gesamtvarianz. Die Gesamtvarianz s² ist bei standardisierten Daten immer 1. Bei unstandardisierten Daten wäre es schlicht die Varianz der Rohdaten. Die Fehlervarianz ist der Mittelwert aller Abweichungsquadrate (y i -y Qp )², im Beispiel s e =0.07. Damit ergibt sich für die aufgeklärte Varianz η² = (1 0.07) / 1 = 0.973, also 97.3%.
19 QQ-Plot Rechenbsp. Interpretation Verteilung intervallskalierter Daten Der QQ-Plot - Verfahren Schritt 7: Entscheidung über Verteilungsform Ist r qq < r crit(a), wird die Annahme der NV auf dem gewählten a Level verworfen. α sollte progressiv gewählt sein (10%), da man eine Sicherheit für die Beibehaltung wünscht. Smpla Size N Significance level α
20 Verteilung intervallskalierter Daten Der Kolmogoroff-Smirnoff Test Zur nicht-grafischen Prüfung der Verteilungsanpassung kommt sehr häufig der Kolmogoroff-Smirnoff Test zum Einsatz Auch dieser Test prüft, ob die empirische Verteilung mit einer angenommenen Verteilung übereinstimmt. Die Berechnung der Prüfgröße ist mathematisch aufwändiger. Unter der H 0 sind die Verteilungen gleich, unter der H 1 ungleich Da man in aller Regel die H 0 bestätigen möchte, wählt man ein höheres Signifikanzniveau (z.b. p=.5), um den Fehler. Art zu minimieren
21 Einführung Prüfgröße Verteilung Verteilung kategorialer Daten Der Soll die Verteilung kategorialer Daten geprüft werden, kommen häufig so genannte s zum Einsatz Ihr Name ist aus dem Umstand abgeleitet, dass die Prüfgröße einer χ²-verteilung folgt Unter der H 0 entsprechen die beobachteten Punktwahrscheinlichkeiten P(Y=y i ) den theoretischen Punktwahrscheinlichkeiten p i, unter der H 1 sind sie verschieden, also H0 : PY ( = yi) = p H : PY ( = y) p 1 i i i
22 Einführung Prüfgröße Verteilung Verteilung kategorialer Daten Der Die Teststatistik folgt immer der Logik: χ = ( beobachtet erwartet) erwartet Für absolute Häufigkeiten in k Kategorien: χ k = i= 1 ( n npˆ ) i npˆ i i Für relative Häufigkeiten in ik Kategorien: χ k = n i= 1 ( p pˆ ) i pˆ i i
23 Einführung Prüfgröße Verteilung Verteilung kategorialer Daten Der Die Prüfgröße ist dann approximativ χ²-verteilt, wenn folgende Faustregeln erfüllt sind: 1. np i 1 für alle Zellen. np i 5 für mindestens 80% der Zellen Die χ²-verteilung ist über einen Parameter definiert, nämlich die Anzahl der Freiheitsgrade (df) Die Anzahl der Freiheitsgrade ist a) k-1 bei echt kategorialen Daten b) k-1 bei gruppierten Daten aus einer vollständig bekannten ( voll spezifizierten ) Verteilung c) k m-1 bei gruppierten Daten einer Verteilung, für die m Parameter aus der Stichprobe geschätzt werden
24 Einführung Verteilung kategorialer Daten Der Prüfgröße Verteilung
Forschungsstatistik I
Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] WS 008/009 Fachbereich
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel
Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)
Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)
Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang
Computational Finance
Computational Finance Kapitel 2.1: Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4
1 Verteilungen und ihre Darstellung
GKC Statistische Grundlagen für die Korpuslinguistik Kapitel 2: Univariate Deskription von Daten 8.11.2004 Univariate (= eindimensionale) Daten bestehen aus Beobachtungen eines einzelnen Merkmals. 1 Verteilungen
MA Projekt: Langfristige Kapitalmarktsimulation
MA Projekt: Langfristige Kapitalmarktsimulation Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring
Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8
1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen
Statistik II für Betriebswirte Vorlesung 3
PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst
Überblick über die Tests
Anhang A Überblick über die Tests A.1 Ein-Stichproben-Tests A.1.1 Tests auf Verteilungsannahmen ˆ Shapiro-Wilk-Test Situation: Test auf Normalverteilung H 0 : X N(µ, σ 2 ) H 1 : X nicht normalverteilt
9. Schätzen und Testen bei unbekannter Varianz
9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,
Statistische Auswertung der Daten von Blatt 13
Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung
Willkommen zur Vorlesung Statistik (Master)
Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften
Kapitel 4: Binäre Regression
Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,
, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =
38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die
Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse
Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Univariate Varianz- und Kovarianzanlyse, Multivariate Varianzanalyse und Varianzanalyse mit Messwiederholung finden sich unter
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation
Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10
Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten
Stochastische Eingangsprüfung, 17.05.2008
Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)
Evaluation der Normalverteilungsannahme
Evaluation der Normalverteilungsannahme. Überprüfung der Normalverteilungsannahme im SPSS P. Wilhelm; HS SPSS bietet verschiedene Möglichkeiten, um Verteilungsannahmen zu überprüfen. Angefordert werden
Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2010/2011. Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2010/2011 Aufgabe 1 Nach einer
Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)
ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)
Klausur Statistik Lösungshinweise
Klausur Statistik Lösungshinweise Prüfungsdatum: 1. Juli 2015 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Aufgabe 1 14 Punkte Ein Freund von Ihnen hat über einen Teil seiner Daten, die er
Statistik II für Betriebswirte Vorlesung 2
PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander
Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests
Beispiel: Sonntagsfrage Vier Wochen vor der österreichischen Nationalratswahl 1999 wurde 499 Haushalten die Sonntagsfrage gestellt: Falls nächsten Sonntag Wahlen wären, welche Partei würden Sie wählen?
Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1
LÖSUNG 3A Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Mit den Berechnungsfunktionen LG10(?) und SQRT(?) in "Transformieren", "Berechnen" können logarithmierte Werte sowie die Quadratwurzel
Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min
Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe
Abhängigkeit zweier Merkmale
Abhängigkeit zweier Merkmale Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/33 Allgemeine Situation Neben der Untersuchung auf Unterschiede zwischen zwei oder mehreren Untersuchungsgruppen hinsichtlich
FAKTORIELLE VERSUCHSPLÄNE. Andreas Handl
FAKTORIELLE VERSUCHSPLÄNE Andreas Handl 1 Inhaltsverzeichnis 1 Versuchsplanung 4 2 Einfaktorielle Varianzanalyse 6 2.1 DieAnnahmen... 6 2.2 Die ANOVA-Tabelle und der F -Test... 6 2.3 Versuche mit zwei
Varianzanalyse ANOVA
Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für
Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.
Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes
Überblick über die Verfahren für Ordinaldaten
Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische
Evaluation & Forschungsmethoden (Multivariate Analyse) Hauptdiplom-Prüfungsklausur am 03.08.2007 (1.Termin)
Evaluation & Forschungsmethoden (Multivariate Analyse Hauptdiplom-Prüfungsklausur am 03.08.007 (1.Termin Name: Matrikel-Nr.: Aufgabe 1: (3 Punkte Es seien zwei Vektoren a und b (mit mehr als Koordinaten
Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über
Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion
2. Korrelation, lineare Regression und multiple Regression
multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig
Beurteilung der biometrischen Verhältnisse in einem Bestand. Dr. Richard Herrmann, Köln
Beurteilung der biometrischen Verhältnisse in einem Bestand Dr. Richard Herrmann, Köln Beurteilung der biometrischen Verhältnisse in einem Bestand 1 Fragestellung Methoden.1 Vergleich der Anzahlen. Vergleich
SFB 833 Bedeutungskonstitution. Kompaktkurs. Datenanalyse. Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015
SFB 833 Bedeutungskonstitution Kompaktkurs Datenanalyse Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015 Messen und Skalen Relativ (Relationensystem): Menge A von Objekten und eine oder mehrere Relationen
5. Schließende Statistik. 5.1. Einführung
5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.
Einfache Statistiken in Excel
Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum
Deskriptive Statistik
Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche
i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1
1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen
Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen
Universität Karlsruhe (TH) Forschungsuniversität gegründet 825 Wilcoxon-Rangsummentest oder Mann-Whitney U-Test Motivation In Experimenten ist die Datenmenge oft klein Daten sind nicht normalverteilt Dann
B 2. " Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!!
Das folgende System besteht aus 4 Schraubenfedern. Die Federn A ; B funktionieren unabhängig von einander. Die Ausfallzeit T (in Monaten) der Federn sei eine weibullverteilte Zufallsvariable mit den folgenden
Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N
Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 8.1 Schätzer für Lage- und Skalenparameter und Verteilungsmodellwahl Lageparameter (l(x + a) = l(x) + a): Erwartungswert EX Median von X
Business Value Launch 2006
Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung
8. Methoden der klassischen multivariaten Statistik
8. Methoden der klassischen multivariaten Statistik 8.1. Darstellung von Daten Voraussetzungen auch in diesem Kapitel: Grundgesamtheit (Datenraum) Ω von Objekten (Fällen, Instanzen), denen J-Tupel von
1 Statistische Grundlagen
Konzepte in Empirische Ökonomie 1 (Winter) Hier findest Du ein paar Tipps zu den Konzepten in Empirische 1. Wenn Du aber noch etwas Unterstützung kurz vor der Klausur brauchst, schreib uns eine kurze Email.
Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge
2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten
4. Das Capital Asset Pricing Model (CAPM) Markowitz-Modell: Werkzeug zur optimalen Portfolio-Selection.
4. Das Capital Asset Pricing Model (CAPM) The Tool is cool, but be leery of the Theory (Robert A. Haugen) Markowitz-Modell: Werkzeug zur optimalen Portfolio-Selection. CAPM: Theorie der Gleichgewichtspreise
Eine Einführung in R: Statistische Tests
Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/
Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.
Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit
Einführung in die Geostatistik (2) Fred Hattermann (Vorlesung), [email protected] Michael Roers (Übung), roers@pik-potsdam.
Einführung in die Geostatistik () Fred Hattermann (Vorlesung), [email protected] Michael Roers (Übung), [email protected] Gliederung Allgemeine Statistik. Deskriptive Statistik. Wahrscheinlichkeitstheorie.3
Aufgabe 1 10 ECTS. y i x j gering mittel hoch n i Hausrat 200 25 0 225 KFZ 0 10 75 85 Unfall 20 35 90 145 Reiserücktritt 40 5 0 45 n j 260 75 165 500
Aufgabe 1 Für die Securance-Versicherung liegen Ihnen die gemeinsamen absoluten Häugkeiten der Merkmale X: Schadenshöhe und Y : Versicherungsart für die letzten 500 gemeldeten Schäden vor. 1. Interpretieren
Willkommen zur Vorlesung Statistik
Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Maßzahlen für zentrale Tendenz, Streuung und andere Eigenschaften von Verteilungen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische
Willkommen zur Vorlesung Statistik
Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang
Marktforschung I. Marktforschung I 2
Marktforschung I Marktforschung I Einführung in die Testtheorie (Toporowski) Mathematische Grundlagen (Toporowski) Varianzanalyse (Toporowski) Regressionsanalyse (Boztuğ) Diskriminanzanalyse (Hammerschmidt)
Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik
Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,
Ein bisschen Statistik
Prof. Dr. Beat Siebenhaar ein bisschen Statistik 1 Ein bisschen Statistik (orientiert an Hüsler/Zimmermann (006) mit Umsetzung auf die linguistische Fragen) 1. Datentypen und Grafik Grafische Darstellungen
Klausur: Einführung in die Statistik
1 Lösungen immer unter die jeweiligen Aufgaben schreiben. Bei Platzmangel auf die Rückseite schreiben (dann Nummer der bearbeiteten Aufgabe mit anmerken!!!). Lösungen, die nicht auf den Aufgabenblättern
9. StatistischeTests. 9.1 Konzeption
9. StatistischeTests 9.1 Konzeption Statistische Tests dienen zur Überprüfung von Hypothesen über einen Parameter der Grundgesamtheit (bei einem Ein-Stichproben-Test) oder über die Verteilung einer Zufallsvariablen
Einführung in die statistische Datenanalyse I
Einführung in die statistische Datenanalyse I Inhaltsverzeichnis 1. EINFÜHRUNG IN THEORIEGELEITETES WISSENSCHAFTLICHES ARBEITEN 2 2. KRITIERIEN ZUR AUSWAHL STATISTISCH METHODISCHER VERFAHREN 2 3. UNIVARIATE
Weiterbildungskurs Stochastik
Hansruedi Künsch Seminar für Statistik Departement Mathematik, ETH Zürich 24. Juni 2009 Inhalt STATISTIK DER BINOMIALVERTEILUNG 1 STATISTIK DER BINOMIALVERTEILUNG 2 Fragestellungen Typische Fragestellungen
Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1
Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...
Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung
Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion
Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau
1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank
13.5 Der zentrale Grenzwertsatz
13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle
Binäre abhängige Variablen
Binäre abhängige Variablen Thushyanthan Baskaran [email protected] Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen
Teil I Beschreibende Statistik 29
Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................
Ein möglicher Unterrichtsgang
Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige
Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln
Häufigkeitstabellen Menüpunkt Data PivotTable Report (bzw. entsprechendes Icon): wähle Data Range (Zellen, die die Daten enthalten + Zelle mit Variablenname) wähle kategoriale Variable für Spalten- oder
Statistik im Bachelor-Studium der BWL und VWL
Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,
Multivariate Statistik
Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)
Statistik Musterlösungen
Statistik Musterlösungen Regina Tüchler & Achim Zeileis Institut für Statistik & Mathematik Wirtschaftsuniversität Wien 1 Grundbegriffe (1.23) Skript Reaktionen auf Videofilm. Aussagen M, E, P, S h(m)
Statistische Thermodynamik I Lösungen zur Serie 1
Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen
Einfache statistische Testverfahren
Einfache statistische Testverfahren Johannes Hain Lehrstuhl für Mathematik VIII (Statistik) 1/29 Hypothesentesten: Allgemeine Situation Im Folgenden wird die statistische Vorgehensweise zur Durchführung
Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt
DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007
Wirtschaftswissenschaftliches Prüfungsamt DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 006/07 8.0.007 Lösung Prof. Dr. R Friedmann / Dr. R. Hauser Hinweise für die Klausurteilnehmer
Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8
. Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8
Kapitel 13 Häufigkeitstabellen
Kapitel 13 Häufigkeitstabellen Die gesammelten und erfaßten Daten erscheinen in der Datendatei zunächst als unübersichtliche Liste von Werten. In dieser Form sind die Daten jedoch wenig aussagekräftig
1.3 Die Beurteilung von Testleistungen
1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen
Varianzanalyse * (1) Varianzanalyse (2)
Varianzanalyse * (1) Einfaktorielle Varianzanalyse (I) Die Varianzanalyse (ANOVA = ANalysis Of VAriance) wird benutzt, um Unterschiede zwischen Mittelwerten von drei oder mehr Stichproben auf Signifikanz
25. Januar 2010. Ruhr-Universität Bochum. Methodenlehre III, WS 2009/2010. Prof. Dr. Holger Dette. 4. Multivariate Mittelwertvergleiche
Ruhr-Universität Bochum 25. Januar 2010 1 / 75 2 / 75 4.1 Beispiel: Vergleich von verschiedenen Unterrichtsmethoden Zwei Zufallsstichproben (A und B) mit je 10 Schülern und 8 Schülern Gruppe A wird nach
Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression
Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Speziell im Zusammenhang mit der Ablehnung der Globalhypothese werden bei einer linearen Einfachregression weitere Fragestellungen
Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!
Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)
Webergänzung zu Kapitel 10
Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder
Korrelation - Regression. Berghold, IMI
Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines
Entscheidungsanalyse unter Unsicherheit Entscheidungskriterien in ökonomischen Netzen
Entscheidungsanalyse unter Unsicherheit Entscheidungskriterien in ökonomischen Netzen Referat von Guido RECKE Institut für Agrarökonomie der Georg-August-Universität Göttingen Platz der Göttinger Sieben
Anhang A: Fragebögen und sonstige Unterlagen
Anhang Anhang A: Fragebögen und sonstige Unterlagen A.: Flyer zur Probandenrekrutierung 46 A.: Fragebogen zur Meditationserfahrung 47 48 A.3: Fragebogen Angaben zur Person 49 5 5 A.4: Termin- und Einladungsschreiben
Excel-Arbeitsmappen zur Statistik
Microsoft Excel, Microsoft Word, Windows, Microsoft Office sind eingetragene Warenzeichen der Microsoft Inc., USA Excel-Arbeitsmappen zur Statistik Excel-Arbeitsmappen zur Statistik? Angesichts der am
Statistischer Mittelwert und Portfoliorendite
8 Wahrscheinlichkeitsrechnung und Statistik Statistischer Mittelwert und Portfoliorendite Durch die immer komplexer werdenden Bündel von Investitionen stellen Investorinnen und Investoren eine Vielzahl
1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18
3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen
R-WORKSHOP II. Inferenzstatistik. Johannes Pfeffer
R-WORKSHOP II Inferenzstatistik Johannes Pfeffer Dresden, 25.1.2011 01 Outline Lösung der Übungsaufgabe Selbstdefinierte Funktionen Inferenzstatistik t-test Kruskal-Wallis Test Übungsaufgabe TU Dresden,
4. Versicherungsangebot
4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil
Tutorial: Homogenitätstest
Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite
(VU) Übungen zur Einführung in die statistische Datenanalyse II. Inhalte Statistik I. Inhalte Statistik I Deskriptive Statistik
II Übungen zur II Organisatorische Hinweise Keine Anwesenheitspflicht (aber empfehlenswert) Einführung in die statistische Datenanalyse II (VU) Lehrinhalte (.ppt Folien): elearning.univie.ac.at 3 Prüfungstermine:
Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2008/2009. Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2008/2009 Aufgabe 1 Im Rahmen
