Kapitel 4: Binäre Regression
|
|
|
- Johannes Seidel
- vor 10 Jahren
- Abrufe
Transkript
1 Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014
2 4.1 Motivation
3 Ausgangssituation Gegeben sind Daten (y i, x i1,..., x ik ) mit einer binären Zielvariablen y i {0, 1} für i = 1,..., n und stetigen oder binär kodierten kategorialen Kovariablen x 1,..., x k. Fragestellung: Wie kann diese binäre Zielvariable in Abhängigkeit von Kovariablen modelliert werden? 2
4 Beispiel: Kreditscoring Ziel von Kreditscoring ist die Untersuchung der Bonität bzw. Kreditwürdigkeit eines Kunden in Abhängigkeit von Kovariablen. Hier liegen Daten einer süddeutschen Großbank von 1000 abgeschlossenen Kreditgeschäften vor: Variable ausfall laufzeit hoehe alter moral. Beschreibung Ausfall des Kredits / Bonität des Kreditnehmers 1 = Kredit wurde nicht zurückgezahlt d.h. der Kunde ist nicht kreditwürdig 0 = Kredit wurde zurückgezahlt d.h. der Kunde ist kreditwürdig Laufzeit des Kredits in Monaten Höhe des Kredits in Euro Alter des Kreditnehmers in Jahren Zahlungsmoral des Kunden aus vergangenen Kreditgeschäften: 1 = gute Zahlungsmoral 0 = schlechte Zahlungsmoral. 3
5 Beispiel: Kreditscoring Deskription von Ausfall in Abhängigkeit von der Laufzeit 1 ausfall laufzeit 4
6 Beispiel: Kreditscoring Deskription von Ausfall in Abhängigkeit von der Laufzeit 1.0 n=82 n=277 n=187 n=224 n=57 n=86 n=17 n=54 n=2 n=13 n=0 n=1 0.8 Anteil ausfall= (0,6] (6,12] (12,18] (18,24] (24,30] (30,36] (36,42] (42,48] (48,54] (54,60] (60,66] (66,72] laufzeit 5
7 Beispiel: Kreditscoring Deskription von Ausfall in Abhängigkeit von der Höhe des Kredits 1 ausfall hoehe 6
8 Beispiel: Kreditscoring Deskription von Ausfall in Abhängigkeit von der Höhe des Kredits 1.0 n=432 n=322 n=97 n=79 n=30 n=19 n=9 n=11 n=0 n=1 0.8 Anteil ausfall= (0,2] (2,4] (4,6] (6,8] (8,10] (10,12] (12,14] (14,16] (16,18] (18,20] hoehe [in 1000 Euro] 7
9 Beispiel: Kreditscoring Deskription von Ausfall in Abhängigkeit vom Alter des Kreditnehmers 1 ausfall alter 8
10 Beispiel: Kreditscoring Deskription von Ausfall in Abhängigkeit vom Alter des Kreditnehmers 1.0 n=16 n=174 n=219 n=178 n=141 n=88 n=71 n=42 n=26 n=27 n=12 n=6 0.8 Anteil ausfall= (18,20] (20,25] (25,30] (30,35] (35,40] (40,45] (45,50] (50,55] (55,60] (60,65] (65,70] (70,75] alter 9
11 Beispiel: Kreditscoring Deskription von Ausfall in Abhängigkeit von der Zahlungsmoral 1.0 n=89 n=911 ausfall 0 1 Σ moral Σ Anteil ausfall= moral 10
12 4.2 Binäre Regressionsmodelle
13 Modellformel Gegeben Realisationen y i einer binären Zielvariablen Y i {0, 1} Kovariablenvektor x i = (1, x i1,..., x ik ) für i = 1,..., n Verteilungsannahme Y i x i ind. B(1, π i ) mit π i = P (Y i = 1 x i ) = E(Y i x i ) Strukturannahme π i =h(η i ) = h(x i β) = h(β 0 + β 1 x i β k x ik ) mit streng monoton wachsender Responsefunktion h : (, ) [0, 1] 12
14 Bemerkungen η i = x i β wird als linearer Prädiktor bezeichnet. Die Umkehrfunktion g = h 1 mit g : [0, 1] (, ) und heißt Linkfunktion. g(π i ) = η i = β 0 + β 1 x i β k x ik Für die Responsefunktion h( ) werden streng monoton wachsende Verteilungsfunktionen verwendet. 13
15 Bekannteste Modelle Logit-Modell h : Verteilungsfunktion der logistischen Verteilung π i = h(η i ) = exp(η i) 1 + exp(η i ) Probit-Modell h : Verteilungsfunktion der Standardnormalverteilung π i = h(η i ) = Φ(η i ) Komplementäres Log-Log-Modell h : Verteilungsfunktion der Extremwertverteilung π i = h(η i ) = 1 exp( exp(η i )) 14
16 Responsefunktionen Responsefunktionen Adjustierte Responsefunktionen h(η) logit probit cloglog h(η) logit probit cloglog η η 15
17 Modellschätzung in R Logit-Modell glm(ausfall ~ laufzeit + hoehe + alter + moral, data=kredit, family=binomial(link= logit )) Probit-Modell glm(ausfall ~ laufzeit + hoehe + alter + moral, data=kredit, family=binomial(link= probit )) Log-Log-Modell glm(ausfall ~ laufzeit + hoehe + alter + moral, data=kredit, family=binomial(link= cloglog )) 16
18 4.3 Logit-Modell
19 Äquivalente Darstellungen 1. Logarithmierte Chance (Linkfunktion) log ( ) πi 1 π i = η i 2. Chance π i 1 π i = exp(η i ) 3. Wahrscheinlichkeit (Responsefunktion) π i = exp(η i) 1 + exp(η i ) 18
20 Interpretation der Parameter Gegeben sei eine bestimmte Kovariablen-Kombination x i = (1, x i1,..., x ij,..., x ik ) und der lineare Prädiktor η i = β β j x ij β k x ik. Falls sich x ij auf x ij + 1 erhöht und alle anderen Einträge von x i gleich bleiben (mit j = 1,..., k), dann 1. ändert sich die logarithmierte Chance um β j, da log ( ) πi 1 π i = β β j (x ij + 1) β k x ik = β β j x ij β k x ik + β j = η i + β j 19
21 Interpretation der Parameter 2. ändert sich die Chance um den Faktor exp(β j ), da π i 1 π i = exp(β β j (x ij + 1) β k x ik ) = exp(β β j x ij + β j β k x ik ) = exp(η i + β j ) = exp(η i ) exp(β j ) 3. ist die Änderung der Wahrscheinlichkeit nicht-linear. π i = exp(η i + β j ) 1 + exp(η i + β j ) 20
22 Interpretation der Parameter Allgemein lässt sich exp(β j ) also als das Chancenverhältnis (oder Odds Ratio) bei Erhöhung von x ij um eine Einheit interpretieren und es gilt: β j > 0 exp(β j ) > 1 β j < 0 exp(β j ) < 1 β j = 0 exp(β j ) = 1 Die Chance P (y i = 1)/P (y i = 0) wird größer. Die Chance P (y i = 1)/P (y i = 0) wird kleiner. Die Chance P (y i = 1)/P (y i = 0) bleibt gleich. 21
23 Prognose Gegeben eine Schätzung ˆβ für β und eine Kovariablenkombination x i ergibt sich eine Schätzung oder Prognose der Wahrscheinlichkeit π i durch: ˆπ i = exp(x i ˆβ) 1 + exp(x i ˆβ) Ebenso wie beim linearen Modell wird dabei der bedingte Erwartungswert E(Y i x i ) geschätzt: ˆπ i = ˆP (Y i = 1 x i ) = Ê(Y i x i ) Man erhält im Logit-Modell demnach keine Prognose ŷ i für y i, sondern nur eine Prognose ˆπ i für π i. 22
24 Beispiel: R-Output Kreditscoring Wie lassen sich folgende geschätzte Parameter ˆβ interpretieren? > modlogit <- glm(ausfall ~ laufzeit + hoehe + alter + moral, + data=kredit, family=binomial(link= logit )) > coef(modlogit) (Intercept) laufzeit hoehe alter moral e e e e e-01 > exp(coef(modlogit)) (Intercept) laufzeit hoehe alter moral
25 Beispiel: R-Output Kreditscoring Call: glm(formula = ausfall ~ laufzeit + hoehe + alter + moral, family = binomial(link = logit ), data = kredit) Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) e e laufzeit 3.232e e e-05 *** hoehe 2.661e e alter e e * moral e e e-10 *** --- Signif. codes: 0 *** ** 0.01 * (Dispersion parameter for binomial family taken to be 1) Null deviance: on 999 degrees of freedom Residual deviance: on 995 degrees of freedom AIC: Number of Fisher Scoring iterations: 4 24
26 Modellierung von Kovariablen Alle behandelten Konzepte zur Modellierung bzw. zum Design von Kovariablen in linearen Modellen mit Normalverteilungsannahme lassen sich analog bei binären Regressionsmodellen anwenden: Stetige Kovariablen: Nicht-lineare Transformation (durch bekannte Funktionen oder Polynome) Mittelwert-Zentrierung Kategoriale Kovariablen: Erzeugung von Dummy-Variablen (z.b. in Dummy- oder Effektkodierung) 25
27 4.4 Parameterschätzung
28 Ausgangspunkt Struktur von binären Regressionsmodellen: Y i x i ind. B(1, π i ) mit π i = P (Y i = 1 x i ) π i = h(η i ) = h(x i β) = h(β 0 + β 1 x i1 + + β k x ik ) Unbekannte und zu schätzende Parameter sind die Regressionskoeffizienten β 0, β 1,..., β k, die im Vektor β zusammengefasst sind. Aufgrund der Binomialverteilungsannahme bietet sich Maximum-Likelihood-Schätzung zur Bestimmung von geeigneten Schätzern an. 27
29 Likelihood Aufgrund der Binomialverteilungsannahme lässt sich die (diskrete) Dichte von y i wie folgt schreiben: f(y i π i ) = π y i i (1 π i) 1 y i Über die Beziehung π i = h(x i β) hängt die Dichte von β ab und wird als Likelihood-Beitrag L i (β) der i-ten Beobachtung aufgefasst: L i (β) = f(y i π i ) Die Likelihood ergibt sich wegen der (bedingten) Unabhängigkeit der y i zu: L(β) = n i=1 L i (β) = n i=1 π y i i (1 π i) 1 y i 28
30 Log-Likelihood Logarithmieren der Likelihood-Beiträge ergibt die Log-Likelihood- Beiträge l i (β) = log L i (β) = y i log(π i ) + (1 y i )log(1 π i ) und daraus die gesamte Log-Likelihood l(β) = n i=1 l i (β) = n i=1 [ y i log(π i ) + (1 y i )log(1 π i ) ] Zum Berechnen der Score-Funktion muss anstelle von π i das jeweilige h(x i β) in die Log-Likelihood eingesetzt und dann nach β abgeleitet werden. 29
31 Score-Funktion Zur Berechnung des ML-Schätzers als Maximierer der Log- Likelihood l(β) bildet man die 1.Ableitung nach β und die Score-Funktion ergibt sich zu s(β) = l(β) β = n i=1 l i (β) β = n i=1 s i (β) Nullsetzen der Score-Funktion liefert die ML-Gleichung: s( ˆβ) = 0. Das Gleichungssystem ist nicht-linear und das Lösen nach ˆβ ist i.a. nicht analytisch möglich. Daher werden numerische Verfahren (wie z.b. Newton-Raphson, Fisher-Scoring) zur Nullstellensuche eingesetzt. 30
32 Informationsmatrizen Zur numerischen Schätzung der Koeffizienten und der Kovarianzmatrix des ML-Schätzers ˆβ benötigt man die beobachtete Fisher-Informationsmatrix F obs (β) = 2 l(β) β β oder die erwartete Fisher-Informationsmatrix F (β) = E(F obs (β)) = E ( 2 l(β) β β ). 31
33 Asymptotische Eigenschaften ML-Schätzer Für n gilt, dass der ML-Schätzer existiert und sowohl konsistent als auch asymptotisch normalverteilt ist: ˆβ a N ( β, F 1 ( ˆβ) ) mit der geschätzten Kovarianzmatrix Ĉov( ˆβ) = F 1 (β) als inverse Fisher-Matrix an der Stelle des ML-Schätzers ˆβ (siehe Folien zur Likelihood-Inferenz). 32
34 Asymptotische Eigenschaften ML-Schätzer Das Diagonalelement a jj der inversen Fisher-Matrix A = F 1 ( ˆβ) ist somit ein Schätzer für die Varianz der j-ten Komponente ˆβ j von ˆβ, d.h. es ist Var(ˆβ j ) = ˆσ 2 j = a jj, und a jj ist ein Schätzer für die Standardabweichung ˆσ j = Var(ˆβ j ). 33
2.Tutorium Generalisierte Regression
2.Tutorium Generalisierte Regression - Binäre Regression - Moritz Berger: 04.11.2013 und 11.11.2013 Shuai Shao: 06.11.2013 und 13.11.2013 Institut für Statistik, LMU München 1 / 16 Gliederung 1 Erweiterte
Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik
Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:
Generalisierte lineare Modelle. Statistik 3 im Nebenfach. Binäre Regressionsmodelle. 4.1 Binäre Regression
Generalisierte lineare Modelle Statistik 3 im Nebenfach Friedrich Leisch Institut für Statistik Ludwig-Maximilians-Universität München WS 2010/2011 basierend auf Fahrmeir, Kneib & Lang (2007) 4 Generalisierte
8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.
L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 8. Februar 2007 Hinweise:
ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?
BINARY CHOICE MODELS 1 mit Pr( Y = 1) = P Y = 0 mit Pr( Y = 0) = 1 P Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? Y i = X i β + ε i Probleme: Nonsense Predictions
Fallbeispiel: Kreditscoring
Fallbeispiel: Kreditscoring Stefan Lang 14. Juni 2005 SS 2005 Datensatzbeschreibung (1) Ziel Untersuchung der Bonität eines Kunden in Abhängigkeit von erklärenden Variablen Zielvariable Bonität des Kunden:
Binäre abhängige Variablen
Binäre abhängige Variablen Thushyanthan Baskaran [email protected] Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen
Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch
Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 9.1 Allgemeine Regressionsanalyse Daten (X j, Y j ), j = 1,..., N unabhängig Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl.
Stochastische Eingangsprüfung, 17.05.2008
Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)
Logistische Regression
Logistische Regression Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Logistische Regression Beispiel 1: Herzerkrankungsdaten aus Framingham Log Odds Modell Beispiel 1: Einfluss von Blutdruck Maximum
Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.
Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit
Tutorial: Homogenitätstest
Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite
Melanie Kaspar, Prof. Dr. B. Grabowski 1
7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen
4 Binäre Regressionsmodelle, Folien 2
4 Binäre Regressionsmodelle, Folien 2 Ludwig Bothmann (basierend auf Unterlagen von Nora Fenske) Statistik III für Nebenfachstudierende WS 2014/2015 4.5 Hypothesentests Lineare Hypothesen Betrachtet werden
Theoretische Grundlagen der Informatik WS 09/10
Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3
Multivariate Statistik
Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)
Multinomiale logistische Regression
Multinomiale logistische Regression Die multinomiale logistische Regression dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür, wobei als abhänginge Variable
Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über
Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion
Statistische Thermodynamik I Lösungen zur Serie 1
Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen
Statistik II für Betriebswirte Vorlesung 2
PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander
Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)
Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff
Gemischte Modelle. Fabian Scheipl, Sonja Greven. SoSe 2011. Institut für Statistik Ludwig-Maximilians-Universität München
Gemischte Modelle Fabian Scheipl, Sonja Greven Institut für Statistik Ludwig-Maximilians-Universität München SoSe 2011 Inhalt Amsterdam-Daten: LMM Amsterdam-Daten: GLMM Blutdruck-Daten Amsterdam-Daten:
Fortgeschrittene Statistik Logistische Regression
Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E
i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1
1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Koeffizienten der Logitanalyse. Kurt Holm. Almo Statistik-System www.almo-statistik.de [email protected] [email protected]
Koeffizienten der Logitanalyse Kurt Holm Almo Statistik-System www.almo-statistik.de [email protected] [email protected] 1 Kurt Holm Koeffizienten der Logitanalyse Eine häufig gestellte Frage lautet:
Verallgemeinerte lineare Modelle. Promotion. Promotion. Methoden empirischer Sozialforschung. 1 binäre und mehrere metrische und kategoriale Variablen
Verallgemeinerte lineare Modelle 1 binäre und mehrere metrische und kategoriale Variablen Methoden empirischer Sozialforschung Verallgemeinerte lineare Modelle () Wie läßt sich die Abhängigkeit der Erfolgswahrscheinlichkeit
In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert.
Konstante Modelle: In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Der prognostizierte Wert für die Periode T+i entspricht
Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011
Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit
Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005
Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Aufgabe 1: Grundzüge der Wahrscheinlichkeitsrechnung 19 P. Als Manager eines großen
Name (in Druckbuchstaben): Matrikelnummer: Unterschrift:
20-minütige Klausur zur Vorlesung Lineare Modelle im Sommersemester 20 PD Dr. Christian Heumann Ludwig-Maximilians-Universität München, Institut für Statistik 2. Oktober 20, 4:5 6:5 Uhr Überprüfen Sie
Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff
Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer
9. Schätzen und Testen bei unbekannter Varianz
9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x
Kap. 9: Regression mit einer binären abhängigen Variablen
Kap. 9: Regression mit einer binären abhängigen Variablen Motivation Lineares Wahrscheinlichkeitsmodell Probit- und Logit-Regression Maximum Likelihood Empirisches Beispiel: Analyse der HMDA-Daten Ausblick:
1 Binäre Regression (I)
Übung zur Vorlesung Generalisierte Regressionsmodelle Blatt 2 Gerhard Tutz, Moritz Berger, Wolfgang Pößnecker WiSe 14/15 1 Binäre Regression (I) Aufgabe 1 Der Datensatz shuttle beschreibt für die 23 Space
Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.
Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,
Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II
Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Wiederholung Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell
Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8
1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
www.mathe-aufgaben.com
Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )
Aufabe 7: Baum-Welch Algorithmus
Effiziente Algorithmen VU Ausarbeitung Aufabe 7: Baum-Welch Algorithmus Florian Fest, Matr. Nr.0125496 [email protected] Claudia Hermann, Matr. Nr.0125532 [email protected] Matteo Savio,
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der
Verteilungsmodelle. Verteilungsfunktion und Dichte von T
Verteilungsmodelle Verteilungsfunktion und Dichte von T Survivalfunktion von T Hazardrate von T Beziehungen zwischen F(t), S(t), f(t) und h(t) Vorüberlegung zu Lebensdauerverteilungen Die Exponentialverteilung
Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen
4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.
Korrelation - Regression. Berghold, IMI
Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines
Korrelation (II) Korrelation und Kausalität
Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen
Zusammenhänge zwischen metrischen Merkmalen
Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl
6.0 Logistische Regression. 6 Logistische Regression. 6.1 Das binäre Modell. 6 Logistische Regression
6.0 Logistische Regression 6.1 Das binäre Modell 6.1 Das binäre Modell Sei x der Vektor der Einflussgrößen mit einem Eins-Element, um die Regressionskonstante zu modellieren. Angenommen, es gilt das Regressionsmodell:
Statistik Einführung // Lineare Regression 9 p.2/72
Statistik Einführung Lineare Regression Kapitel 9 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Ledold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Lineare Regression
Musterlösung zu Serie 14
Dr. Lukas Meier Statistik und Wahrscheinlichkeitsrechnung FS 21 Musterlösung zu Serie 14 1. Der Datensatz von Forbes zeigt Messungen von Siedepunkt (in F) und Luftdruck (in inches of mercury) an verschiedenen
Ausarbeitung des Seminarvortrags zum Thema
Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung
1.3 Die Beurteilung von Testleistungen
1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen
W-Rechnung und Statistik für Ingenieure Übung 11
W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz ([email protected]) Mathematikgebäude Raum 715 Christoph Kustosz ([email protected]) W-Rechnung und Statistik
OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland
OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben
Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt
Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung
Interne und externe Modellvalidität
Interne und externe Modellvalidität Interne Modellvalidität ist gegeben, o wenn statistische Inferenz bzgl. der untersuchten Grundgesamtheit zulässig ist o KQ-Schätzer der Modellparameter u. Varianzschätzer
Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8
. Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8
Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen
Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:
Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b
Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und
Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell:
Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen LV-Leiterin: Univ.Prof.Dr. Sylvia Frühwirth-Schnatter 1 Wahr oder falsch? 1. Das folgende Modell ist ein GARCH(1,1)-Modell: Y
Lineare Modelle in R: Einweg-Varianzanalyse
Lineare Modelle in R: Einweg-Varianzanalyse Achim Zeileis 2009-02-20 1 Datenaufbereitung Wie schon in der Vorlesung wollen wir hier zur Illustration der Einweg-Analyse die logarithmierten Ausgaben der
Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:
Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung
Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen
Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik
Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge
2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten
Analyse von Querschnittsdaten. Regression mit Dummy-Variablen
Analyse von Querschnittsdaten Regression mit Dummy-Variablen Warum geht es in den folgenden Sitzungen? Datum Vorlesung 9.0.05 Einführung 26.0.05 Beispiele 02..05 Forschungsdesigns & Datenstrukturen 09..05
0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )
Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,
Kommentierter SPSS-Ausdruck zur logistischen Regression
Daten: POK V AG 3 (POKV_AG3_V07.SAV) Kommentierter SPSS-Ausdruck zur logistischen Regression Fragestellung: Welchen Einfluss hat die Fachnähe und das Geschlecht auf die interpersonale Attraktion einer
Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min
Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe
11.3 Komplexe Potenzreihen und weitere komplexe Funktionen
.3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt
Statistik II für Betriebswirte Vorlesung 3
PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst
(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu
Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die
Grundlagen der Informatik
Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................
9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83
9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x
Forschungsstatistik I
Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] WS 008/009 Fachbereich
LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.
Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems
Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015
Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet
Nichtlineare Optimierung ohne Nebenbedingungen
Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt
6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)
6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden
Entscheidungsbaumverfahren
Entscheidungsbaumverfahren Allgemeine Beschreibung Der Entscheidungsbaum ist die Darstellung einer Entscheidungsregel, anhand derer Objekte in Klassen eingeteilt werden. Die Klassifizierung erfolgt durch
4 Vorlesung: 21.11. 2005 Matrix und Determinante
4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer
Charakteristikenmethode im Beispiel
Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)
Kontingenzkoeffizient (nach Pearson)
Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen
Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen
Universität Karlsruhe (TH) Forschungsuniversität gegründet 825 Wilcoxon-Rangsummentest oder Mann-Whitney U-Test Motivation In Experimenten ist die Datenmenge oft klein Daten sind nicht normalverteilt Dann
BONUS MALUS SYSTEME UND MARKOV KETTEN
Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,
Survival of the Fittest Wie statistische Modelle an Daten angepasst werden
Tag der Mathematik 2009 Survival of the Fittest Wie statistische Modelle an Daten angepasst werden Thomas Kneib Fakultät für Mathematik und Naturwissenschaften Carl von Ossietzky Universität Oldenburg
Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel
Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung
Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik
Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf.
Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist
Frage Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist k a F (x) =1 k>0,x k x Finden Sie den Erwartungswert und den Median der Dichte für a>1. (Bei
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
Stichprobenauslegung. für stetige und binäre Datentypen
Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung
1 Interaktion von zwei Dummyvariablen. 2 Interaktion einer Dummyvariablen mit einer kardinalskalierten Variablen
Modelle mit Interationsvariablen I Modelle mit Interationsvariablen II In der beim White-Test verwendeten Regressionsfuntion y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 2 1 + β 4 x 2 2 + β 5 x 1 x 2, ist anders
Statistische Analyse von Ereigniszeiten
Statistische Analyse von Survival Analysis VO Biostatistik im WS 2006/2007 1 2 3 : Leukemiedaten (unzensiert) 33 Patienten mit Leukemie; Zielvariable Überlebenszeit. Alle Patienten verstorben und Überlebenszeit
Lehrstuhl für Betriebswirtschaftslehre mit Schwerpunkt Finanzierung. Klausur "Finanzmanagement" 14. März 2002
1 Lehrstuhl für Betriebswirtschaftslehre mit Schwerpunkt Finanzierung Klausur "Finanzmanagement" 14. März 2002 Bearbeitungshinweise: - Die Gesamtbearbeitungsdauer beträgt 60 Minuten. - Schildern Sie ihren
