2.Tutorium Generalisierte Regression
|
|
|
- Joachim Hofer
- vor 10 Jahren
- Abrufe
Transkript
1 2.Tutorium Generalisierte Regression - Binäre Regression - Moritz Berger: und Shuai Shao: und Institut für Statistik, LMU München 1 / 16
2 Gliederung 1 Erweiterte Spezifizierung des linearen Prädiktors 2 Binäre Einflussgrößen 3 Linkfunktionen 4 Binäre Regressionsmodelle mit R 2 / 16
3 Erweiterte Spezifizierung des linearen Prädiktors Gliederung 1 Erweiterte Spezifizierung des linearen Prädiktors 2 Binäre Einflussgrößen 3 Linkfunktionen 4 Binäre Regressionsmodelle mit R 3 / 16
4 Erweiterte Spezifizierung des linearen Prädiktors Wilkinson-Rogers-Notation I + Aneinanderreihung von Effekten Ausschluss von Effekten : reiner Interaktionseffekt * Haupteffekte und Interaktionen zwischen diesen Einschluss aller Interaktionen bis zur angegebenen Ordnung [Achtung: Verwende I(Variable ˆ 2) zur Einbindung des Quadrates einer Variable in das Modell! Analoges gilt für alle anderen Transformationssymbole, die auch in der Wilkinson-Rogers-Notation existieren.] 4 / 16
5 Erweiterte Spezifizierung des linearen Prädiktors Wilkinson-Rogers-Notation II Gegeben: x sei metrische Größe und a, b, c Faktoren y a + x Modell ohne Interaktion: Einheitl. Steigungsparameter; von a abhängige Intercepts y a x = Modell mit Interaktion: a + x + a : x Unterschied der Steigungsparameter im Vergleich zur Referenzkategorie durch a:x erzeugt y (a + b + c) ˆ 2 Modell mit Interaktionen: = a b c a : b : c Alle Zweifachinteraktionen werden durch ˆ 2 ins Modell aufgenommen 5 / 16
6 Binäre Einflussgrößen Gliederung 1 Erweiterte Spezifizierung des linearen Prädiktors 2 Binäre Einflussgrößen 3 Linkfunktionen 4 Binäre Regressionsmodelle mit R 6 / 16
7 Binäre Einflussgrößen Datensituation bisher: Betrachtung von Regressionsmodellen mit einer skalaren Zielgröße y. Implizit galt folgende Verteilungsannahme: y i x i N(µ i, σ 2 ) jetzt: Betrachtung von Regressionsmodellen mit einer binären Zielgröße y, d.h. y i {0, 1} bzw. y π B(π): Dichtefunktion: f (y; π) = π y (1 π) 1 y 7 / 16
8 Binäre Einflussgrößen Linearer Prädiktor bisher: Modellierung des Zusammenhangs zwischen Erwartungswert und Kovariablen durch: µ i = E(y i x i ) = xi T β (der erwartete Response entspricht dem linearen Prädiktor!) jetzt: Für den Erwartungswert der binären Zielgröße gilt, dass E(y i x i ) = µ i = π i. Der erwartete Response ist eine Wahrscheinlichkeit zwischen 0 und 1 und kann nicht dem linearen Prädiktor entsprechen. Transformation nötig! 8 / 16
9 Binäre Einflussgrößen Link- und Responsefunktion Für Regressionsmodelle mit binärem Response gilt: E(y x) = µ = π = h(x T β) und umgekehrt: x T β = h 1 [E(y x)] = g(µ) = g(π) mit h(): Responsefunktion und g(): Linkfunktion 9 / 16
10 Binäre Einflussgrößen Charakterisierung des binären Regressionsmodells 1 Zufallskomponente: 2 Strukturannahme: y i π i B(π i ) 3 Link-Funktion: η i = x T i β (linearer Prädiktor) π i = h(η i ) bzw. η i = g(π i ) 10 / 16
11 Linkfunktionen Gliederung 1 Erweiterte Spezifizierung des linearen Prädiktors 2 Binäre Einflussgrößen 3 Linkfunktionen 4 Binäre Regressionsmodelle mit R 11 / 16
12 Linkfunktionen Logit-Link (natürlicher Link) µ = π = exp(x T β) 1 + exp(x T β) g(π) = log( π 1 π ) = x T β Interpretation log( π 1 π ) = logit(π) : logarithmierte Chancen, sog. Log Odds Linearer Einfluss der Prädiktoren auf die Log Odds, d.h. steigt x r um eine Einheit, so ändert sich die logarithmierte Chance von Y um β r Exponentieller Einfluss der Prädiktoren auf die Odds, d.h. steigt x r um eine Einheit, so ändert sich die Chance von Y um exp(β r ) Falls π = 1 π = 0.5: Chancengleichheit, d.h. kein Erklärungswert der Prädiktoren ( ˆβ = 0). 12 / 16
13 Linkfunktionen Probit-Link Interpretation µ = π = Φ(x T β) g(π) = Φ 1 (π) = x T β Φ(x T β) : Wert der Verteilungsfunktion der Standardnormalverteilung an der Stelle x T β Φ 1 (π) : π-quantil der Standardnormalverteilung Falls π = 0.5 Φ 1 (π) = 0, d.h. kein Erklärungswert der Prädiktoren ( ˆβ = 0). Wenn man die Verteilungsfunktion Φ( ) mit der logistischen Verteilungsfunktion ersetzt, resultiert der Logit-Link. 13 / 16
14 Linkfunktionen log log-link (Extremwertmodell) Interpretation µ = π = 1 exp{ exp(x T β)} g(π) = log{ log(1 π)} = x T β 1 exp{ exp(x T β)}: Wert der Verteilungsfunktion der Gompertz-Verteilung an der Stelle x T β log{ log(1 π)} : log log-link Falls π = 0.5 log{ log(1 π)} 0, d.h. ˆβ 0! Aber: Falls π = 0.5 log 2 { log 2 (1 π)} = 0, d.h. ˆβ = 0 14 / 16
15 Binäre Regressionsmodelle mit R Gliederung 1 Erweiterte Spezifizierung des linearen Prädiktors 2 Binäre Einflussgrößen 3 Linkfunktionen 4 Binäre Regressionsmodelle mit R 15 / 16
16 Binäre Regressionsmodelle mit R Modellbildung glm(formula=modellformel, data=quelldatensatz, family = binomial(link=linkfunktion),...) 1 Angabe der Modellformel: Analog zu LMs! (ggf. mit Wilkinson-Rogers-Notation) 2 Spezifizierung der Verteilungsfamilie: Angabe der Verteilung der abhängigen Variable, in diesem Fall: binomial 3 Spezifikation der Linkfunktion: logit, probit, cloglog usw / 16
Kapitel 4: Binäre Regression
Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,
5.Tutorium Generalisierte Regression
5.Tutorium Generalisierte Regression - Multinomiales/Kummulatives Logit-Modell - Cynthia Huber: 09.12.2014 und 16.12.2014 Michael Hanselmann: 18.12.2014 Institut für Statistik, LMU München 1 / 16 Gliederung
Fortgeschrittene Statistik Logistische Regression
Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E
Binäre abhängige Variablen
Binäre abhängige Variablen Thushyanthan Baskaran [email protected] Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen
Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge
2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten
Statistische Thermodynamik I Lösungen zur Serie 1
Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Korrelation (II) Korrelation und Kausalität
Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler
Verteilungsmodelle. Verteilungsfunktion und Dichte von T
Verteilungsmodelle Verteilungsfunktion und Dichte von T Survivalfunktion von T Hazardrate von T Beziehungen zwischen F(t), S(t), f(t) und h(t) Vorüberlegung zu Lebensdauerverteilungen Die Exponentialverteilung
R ist freie Software und kann von der Website. www.r-project.org
R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird
Varianzanalyse (ANOVA: analysis of variance)
Varianzanalyse (AOVA: analysis of variance) Einfaktorielle VA Auf der Basis von zwei Stichproben wird bezüglich der Gleichheit der Mittelwerte getestet. Variablen müssen Variablen nur nominalskaliert sein.
Analyse von Querschnittsdaten. Regression mit Dummy-Variablen
Analyse von Querschnittsdaten Regression mit Dummy-Variablen Warum geht es in den folgenden Sitzungen? Datum Vorlesung 9.0.05 Einführung 26.0.05 Beispiele 02..05 Forschungsdesigns & Datenstrukturen 09..05
Name (in Druckbuchstaben): Matrikelnummer: Unterschrift:
20-minütige Klausur zur Vorlesung Lineare Modelle im Sommersemester 20 PD Dr. Christian Heumann Ludwig-Maximilians-Universität München, Institut für Statistik 2. Oktober 20, 4:5 6:5 Uhr Überprüfen Sie
Übungen zur Vorlesung. Statistik 2. a) Welche Grundannahmen der linearen Regression sind in Modell (1) verletzt?
Institut für Stochastik WS 2007/2008 Universität Karlsruhe JProf. Dr. H. Holzmann Blatt 7 Dipl.-Math. oec. D. Engel Übungen zur Vorlesung Statistik 2 Aufgabe 25 (keine Abgabe) Angenommen die Zielvariable
Theoretische Grundlagen der Informatik WS 09/10
Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3
Melanie Kaspar, Prof. Dr. B. Grabowski 1
7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen
Export von Pro/ENGINEER Dateien in das STL-Format
TUTORIAL EXPORT VON PRO/ENGINEER- DATEIEN Export von Pro/ENGINEER Dateien in das STL-Format Stand 05/2011 Pro/ENGINEER Wildfire 5.0 2011 Alexander Pflanzer 1. Menü Datei > Kopie speichern 1. Menü Datei
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de
Multivariate Statistik
Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)
Tutorial 2: Simulationen
Tutorial 2: Simulationen Andrea Wiencierz Institut für Statistik, LMU München [email protected] Abschlussarbeiten-Kolloquium, AG Augustin A. Wiencierz (LMU Munich) Literature & LATEX
Quantitative Methoden der Bildungsforschung
Glieung Wieholung Korrelationen Grundlagen lineare Regression Lineare Regression in SPSS Übung Wieholung Korrelationen Standardisiertes Zusammenhangsmaß (unstandardisiert: Kovarianz) linearer Zusammenhang
1.3 Die Beurteilung von Testleistungen
1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen
Koeffizienten der Logitanalyse. Kurt Holm. Almo Statistik-System www.almo-statistik.de [email protected] [email protected]
Koeffizienten der Logitanalyse Kurt Holm Almo Statistik-System www.almo-statistik.de [email protected] [email protected] 1 Kurt Holm Koeffizienten der Logitanalyse Eine häufig gestellte Frage lautet:
Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8
. Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8
13 Öffentliche Güter
1 13ÖffentlicheGüter Deregriffdes"öffentlichenGutes"hateinigespekte,dieÄhnlichkeitenzuderDiskussion vonexterneneffektenaufweisen.einsolchergemeinsamerspektist,daßnichtmehralle EntscheidungsträgerunabhängigvoneinanderüberdasNiveaueinesdesKonsumsoderdes
5.Unsicherheit. 5.1WahrscheinlichkeitundRisiko
1 5.Unsicherheit Bisher sind wir von vollständiger Planungssicherheit seitens der Entscheidungsträger ausgegangen. Dies trifft in vielen Fällen natürlich nicht den Kern eines Entscheidungsproblems.Wennz.B.eineEntscheidungfürdenKaufvonAktiengetroffen
Zusammenhänge zwischen metrischen Merkmalen
Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl
ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?
BINARY CHOICE MODELS 1 mit Pr( Y = 1) = P Y = 0 mit Pr( Y = 0) = 1 P Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? Y i = X i β + ε i Probleme: Nonsense Predictions
Charakteristikenmethode im Beispiel
Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)
8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.
L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 8. Februar 2007 Hinweise:
Musterlösung zu Serie 14
Dr. Lukas Meier Statistik und Wahrscheinlichkeitsrechnung FS 21 Musterlösung zu Serie 14 1. Der Datensatz von Forbes zeigt Messungen von Siedepunkt (in F) und Luftdruck (in inches of mercury) an verschiedenen
Darstellungsformen einer Funktion
http://www.flickr.com/photos/sigfrid/348144517/ Darstellungsformen einer Funktion 9 Analytische Darstellung: Eplizite Darstellung Funktionen werden nach Möglichkeit eplizit dargestellt, das heißt, die
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens 1 Organisatorisches Freitag, 05. Mai 2006: keine Vorlesung! aber Praktikum von 08.00 11.30 Uhr (Gruppen E, F, G, H; Vortestat für Prototyp)
Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":
Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur
Die GFFT-Erfahrungsdatenbank - Potenziale und Ansatz. Prof. Dr. Manfred Broy, TU München Prof. Dr. Andreas Rausch, TU Clausthal
- Potenziale und Ansatz Prof. Dr. Manfred Broy, TU München Prof. Dr. Andreas Rausch, TU Clausthal 1 Inhalt Ausgangssituation Ziel 1: Erstellung von valideren Prognosen für IT-Projekte Ziel 2: Nachhaltige
Korrelation - Regression. Berghold, IMI
Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines
Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff
Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer
8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens
phys4.013 Page 1 8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 2 8.6.3 Beispiel: Orts- und Impuls-Erwartungswerte für
Simplex-Umformung für Dummies
Simplex-Umformung für Dummies Enthält die Zielfunktion einen negativen Koeffizienten? NEIN Optimale Lösung bereits gefunden JA Finde die Optimale Lösung mit dem Simplex-Verfahren! Wähle die Spalte mit
Multinomiale logistische Regression
Multinomiale logistische Regression Die multinomiale logistische Regression dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür, wobei als abhänginge Variable
Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.
Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren
In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert.
Konstante Modelle: In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Der prognostizierte Wert für die Periode T+i entspricht
Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch
Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 9.1 Allgemeine Regressionsanalyse Daten (X j, Y j ), j = 1,..., N unabhängig Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl.
Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005
Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Aufgabe 1: Grundzüge der Wahrscheinlichkeitsrechnung 19 P. Als Manager eines großen
R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007
R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 SG15/25D NAME: Lösungen 1. In einer Packung sind Glühbirnen, davon sind zwei
Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II
Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Wiederholung Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell
15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit
5.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit Einführendes Beispiel ( Erhöhung der Sicherheit bei Flugreisen ) Die statistische Wahrscheinlichkeit, dass während eines Fluges ein Sprengsatz an Bord
q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678
Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [
Übungsaufgaben Tilgungsrechnung
1 Zusatzmaterialien zu Finanz- und Wirtschaftsmathematik im Unterricht, Band 1 Übungsaufgaben Tilgungsrechnung Überarbeitungsstand: 1.März 2016 Die grundlegenden Ideen der folgenden Aufgaben beruhen auf
Die Klein-Gordon Gleichung
Kapitel 5 Die Klein-Gordon Gleichung 5.1 Einleitung Die Gleichung für die Rutherford-Streuung ist ein sehr nützlicher Ansatz, um die Streuung von geladenen Teilchen zu studieren. Viele Aspekte sind aber
Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B
Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip Sommersemester 2010 KLAUSUR Statistik B Hinweise zur Bearbeitung: Bei allen Teilaufgaben
Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung
Mathematik UND/ODER Verknüpfung Ungleichungen Betrag Intervall Umgebung Stefan Gärtner 004 Gr Mathematik UND/ODER Seite UND Verknüpfung Kommentar Aussage Symbolform Die Aussagen Hans kann schwimmen p und
Statistik II für Betriebswirte Vorlesung 2
PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander
Eigenwerte und Eigenvektoren von Matrizen
Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt
Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:
Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung
Wärmebildkamera. Arbeitszeit: 15 Minuten
Wärmebildkamera Arbeitszeit: 15 Minuten Ob Menschen, Tiere oder Gegenstände: Sie alle senden unsichtbare Wärmestrahlen aus. Mit sogenannten Wärmebildkameras können diese sichtbar gemacht werden. Dadurch
erster Hauptsatz der Thermodynamik,
1.2 Erster Hautsatz der hermodynamik Wir betrachten ein thermodynamisches System, dem wir eine beliebige Wärmemenge δq zuführen, und an dem wir eine Arbeit da leisten wollen. Werden umgekehrt dem System
6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)
6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden
Arbeit zu ungewöhnlichen Zeiten Arbeit mit erhöhtem Risiko für Sicherheit und Gesundheit?
Arbeit zu ungewöhnlichen Zeiten Arbeit mit erhöhtem Risiko für Sicherheit und Gesundheit? Anna Wirtz und Friedhelm Nachreiner Gesellschaft für Arbeits-, Wirtschafts- und Organisationspsychologische Forschung
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen
Einführung in die Programmierung
Technische Universität Carolo Wilhelmina zu Brauschweig Institut für rechnergestützte Modellierung im Bauingenierwesen Prof. Dr.-Ing. habil. Manfred Krafczyk Pockelsstraße 3, 38106 Braunschweig http://www.irmb.tu-bs.de
Statistiken über die Bewerber/innen für die Masterstudiengänge am Institut für Statistik, LMU
Statistiken über die Bewerber/innen für die Masterstudiengänge am Institut für Statistik, LMU Selina Kim und Andrea Wiencierz, fortgeschrieben von Paul Fink München, den 1. Juni 2015 Inhaltsverzeichnis
Data Mining: Einige Grundlagen aus der Stochastik
Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener
Tutorial: Homogenitätstest
Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite
Betreuungsbedarfe zwischen Wunsch und Angebot. Die
Dr. Walter Bien (DJI) Betreuungsbedarfe zwischen Wunsch und Angebot. Die Zukunft des U3-Ausbaus AID:A-Befunde Aufwachsen in Deutschland 16 Gliederung I. Status quo der Betreuungssituation II. Wünsche zur
2. Negative Dualzahlen darstellen
2.1 Subtraktion von Dualzahlen 2.1.1 Direkte Subtraktion (Tafelrechnung) siehe ARCOR T0IF Nachteil dieser Methode: Diese Form der Subtraktion kann nur sehr schwer von einer Elektronik (CPU) durchgeführt
Gleichungen und Ungleichungen
Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1
B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,
Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62
Unabhängigkeit ================================================================== 1. Im Rahmen der sogenannten JIM-Studie wurde in Deutschland im Jahr 2012 der Umgang von Jugendlichen im Alter von 12 bis
AZK 1- Freistil. Der Dialog "Arbeitszeitkonten" Grundsätzliches zum Dialog "Arbeitszeitkonten"
AZK 1- Freistil Nur bei Bedarf werden dafür gekennzeichnete Lohnbestandteile (Stundenzahl und Stundensatz) zwischen dem aktuellen Bruttolohnjournal und dem AZK ausgetauscht. Das Ansparen und das Auszahlen
Zeichen bei Zahlen entschlüsseln
Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren
Kapitalerhöhung - Verbuchung
Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.
9. Schätzen und Testen bei unbekannter Varianz
9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in
2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen
4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form
OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland
OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben
Keine Disketteneinreichung ab 1. Februar 2014
Keine Disketteneinreichung ab 1. Februar 2014 Sehr geehrte Damen und Herren, die nationalen Lastschrift- und Überweisungsverfahren werden ab 1. Februar 2014 zu Gunsten der SEPA-Zahlungsaufträge eingestellt.
Lösung. Prüfungsteil 1: Aufgabe 1
Zentrale Prüfung 01 Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Schule und Weiterbildung des Landes. Prüfungsteil 1: Aufgabe 1 a)
Kap. 8: Speziell gewählte Kurven
Stefan Lucks 8: Spezielle Kurven 82 Verschl. mit Elliptischen Kurven Kap. 8: Speziell gewählte Kurven Zur Erinnerung: Für beliebige El. Kurven kann man den Algorithmus von Schoof benutzen, um die Anzahl
Mathematischer Vorbereitungskurs für Ökonomen
Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen
Bevölkerung mit Migrationshintergrund an der Gesamtbevölkerung 2012
Statistische Übersicht inkl. dem Vergleich zwischen und zur (Aus-)Bildungssituation von jungen Menschen mit und ohne Migrationshintergrund 1 in den Bundesländern nach dem Mikrozensus Erstellt im Rahmen
Dokumentation zur Versendung der Statistik Daten
Dokumentation zur Versendung der Statistik Daten Achtung: gem. 57a KFG 1967 (i.d.f. der 28. Novelle) ist es seit dem 01. August 2007 verpflichtend, die Statistikdaten zur statistischen Auswertung Quartalsmäßig
Wichtige Information zur Verwendung von CS-TING Version 9 für Microsoft Word 2000 (und höher)
Wichtige Information zur Verwendung von CS-TING Version 9 für Microsoft Word 2000 (und höher) CS-TING Version 9 Das Programm CS-TING Version 9 für Microsoft Word 2000 (und höher) verwendet Makros bei der
Aufgaben zur Flächenberechnung mit der Integralrechung
ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph
Vorgestellt von Hans-Dieter Stubben
Neue Lösungen in der GGf-Versorgung Vorgestellt von Hans-Dieter Stubben Geschäftsführer der Bundes-Versorgungs-Werk BVW GmbH Verbesserungen in der bav In 2007 ist eine wichtige Entscheidung für die betriebliche
(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu
Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die
Professionelle Seminare im Bereich MS-Office
Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion
DIFFERENTIALGLEICHUNGEN
DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung
HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN
HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät
Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über
Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion
Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression
Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Speziell im Zusammenhang mit der Ablehnung der Globalhypothese werden bei einer linearen Einfachregression weitere Fragestellungen
Arbeitsschritte EAÜ Leistungserbringer Einnahmen erfassen
Arbeitsschritte EAÜ Leistungserbringer Einnahmen erfassen 1. Das Projekt auswählen Nach dem Anmelden in der Datenbank im Menü [Vorhaben] den Untermenüpunkt [Vorhabenübersicht] wählen. Dort bitte das entsprechende
Pädagogische Hochschule Thurgau. Lehre Weiterbildung Forschung
Variante 1 Swisscom-Router direkt ans Netzwerk angeschlossen fixe IP-Adressen (kein DHCP) 1. Aufrufen des «Netz- und Freigabecenters». 2. Doppelklick auf «LAN-Verbindung» 3. Klick auf «Eigenschaften» 4.
