5.Tutorium Generalisierte Regression

Größe: px
Ab Seite anzeigen:

Download "5.Tutorium Generalisierte Regression"

Transkript

1 5.Tutorium Generalisierte Regression - Multinomiales/Kummulatives Logit-Modell - Cynthia Huber: und Michael Hanselmann: Institut für Statistik, LMU München 1 / 16

2 Gliederung 1 Multinomialverteilung 2 Multinomiales Logit-Modell 3 Kummulatives Logit-Modell 4 Mehrkategoriale Modelle mit R 2 / 16

3 Multinomialverteilung Gliederung 1 Multinomialverteilung 2 Multinomiales Logit-Modell 3 Kummulatives Logit-Modell 4 Mehrkategoriale Modelle mit R 3 / 16

4 Multinomialverteilung Multinomialverteilung mit Redundanzen: s = 1,..., k: i = 1,..., n: m s : π s : Y M(n, π T = (π 1,..., π k )) P(y T = (m 1,..., m k )) = n! m 1!... m k! πm π m k k Index für Kategorien Index für Beobachtungen Anzahl der Beobachtungen in Kategorie s Wahrscheinlichkeit für Kategorie s 4 / 16

5 Multinomialverteilung Multinomialverteilung ohne Redundanzen Sei Kategorie k Referenzkategorie: k π s = 1 π k = 1 π 1... π k 1=q s=1 k m s = n m k = n m 1... m k 1=q s=1 s : 0 π s 1 m s {1,..., n} P(y T n! = (m 1,..., m k )) = m 1!... (n m 1... m q )! π m (1 π 1... π q ) (n m 1... m q) 5 / 16

6 Multinomiales Logit-Modell Gliederung 1 Multinomialverteilung 2 Multinomiales Logit-Modell 3 Kummulatives Logit-Modell 4 Mehrkategoriale Modelle mit R 6 / 16

7 Multinomiales Logit-Modell Multinomiale Zielgrößen bisher: Betrachtung des Logit-Modells für binäre Zielgrößen: ( ) P(yi = 1 x i ) log = x T i β P(y i = k = 2 x i ) jetzt: Betrachtung des Logit-Modells für multinomialverteilte Zielgrößen, d.h. y i {1,..., k} 7 / 16

8 Multinomiales Logit-Modell Link-und Responsefunktion {}}{ Multinomiales Logit-Modell für r = 1,..., k 1: log ( ) P(yi = r x i ) = x T i β P(y i = k x i ) r q bzw. P(y i = r x) = exp{x T i β r } 1 + k 1 s=1 exp{xt i β s } 8 / 16

9 Multinomiales Logit-Modell Link-und Responsefunktion Außerdem gilt: x T i β k = log ( ) P(yi = k x i ) = log(1) = 0 P(y i = k x i ) und somit P(y i = k x i ) = 0 {}}{ exp{ x T i β k } 1 + k 1 s=1 exp{xt i β s } = k 1 s=1 exp{xt i β s } 9 / 16

10 Multinomiales Logit-Modell Interpretation Beachte: Kategorie k ist Referenzkategorie! Interpretation über die logarithimierten Chancen wie beim binären Logit-Modell, jedoch jetzt immer im Bezug auf die Referenzkategorie k. Betrachte: log ( P(y=r xi ) P(y=k x i ) ) = log ( πr π k ) = x T i β r Steigt x j um eine Einheit, so ändert sich die logarithmierte Chance von Y=r zu Y=k um β rj (Effekt von der j-ten Einflussgröße aus der r-ten Kategorie). Steigt x j um eine Einheit, so ändert sich die Chance von Y=r zu Y=k um exp(β rj ) 10 / 16

11 Kummulatives Logit-Modell Gliederung 1 Multinomialverteilung 2 Multinomiales Logit-Modell 3 Kummulatives Logit-Modell 4 Mehrkategoriale Modelle mit R 11 / 16

12 Kummulatives Logit-Modell Problemstellung Betrachte wieder eine Zielgröße Y {1,..., k}, jedoch nun ist Y ordinalskaliert, d.h. die Kategorien lassen sich ordnen. Bisheriges multinomiales Modell ist anwendbar, nutzt jedoch die ordinale Struktur der Daten nicht aus kummulatives Modell! Allgemeine Modellformulierung: P(Y r x i ) = F (γ 0r + x T i γ) 12 / 16

13 Kummulatives Logit-Modell Logistische Verteilungsfunktion Nimmt man für F die logistische Verteilungsfunktion an, so erhält man folgendes Modell: P(y r x i ) = exp{γ 0r + x T i γ} 1 + exp{γ 0r + x T i γ} bzw. ( ) P(y r xi ) log = γ 0r + x T i γ P(y > r x i ) }{{} kummulierte Logits 13 / 16

14 Kummulatives Logit-Modell Besonderheit des Modells Betrachtet man zwei Populationen x 1 und x 2 (z.b. jung und alt), so gilt: P(Y r x 1 )/P(Y > r x 1 ) P(Y r x 2 )/P(Y > r x 2 ) = exp(γ 0r + x T 1 γ) exp(γ 0r + x T 2 γ) = exp((xt 1 x T 2 )γ) das Odds-Ratio ist unabhängig von Kategorie r Proportional Odds Model Interpretation: Die Chancenverhältnisse sind unabhängig von der betrachteten Schwelle r und nur proportional zum Unterschied von x 1 und x 2 14 / 16

15 Mehrkategoriale Modelle mit R Gliederung 1 Multinomialverteilung 2 Multinomiales Logit-Modell 3 Kummulatives Logit-Modell 4 Mehrkategoriale Modelle mit R 15 / 16

16 Mehrkategoriale Modelle mit R Nützliche R-Funktionen multinom() aus Paket "nnet" multinomiales Logit-Modell mit beobachtungsspezifischem Prädiktor η ir = x T i β r polr() aus Library "MASS" proportional odds logistic regression Fit ordinaler Logit-Modelle (per Default) Fit ordinaler Probit-Modelle bei Angabe des Arguments method = "probit" 16 / 16

2.Tutorium Generalisierte Regression

2.Tutorium Generalisierte Regression 2.Tutorium Generalisierte Regression - Binäre Regression - Moritz Berger: 04.11.2013 und 11.11.2013 Shuai Shao: 06.11.2013 und 13.11.2013 Institut für Statistik, LMU München 1 / 16 Gliederung 1 Erweiterte

Mehr

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

Statistische Modellierung Merkblatt

Statistische Modellierung Merkblatt Inhaltsverzeichnis Statistische Modellierung Merkblatt Welches Modell nimmt man wann?... 1 Logit:... 2 Probit:... 2 Poisson:...2 Loglinear:... 2 multinomiales Logit:... 2 Ordinales Logit (PROC LOGISTIC

Mehr

Ordinale abhängige Variablen. Einführung Regressionsmodelle für ordinale Variablen Empirisches Beispiel Ausblick

Ordinale abhängige Variablen. Einführung Regressionsmodelle für ordinale Variablen Empirisches Beispiel Ausblick Kap. 6: Ordinale abhängige Variablen Einführung Regressionsmodelle für ordinale Variablen Empirisches Beispiel Ausblick 6.1 Einführung Typische ökonomische Beispiele für ordinale abhängige Variablen: Bildungsniveau

Mehr

Empirische Analysen mit dem SOEP

Empirische Analysen mit dem SOEP Empirische Analysen mit dem SOEP Methodisches Lineare Regressionsanalyse & Logit/Probit Modelle Kurs im Wintersemester 2007/08 Dipl.-Volksw. Paul Böhm Dipl.-Volksw. Dominik Hanglberger Dipl.-Volksw. Rafael

Mehr

Logistische Regression in SAS

Logistische Regression in SAS Logistische Regression in SAS Oliver Kuß Medizinische Universitätsklinik, Abt. Klinische Sozialmedizin, Bergheimer Str. 58, 69115 Heidelberg, email: [email protected] 3. Konferenz für SAS -Anwender

Mehr

Zusammenhangsanalyse in Kontingenztabellen

Zusammenhangsanalyse in Kontingenztabellen Zusammenhangsanalyse in Kontingenztabellen Bisher: Tabellarische / graphische Präsentation Jetzt: Maßzahlen für Stärke des Zusammenhangs zwischen X und Y. Chancen und relative Chancen Zunächst 2 2 - Kontingenztafel

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

Logistische Regression

Logistische Regression Logistische Regression Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Logistische Regression Beispiel 1: Herzerkrankungsdaten aus Framingham Log Odds Modell Beispiel 1: Einfluss von Blutdruck Maximum

Mehr

Bivariate Analyseverfahren

Bivariate Analyseverfahren Bivariate Analyseverfahren Bivariate Verfahren beschäftigen sich mit dem Zusammenhang zwischen zwei Variablen Beispiel: Konservatismus/Alter Zusammenhangsmaße beschreiben die Stärke eines Zusammenhangs

Mehr

Logit-Analyse mit ordinalen und nominalen abhängigen Variablen

Logit-Analyse mit ordinalen und nominalen abhängigen Variablen Logit-Analyse mit ordinalen und nominalen abhängigen Variablen Regressionsmodelle für Politikwissenschaftler Übersicht Das multinomiale Logit-Modell Das konditionale Logit-Modell Regressionsmodelle für

Mehr

Logistische Regression

Logistische Regression Logistische Regression Teil 2: Beispiel Dirk Enzmann Fortgeschrittene quantitative Methoden der Kriminologie 29.04.206 Universität Hamburg Dirk Enzmann (Hamburg) Logistische Regression UHH, 29.04.206 /

Mehr

Logistische Regression I. Odds, Logits, Odds Ratios, Log Odds Ratios

Logistische Regression I. Odds, Logits, Odds Ratios, Log Odds Ratios Logistische Regression I. Odds, Logits, Odds Ratios, Log Odds Ratios PD Dr.Gabriele Doblhammer, Fortgescrittene Methoden, SS2004 Logistische Regression Tabelle 2 Alter und Symptome von Herz-/Kreislauferkrankung(CD)

Mehr

Generalisierte Regression

Generalisierte Regression Institut für Statistik Ludwig Maximilians Universität München Wintersemester 2011/2011 Generalisierte Regression Mitschrift zur Vorlesung von Prof. Dr. Tutz L A TEX-Satz von Sebastian Koch und Christian

Mehr

Von Kernkraftwerken zu Space Shuttles

Von Kernkraftwerken zu Space Shuttles Statistische Methoden in Forschung und Alltag Johannes Hain Lehrstuhl für Mathematik VIII Statistik Universität Würzburg 01.03.2011 Das erwartet einen Mathematik-Studenten auf der Uni... ... oder das hier:

Mehr

Bachelorarbeit. Vergleich verschiedener Verfahren zur Datenimputation

Bachelorarbeit. Vergleich verschiedener Verfahren zur Datenimputation Ludwig-Maximilians-Universität München Institut für Statistik Bachelorarbeit Vergleich verschiedener Verfahren zur Datenimputation Autor: Susanne Rubenbauer Betreuer: Prof. Dr. Christian Heumann Datum:

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Statistik & Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike [email protected]

Mehr

6.0 Logistische Regression. 6 Logistische Regression. 6.1 Das binäre Modell. 6 Logistische Regression

6.0 Logistische Regression. 6 Logistische Regression. 6.1 Das binäre Modell. 6 Logistische Regression 6.0 Logistische Regression 6.1 Das binäre Modell 6.1 Das binäre Modell Sei x der Vektor der Einflussgrößen mit einem Eins-Element, um die Regressionskonstante zu modellieren. Angenommen, es gilt das Regressionsmodell:

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 5. Vorlesung Verteilungsfunktion (VF) Definition 9 Die Verteilungsfunktion (VF) einer Zufallsgröße X ist F : R R definiert als F (x) := P({ω Ω : X (ω) x}) = P( X x ) für jedes x R. Satz 9 - Eigenschaften

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Kategorielle Daten. Seminar für Statistik Markus Kalisch

Kategorielle Daten. Seminar für Statistik Markus Kalisch Kategorielle Daten Markus Kalisch 1 Phase 3 Studie: Wirksamer als Placebo? Medikament Placebo Total Geheilt 15 9 24 Nicht geheilt 10 11 21 Total 25 20 45 Grundfrage: Sind Heilung und Medikamentengabe unabhängig?

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Inferenzstatistik in Regressionsmodellen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für

Mehr

Übung zur Logistischen Regression Juli 2011

Übung zur Logistischen Regression Juli 2011 Lehrveranstaltung Empirische Forschung und Politikberatung Sommersemester 2011 Übung zur Logistischen Regression - - - - - 1.Juli 2011 Anja Hall, Bundesinstitut für Berufsbildung, AB 2.2: Qualifikation,

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Regressionsmodelle für diskrete Zielgrößen und korrelierte Beobachtungen. Oliver Kuß*; Uwe Hasenbein**;

Regressionsmodelle für diskrete Zielgrößen und korrelierte Beobachtungen. Oliver Kuß*; Uwe Hasenbein**; Regressionsmodelle für diskrete Zielgrößen und korrelierte Beobachtungen Oliver Kuß*; Uwe Hasenbein**; *Institut für Medizinsche Epidemiologie, Biometrie und Informatik, Martin-Luther-Universität Halle-Wittenberg,

Mehr

Komplexe Analyse von Wahldaten am Beispiel der Wahlen in Deutschland zwischen 1924 und 1933

Komplexe Analyse von Wahldaten am Beispiel der Wahlen in Deutschland zwischen 1924 und 1933 Komplexe Analyse von Wahldaten am Beispiel der Wahlen in Deutschland zwischen 1924 und 1933 André Klima1, Helmut Küchenhoff1, Paul W. Thurner2 1 Statistisches Beratungslabor, Institut für Statistik 2 Geschwister-Scholl-Institut

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Wiederholung Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell

Mehr

ML-Schätzung. Likelihood Quotienten-Test. Zusammenhang Reparametrisierung und Modell unter linearer Restriktion. Es gilt: β = Bγ + d (3.

ML-Schätzung. Likelihood Quotienten-Test. Zusammenhang Reparametrisierung und Modell unter linearer Restriktion. Es gilt: β = Bγ + d (3. Reparametrisierung des Modells Gegeben sei das Modell (2.1) mit (2.5) unter der linearen Restriktion Aβ = c mit A R a p, rg(a) = a, c R a. Wir betrachten die lineare Restriktion als Gleichungssystem. Die

Mehr

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? BINARY CHOICE MODELS 1 mit Pr( Y = 1) = P Y = 0 mit Pr( Y = 0) = 1 P Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? Y i = X i β + ε i Probleme: Nonsense Predictions

Mehr

Dr. Matthias Rudolf: M3 Multivariate Statistik Vorlesung LogRA. Folie Nr. 1

Dr. Matthias Rudolf: M3 Multivariate Statistik Vorlesung LogRA. Folie Nr. 1 2.1 Beispiele 2.2 Odds Ratio 2.3 Modell der logistischen Regression 2.3.1 Modellgleichung 2.3.2 Voraussetzungen 2.4 Schätzungen, Tests und Modellgüte 2.4.1 Schätzung der logistischen Regressionskoeffizienten

Mehr

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Regression. Einfache lineare Regression

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Regression. Einfache lineare Regression Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik Regression Dozent: Fabian Scheipl Material: H. Küchenhoff LMU München 39 Einfache lineare Regression Bestimmung der Regressionsgerade

Mehr

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume 4. Klassifikation Inhalt 4.1 Motivation 4.2 Evaluation 4.3 Logistische Regression 4.4 k-nächste Nachbarn 4.5 Naïve Bayes 4.6 Entscheidungsbäume 4.7 Support Vector Machines 4.8 Neuronale Netze 4.9 Ensemble-Methoden

Mehr

5.Tutorium Multivariate Verfahren

5.Tutorium Multivariate Verfahren 5.Tutorium Multivariate Verfahren - Hauptkomponentenanalyse - Nicole Schüller: 27.06.2016 und 04.07.2016 Hannah Busen: 28.06.2016 und 05.07.2016 Institut für Statistik, LMU München 1 / 18 Gliederung 1

Mehr

Multiple Regressionsanalyse - Kurzabriss

Multiple Regressionsanalyse - Kurzabriss Multiple Regressionsanalyse - Kurzabriss Ziele: Schätzung eines Kriteriums aus einer Linearkombination von Prädiktoren Meist zu Screening-Untersuchungen, um den Einfluß von vermuteten Ursachenvariablen

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Kategoriale abhängige Variablen:

Kategoriale abhängige Variablen: Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell Statistik II

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik. 7. Februar 2008

Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik. 7. Februar 2008 L. Fahrmeir, G. Walter Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 7. Februar 8 Hinweise:. Überprüfen

Mehr

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Logistische Regression II

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Logistische Regression II Institut für Soziologie Dipl.-Soz. Methoden 2 Logistische Regression II Bringen Sie zur nächsten Übung und in die Klausur einen (nicht programmierbaren) Taschenrechner mit! # 2 Programm Wiederholung der

Mehr

2-Stichprobentest für Anteilswerte

2-Stichprobentest für Anteilswerte -Stichprobentest für Anteilswerte Wir betrachten den Anteilswert (Prozentsatz) für ein interessierendes Ereignis in zwei verschiedenen Grundgesamtheiten (π 1, π ) Ziel: Auf der Basis von Stichprobenerhebungen

Mehr

Maximum-Likelihood Schätzung

Maximum-Likelihood Schätzung Maximum-Likelihood Schätzung VL Forschungsmethoden 1 Wiederholung Einführung: Schätzung 2 Likelihood-Schätzung und Generalisiertes Lineares Modell Zufallsverteilungen 3 Lernziele 1 Grundzüge der Likelihood-Schätzung

Mehr

Poisson Regression. Verallgemeinerte Lineare Modelle (GLMs)

Poisson Regression. Verallgemeinerte Lineare Modelle (GLMs) Poisson Regression Verallgemeinerte Lineare Modelle (GLMs) 28.11.2011 Poisson Regression Aus der Einführungsvorlesung Poisson-Verteilung ist in der Regel gut geeignet, um Anzahlen zu modellieren. Frage

Mehr

Semiparametrische Multinomiale Logit-Modelle zur Markenwahl-Analyse

Semiparametrische Multinomiale Logit-Modelle zur Markenwahl-Analyse Semiparametrische Multinomiale Logit-Modelle zur Markenwahl-Analyse Thomas Kneib Institut für Statistik Ludwig-Maximilians-Universität München gemeinsam mit Bernhard Baumgartner Universität Regensburg

Mehr

Lineare Klassifikatoren. Volker Tresp

Lineare Klassifikatoren. Volker Tresp Lineare Klassifikatoren Volker Tresp 1 Klassifikatoren Klassifikation ist die zentrale Aufgabe in der Mustererkennung Sensoren liefern mir Informationen über ein Objekt Zu welcher Klasse gehört das Objekt:

Mehr

Eine und zwei kategorielle Variablen

Eine und zwei kategorielle Variablen Eine und zwei kategorielle Variablen 7.11.2011 Einführung Kategorielle Variable, Faktor Eine kategorielle Variable (Faktor) hält fest, zu welcher Kategorie eine Beobachtung gehört. Falls die Kategorien

Mehr

1 Binäre Regression (I)

1 Binäre Regression (I) Übung zur Vorlesung Generalisierte Regressionsmodelle Blatt 2 Gerhard Tutz, Moritz Berger, Wolfgang Pößnecker WiSe 14/15 1 Binäre Regression (I) Aufgabe 1 Der Datensatz shuttle beschreibt für die 23 Space

Mehr

Statistische Inferenz bei ROC Kurven. Notation. Man unterscheidet:

Statistische Inferenz bei ROC Kurven. Notation. Man unterscheidet: Statistische Inferenz bei ROC Kurven Notation Man unterscheidet: 1. Nichtparametrische, empirische Methoden zur Berechnung der empirischen ROC Kurve 2. Parametrische Ansätze, die recht starke Annahmen

Mehr

5. Stichproben und Statistiken

5. Stichproben und Statistiken 5. Stichproben und Statistiken Problem: Es sei X eine ZV, die einen interessierenden Zufallsvorgang repräsentiere Man möchte die tatsächliche Verteilung von X kennenlernen (z.b. mittels der VF F X (x)

Mehr

3. Multinomiale Modelle

3. Multinomiale Modelle 3. Multinomiale Modelle 3.1. Schätzproblem 3.2. Standardmodell 3.3. Schätzverfahren 3.4. Interpretation der Parameter 3.5. Unabhängigkeit irrelevanter Alternativen (IIA 3.6. Modellerweiterungen 3.1. Schätzproblem

Mehr

Polytome logistische Regression: Auswertung einer Fall-Kontroll-Studie

Polytome logistische Regression: Auswertung einer Fall-Kontroll-Studie Poster Polytome logistische Regression: Auswertung einer Fall-Kontroll-Studie Silvia Sander Institut für Epidemiologie und Medizinische Biometrie Universität Ulm Schwabstr 13 89075 Ulm silviasander@uni-ulmde

Mehr

Gemischte Modelle zur Schätzung geoadditiver Regressionsmodelle

Gemischte Modelle zur Schätzung geoadditiver Regressionsmodelle Gemischte Modelle zur Schätzung geoadditiver Regressionsmodelle Thomas Kneib & Ludwig Fahrmeir Institut für Statistik, Ludwig-Maximilians-Universität München 1. Regressionsmodelle für geoadditive Daten

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayes sches Lernen Niels Landwehr Überblick Grundkonzepte des Bayes schen Lernens Wahrscheinlichstes Modell gegeben Daten Münzwürfe

Mehr

Stochastik Praktikum Markov Chain Monte Carlo Methoden

Stochastik Praktikum Markov Chain Monte Carlo Methoden Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

Logistische Regression (in SPSS)

Logistische Regression (in SPSS) Fakultät für Humanwissenschaften Sozialwissenschaftliche Methodenlehre Prof. Dr. Daniel Lois Logistische Regression (in SPSS) Stand: April 2015 (V2.0) Inhaltsverzeichnis 1. Grundlagen 3 2. Logit-Funktion

Mehr

FRAGESTUNDE WS 2016/17 QM 2. Dr. Christian Schwarz 1

FRAGESTUNDE WS 2016/17 QM 2. Dr. Christian Schwarz 1 FRAGESTUNDE Dr. Christian Schwarz 1 #2 - Allgemein Q: Müssen wir den Standard Error händisch berechnen können? R: Nein. Q: Hat das Monte Carlo Experiment irgendeine Bedeutung für uns im Hinblick auf die

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

Logistische Regression

Logistische Regression Grundideen Logistische Regression Exkurs Logistische Regression Auch nachzulesen bei: http://www.psychologie.uniwuerzburg.de/methoden/lehre/skripten/hs_meth_evaluation/hs_evaluation_logistisch eregression.pdf

Mehr

Zeitreihenanalyse. Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation

Zeitreihenanalyse. Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation Zeitreihenanalyse Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation Beispiel für Zeitreihe Andere Anwendungen Inventarmanagment Produktionsplanung

Mehr

Unterlagen zu Fisher s Exact Test, Vergleich von Anteilswerten und logistischer Regression. Robin Ristl. Wintersemester 2012/13

Unterlagen zu Fisher s Exact Test, Vergleich von Anteilswerten und logistischer Regression. Robin Ristl. Wintersemester 2012/13 Unterlagen zu Fisher s Exact Test, Vergleich von Anteilswerten und logistischer Regression Robin Ristl Wintersemester 2012/13 1 Exakter Test nach Fisher Alternative zum Chi-Quadrat Unabhängigkeitstest

Mehr

Relative Survival Modelle neue Ansätze II

Relative Survival Modelle neue Ansätze II Relative Survival Modelle neue Ansätze II Seminar: Moderne statistische Methoden in der Epidemiologie Seminarleiter: Dr. Michael Schomaker Referent: Sarah Musiol 27.06.2017 Gliederung Motivation Methoden

Mehr

Arbeitslosigkeit, berufliche Qualifikation und Gesundheit

Arbeitslosigkeit, berufliche Qualifikation und Gesundheit Arbeitslosigkeit, berufliche Qualifikation und Gesundheit Eine Analyse auf Basis von Daten der Studie "Gesundheit in Deutschland aktuell" (GEDA) aus den Jahren 2010 und 2012 01.06.2017 Julia Dobrindt -

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 25. Januar 2013 1 Der χ 2 -Anpassungstest 2 Exakter Test nach Fisher Mendelsche Erbregeln als Beispiel für mehr

Mehr

Diagnose und Prognose: Kurzfassung 4

Diagnose und Prognose: Kurzfassung 4 Diagnose und Prognose: Kurzfassung 4 Ziele der 4. Vorlesung Inhaltliche Verbindung zwischen inhaltlicher Statistisches Konzept / Problemstellung Problemstellung und statistischem statistische Methode Konzept/Methode

Mehr

Neuere Ansätze zur Auswahl von Prädiktionsmodellen. Von Veronika Huber

Neuere Ansätze zur Auswahl von Prädiktionsmodellen. Von Veronika Huber Neuere Ansätze zur Auswahl von Prädiktionsmodellen Von Veronika Huber Gliederung Anwendungsbereiche von Prädiktionsmodellen Traditionelle Methoden zur Prüfung der Wirksamkeit Neuere Ansätze zur Prüfung

Mehr

Kap. 2: Generalisierte lineare Modelle (GLMs) Lineare und generalisierte lineare Modelle Schätzung und Inferenz in GLMs Literatur

Kap. 2: Generalisierte lineare Modelle (GLMs) Lineare und generalisierte lineare Modelle Schätzung und Inferenz in GLMs Literatur Kap. 2: Generalisierte lineare Modelle (GLMs) Lineare und generalisierte lineare Modelle Schätzung und Inferenz in GLMs Literatur 2.1 Lineare und generalisierte lineare Modelle Das klassische lineare Regressionsmodell

Mehr

Statistische Datenanalyse

Statistische Datenanalyse Werner A. Stahel Statistische Datenanalyse Eine Einführung für Naturwissenschaftler 3., durchgesehene Auflage vieweg VII 1 Einleitung 1 1.1 Was ist Statistische Datenanalyse? 1 1.2 Ziele 6 1.3 Hinweise

Mehr

Binäre Auswahlmodelle (Logit, Probit,...)

Binäre Auswahlmodelle (Logit, Probit,...) Binäre Auswahlmodelle Logit, Probit, ) 13. November 2017 Die nächsten Kapitel beschäftigen sich mit der Frage, wie man vorgeht, wenn die eigentlich durch ein lineares Regressionsmodell zu erklärende Variable

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie () WiSe /3 Univariate und bivariate Verfahren Univariate

Mehr

Entscheidungsbaumverfahren

Entscheidungsbaumverfahren Entscheidungsbaumverfahren Allgemeine Beschreibung Der Entscheidungsbaum ist die Darstellung einer Entscheidungsregel, anhand derer Objekte in Klassen eingeteilt werden. Die Klassifizierung erfolgt durch

Mehr

Verkehrsmittelwahl. Simultanes Verfahren. Verkehrs. verteilung Zielwahl. Verkehrs erzeugung. verteilung. Ziel j. V ij. Start i.

Verkehrsmittelwahl. Simultanes Verfahren. Verkehrs. verteilung Zielwahl. Verkehrs erzeugung. verteilung. Ziel j. V ij. Start i. Verkehrsmittelwahl Simultanes Verfahren Verkehrs Verkehrs erzeugung Aktivitätenwahl erzeugung Verkehrs Verkehrs verteilung verteilung Zielwahl Verkehrs Verkehrs aufteilung aufteilung Verkehrsmittel wahl

Mehr

Binäre abhängige Variablen

Binäre abhängige Variablen Binäre abhängige Variablen Thushyanthan Baskaran [email protected] Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen

Mehr

John Komlos Bernd Süssmuth. Empirische Ökonomie. Eine Einführung in Methoden und Anwendungen. 4y Springer

John Komlos Bernd Süssmuth. Empirische Ökonomie. Eine Einführung in Methoden und Anwendungen. 4y Springer John Komlos Bernd Süssmuth Empirische Ökonomie Eine Einführung in Methoden und Anwendungen 4y Springer 1 Einführung 1 1.1 Ökonometrie 1 2 Vorüberlegungen und Grundbegriffe 7 2.1 Statistik als Grundlage

Mehr

1 Einführung Ökonometrie... 1

1 Einführung Ökonometrie... 1 Inhalt 1 Einführung... 1 1.1 Ökonometrie... 1 2 Vorüberlegungen und Grundbegriffe... 7 2.1 Statistik als Grundlage der Empirischen Ökonomie... 7 2.2 Abgrenzung und Parallelen zu den Naturwissenschaften...

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Beeinflusst die Arbeitslosenquote die (Wieder )Eingliederung in das Erwerbsleben nach medizinischer Rehabilitation?

Beeinflusst die Arbeitslosenquote die (Wieder )Eingliederung in das Erwerbsleben nach medizinischer Rehabilitation? Beeinflusst die Arbeitslosenquote die (Wieder )Eingliederung in das Erwerbsleben nach medizinischer Rehabilitation? Rainer Kaluscha 1, Silke Jankowiak 1, Jakob Holstiege 1, Gert Krischak 1,2 1. Institut

Mehr

6. Probabilistische Retrievalmodelle. Norbert Fuhr

6. Probabilistische Retrievalmodelle. Norbert Fuhr 6. Probabilistische Retrievalmodelle Norbert Fuhr Notationen Q α Q Q β Q Q D R rel. judg. D α D D β D D D ρ IR q Q Anfrage d D Dokument q k Q: d m D: Anfragerepräsentation Dokumentrepräsentation qk D QD

Mehr

Die Regressionsanalyse

Die Regressionsanalyse Die Regressionsanalyse Zielsetzung: Untersuchung und Quantifizierung funktionaler Abhängigkeiten zwischen metrisch skalierten Variablen eine unabhängige Variable Einfachregression mehr als eine unabhängige

Mehr

Probeklausur für die Abschlussklausur Statistik II

Probeklausur für die Abschlussklausur Statistik II Georg-August-Universität Göttingen Methodenzentrum Sozialwissenschaften Probeklausur für die Abschlussklausur Statistik II Nachname: Vorname: Matrikelnummer: Studiengang bitte ankreuzen BA: Diplom: Magister:

Mehr

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik...

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik... Inhaltsverzeichnis 1 Über dieses Buch... 11 1.1 Zum Inhalt dieses Buches... 13 1.2 Danksagung... 15 2 Zur Relevanz der Statistik... 17 2.1 Beispiel 1: Die Wahrscheinlichkeit, krank zu sein, bei einer positiven

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 8. Vorlesung Pseudozufallszahlen sind, wie der Name schon sagt, keine echten Zufallszahlen, sondern werden durch Generatoren erzeugt. Als Pseudozufallszahlen bezeichnet man Zahlenfolgen die durch einen

Mehr

SPEZIALGEBIETE: ÖKONOMETRIE

SPEZIALGEBIETE: ÖKONOMETRIE SPEZIALGEBIETE: ÖKONOMETRIE Lehrstuhl Ökonometrie und Statistik Technische Universität Dortmund Studienjahr 2017/18 27. Juni 2017 1 / 14 Übersicht Bis jetzt fixiert: Advanced Econometrics (WS 2017/18)

Mehr

Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 6 Gerhard Tutz, Jan Ulbricht WS 05/06.

Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 6 Gerhard Tutz, Jan Ulbricht WS 05/06. Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt Gerhard Tutz, Jan Ulbricht WS 05/0 Lösung Aufgabe 4 Notation: X: Rauchen, Y : chronische Bronchitis S X {ja, nein} {a 1, a },

Mehr

4 Statistik der Extremwertverteilungen

4 Statistik der Extremwertverteilungen In diesem Kapitel beschäftigen wir uns mit statistischen Anwendungen der Extremwerttheorie. Wir werden zwei verschiedene Zugänge zur Modellierung von Extremwerten betrachten. Der erste Zugang basiert auf

Mehr

Logistische Regression mit Messwiederholungen: Anwendung von PROC GENMOD in SAS

Logistische Regression mit Messwiederholungen: Anwendung von PROC GENMOD in SAS Logistische Regression mit Messwiederholungen: Anwendung von PROC GENMOD in SAS Birgit Hay Silvia Sander Schwabstraße 13 Schwabstraße 13 89070 Ulm 89070 Ulm [email protected] [email protected]

Mehr

Nachholklausur zur Vorlesung Schätzen und Testen I. 04. April Bitte ausfüllen und unterschreiben!!!

Nachholklausur zur Vorlesung Schätzen und Testen I. 04. April Bitte ausfüllen und unterschreiben!!! Nachholklausur zur Vorlesung Schätzen und Testen I 04. April 2013 Volker Schmid, Ludwig Bothmann, Julia Sommer Aufgabe 1 2 3 4 5 6 Punkte Note Bitte ausfüllen und unterschreiben!!! Name, Vorname: Matrikelnummer:

Mehr

Kendall s Tau. Betrachte Paare von Beobachtungen (x i, y i ) und (x j, y j ) Ein Paar heißt:

Kendall s Tau. Betrachte Paare von Beobachtungen (x i, y i ) und (x j, y j ) Ein Paar heißt: Kendall s Tau Betrachte Paare von Beobachtungen (x i, y i ) und (x j, y j ) Ein Paar heißt: konkordant, diskordant, falls x i < x j und y i < y j oder x i > x j und y i > y j falls x i < x j und y i >

Mehr

Boole sches Retrieval als frühes, aber immer noch verbreitetes IR-Modell mit zahlreichen Erweiterungen

Boole sches Retrieval als frühes, aber immer noch verbreitetes IR-Modell mit zahlreichen Erweiterungen Rückblick Boole sches Retrieval als frühes, aber immer noch verbreitetes IR-Modell mit zahlreichen Erweiterungen Vektorraummodell stellt Anfrage und Dokumente als Vektoren in gemeinsamen Vektorraum dar

Mehr

2.1 Gemeinsame-, Rand- und bedingte Verteilungen

2.1 Gemeinsame-, Rand- und bedingte Verteilungen Kapitel Multivariate Verteilungen 1 Gemeinsame-, Rand- und bedingte Verteilungen Wir hatten in unserer Datenmatrix m Spalten, dh m Variablen Demnach brauchen wir jetzt die wichtigsten Begriffe für die

Mehr