Logistische Regression
|
|
|
- Frank Weiss
- vor 8 Jahren
- Abrufe
Transkript
1 Logistische Regression Werner Brannath VO Biostatistik im WS 2006/2007
2 Inhalt Logistische Regression Beispiel 1: Herzerkrankungsdaten aus Framingham Log Odds Modell Beispiel 1: Einfluss von Blutdruck Maximum Likelihood Schätzer Wald Tests für Regressionskoeffizienten Analysis of Deviance Beispiel 1: Einfluss von Blutdruck und Cholesterin Beispiel 2: Leukemie-Daten Zusammenfassung Fall-Kontroll-Studien
3 Beispiel 1: Herzerkrankungsdaten aus Framingham Stichprobe: 1329 männliche Bewohner aus Framingham, Massachusetts im Alter von Jahren Erhoben wurden Cholesterin und Blutdruckwerte (Kovariablen), und Herzkrankheiten ja/nein (dichotome Zielvariable).
4 Beispiel 1: Herzerkrankungsdaten aus Framingham Anteil der Männer mit Herzkrankheiten für verschiedene Blutdruck- und Cholsterinwerte. Cholesterin (mg/100ml) Blutdruck < > 284 < 117 2/53 0/21 0/15 0/20 0/14 1/22 0/ /66 2/27 1/25 8/69 0/24 5/22 1/ /59 0/34 2/21 2/83 0/33 2/26 4/ /65 0/19 0/26 6/81 3/23 2/34 4/ /37 0/16 0/6 3/29 2/19 4/16 1/ /13 0/10 0/11 1/15 0/11 2/13 4/ /21 0/5 0/11 2/27 2/5 6/16 3/14 > 186 1/5 0/1 3/6 1/10 1/7 1/7 1/7 Z.B.: 2 von 53 Männer mit Blutdruck < 117 und Cholesterinwert < 200 hatten Herzkrankheiten.
5 Beispiel 1: Fragestellungen Hat Cholesterin einen Einfluss auf die Wahrscheinlichkeit für Herzerkrankungen? Hat der Blutdruck einen Einfluss auf die Wahrscheinlichkeit für Herzerkrankungen? Gibt es Trends, d.h. wächst die Wahrscheinlichkeit für eine Herzerkrankung mit wachsendem Blutdruck bzw. wachsendem Cholesterin? Wie ist der gemeinsame Einfluß von Cholesterin- und Blutdruck?
6 Logistische Regression Logistische Regression modelliert die Abhängigkeit der Wahrscheinlichkeit π eines bestimmten Ereignisses von den Kovariablen. In Beispiel 1: Abhängigkeit der Wahrscheinlichkeit π für eine Herzerkrankung von Blutdruck und Cholesterinwert.
7 Logistische Transformation Wahrscheinlichkeit π immer zwischen 0 und 1. π kann nicht direkt mit linearen Funktionen (z.b. einer Geraden) modelliert werden. Dewegen wird π zu einem Parameter transformiert, der zwischen und + liegt. Meißt verwendet man die logistische Transformation: π η = logit(π) = log( 1 π ) η = logit(π) wird manchmal als Log Odds bezeichnet.
8 Umkehrung der logistischen Transformation Aus der Logg Odds η kann man die Wahrscheinlichkeit π leicht zurückrechnen: π = 1/{1 + exp( η)} eta = logit(pi)= pi/(1 pi) pi = 1/(1+exp( eta)) eta pi pi eta
9 Logistische Regression Lineares logistisches Regressionsmodell X 1,..., X p Kovariablen Wahrscheinlichkeit für das betrachtete Ereignis: η = log{π/(1 π)} = β 0 + β 1 X β p X p β 0, β 1,..., β p sind die Regressionskoeffizienten. Schätzung der Regressionsparamter Man schätzt β i durch Maximieren der Likelihood sogn. Maximum-Likelihood-Schätzer ˆβ i
10 Beispiel 1: Herzerkrankungsdaten aus Framingham - Einfluss von Blutdruck Blutdruck- Klassen- Herzerkrank- Klasse mitte X 1 ungsrate Prozent < / / / / / / / > /
11 Beispiel 1: Herzerkrankungsdaten aus Framingham - Einfluss von Blutdruck > heart.glm<-glm(cbind(hdis,total-hdis)~x1, >+ family=binomial,data=short1) > summary(heart.glm) Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) <2e-16 x e-07 Interpretation: Die Log Odds η und die Wahrscheinlichkeit π für eine Herzerkrankung erhöhen sich mit steigendem Blutdruck. Die Log Odds is um (0.24) größer, wenn der Blutdruck um eine
12 Beobachtet und geschätzte Log Odds Blutdruck- Herzerkrank- Beobachtete Geschätzte Klasse ungsrate Log Odds Log Odds (saturiertes Modell) (lineares Modell) < >
13 Beobachtet und geschätzte Herzerkrankungsraten proportion beobachtet geschätzt blood pressure
14 Maximum Likelihood Schätzer ˆβ 0, ˆβ 1,..., ˆβ p m i Zahl der Beobachtungen in Gruppe i = 1,..., n y i Zahl der Ereignisse (z.b. Herzerkrankungen) in Gruppe i Die Likelihood ist die Wahrscheinlichkeit unsere Daten zu beobachten: ( ) L(β 0, β 1,..., β p Daten) = Π n mi i=1 π y i i (1 π i ) 1 y i π i = 1/{1 + exp( β 0 β 1 x 1i β p x pi )} y i Maximieren von L(β 0, β 1,..., β p Daten) ˆβ 0, ˆβ 1,..., ˆβ p
15 Wald Test für H 0 : β i = 0 Beispiel ˆβ 1 SE ˆβ1 z 1 p-wert Estimate Std.Error z value Pr(> z ) x e-07 Falls β i = 0, dann gilt (für hinreichend große Stichproben) z i = ˆβ i /SE ˆβ i N(0, 1) approximativ approximativer p-wert = 2 {1 Φ( z i )} [Φ(z) Verteilungsfunktion der Standardnormalverteilung]
16 Analysis of Deviance Analysis of Deviance Table > anova(heart.glm,test= Chisq ) Analysis of Deviance Table Model: binomial, link: logit Response: cbind(hdis, total - hdis) Terms added sequentially (first to last) Df Deviance Resid. Df Resid. Dev P(> Chi ) NULL x e-07
17 Null- und Residual-Deviance Log Likelihood = Logarithmus der Likelihood Residual-Deviance (Deviance): 2 Differenz der Log Likelihood des saturierten Modells zur Log Likelihood des linearen Modells. (Analog zu SS res bei normalverteilten Daten) Null-Deviance: 2 Differenz der Log Likelihood des saturierten Modells zur Log Likelihood des Null-Modells (konstantes π). (Analog zu SS total bei normalverteilten Daten)
18 Deviance Residual Deviance Resid.: Null-Deviance Residual-Deviance (Analog zu SS reg bei normalverteilten Daten) Deviance Resid. ist approximativ χ 2 -verteilt mit df = p Freiheitsgraden. Beispiel Df Deviance Resid. Df Resid. Dev P(> Chi ) NULL x e-07
19 Beispiel 1: Herzerkrankungsdaten - Einfluss von Cholesterin Cholesterin- Klassen- Herzerkrank- Klasse mitte X 2 ungsrate Prozent < / / / / / / > /
20 Beispiel 1: Herzerkrankungsdaten - Einfluss von Blutdruck und Cholesterin > heart.glm2<-glm(cbind(hdis, total-hdis)~x1+x2, >+ family=binomial,data=heart) > summary(heart.glm2) Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) < 2e-16 *** x e-05 *** x e-06 *** -- Signif. codes: 0 *** ** 0.01 * (Dispersion parameter for binomial family taken to be 1) Null deviance: on 55 degrees of freedom Residual deviance: on 53 degrees of freedom Number of Fisher Scoring iterations: 5
21 Beispiel 1: Herzerkrankungsdaten - Einfluss von Blutdruck und Cholesterin > anova(heart.glm2,test= Chisq ) Analysis of Deviance Table Model: binomial, link: logit Response: cbind(hdis, total - hdis) Terms added sequentially (first to last) Df Deviance Resid. Df Resid. Dev P(> Chi ) NULL x e-07 x e-06
22 Beispiel 2: Leukemie-Daten 33 Patienten mit Leukemie Variablen: time wbc ag Überleben in Wochen. Zahl der weißen Blutkörperchen Morphologische Charakteristika der weißen Blutkörperchen ja/nein Einfluss der Variablen wbc und ag auf Überleben; unterscheiden nur ob time 24 oder time< 24
23 Beispiel 2: Logistische Regression > nleuk.lr<-glm(time>=24~ag*i(wbc/1000), >+ family=binomial,data=leuk) > summary(nleuk.lr) Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) agpresent I(wbc/1000) agpresent:i(wbc/1000) (Dispersion parameter for binomial family taken to be 1) Null deviance: on 32 degrees of freedom Residual deviance: on 29 degrees of freedom Number of Fisher Scoring iterations: 4
24 Beispiel 2: Vohersagen Probability of surviving at least 24 weeks absent present 0 e+00 2 e+04 4 e+04 6 e+04 8 e+04 1 e+05 White blood count
25 Beispiel 2: Konfidenzintervalle > options(width=68,digits=4) > library(boot) > confint(nleuk.lr) Waiting for profiling to be done % 97.5 % (Intercept) agpresent I(wbc/1000) agpresent:i(wbc/1000) > exp(confint(nleuk.lr)) Waiting for profiling to be done % 97.5 % (Intercept) agpresent I(wbc/1000) agpresent:i(wbc/1000)
26 Zusammenfassung Die logistische Regression wird angewendet, wenn die Zielvariable entweder ein Anteil oder Wahrscheinlichkeit ist z.b. Anteil Patienten mit neuen Infektionen auf KH-Stationen dichotom ist, d.h. (nur) zwei Werte annehmen kann z.b.: Erkrankt ja/nein; Geheilt ja/nein etc. Kovariablen können belieber Natur sein (metrische, nominal oder ordinal).
27 Beispiel 3: BCG-Impfung und Lepra 260 Fälle von Lepra einer prospektiven Studie Kontrollen, d.h. Personen ohne Lepra (gleiche Region, gleicher Zeitraum wie bei Fällen) BCG-Impfung ja/nein (Nachweisbar durch Impfnarbe) Alter von 0 bis 34 Jahre (in beiden Gruppen) Fragestellung: Wirkt die BCG-Impfung auch gegen Lepra? Falls ja, dann wird bei Kontrollen die Impfungsnarbe im Mittel häufiger (also wahrscheinlicher) als bei Fällen zu finden sein.
28 Beispiel 3: BCG-Impfung und Lepra Fall-Kontrol-Daten Fälle Gesamtzahl Narbe (ja=1,nein=0) Altersklasse
29 Fall-Kontroll-Studien Problem bei Fall-Kontroll-Studien ist, dass die Erkrankungswahrscheinlichkeit (Inzidenz) der Stichprobe nicht repräsentativ für die Grundgesamtheit ist; daher kann die Inzidenz nicht geschätzt werden. Man kann jedoch die sogn. Odds Ratio schätzen: Odds Ratio = = Odds mit N Odds ohne N = P(F N) / P(F kn) P(K N) P(K kn) = P(F N) P(K kn) P(K N) P(F kn) = P(N F) / P(N K ) P(kN F) P(kN K ) F = Fall, K = Kontrolle, N = Narbe, kn = keine Narbe
30 Beispiel 3: Logistische Regression > leprosy.glm<-glm(cbind(cases,total-cases)~age+scar, >+ family=binomial(link=logit),data=leprosy) > anova(leprosy.glm, test= Chisq ) Analysis of Deviance Table Df Deviance Resid. Df Resid. Dev P(> Chi ) NULL age e-40 scar e-05 > cbind(estimate=exp(summary(leprosy.glm)$coefficients[,1]), >+ exp(confint(leprosy.glm))) odds ratio 2.5 % 97.5 % (Intercept) age age age age age age scar
Kapitel 4: Binäre Regression
Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,
Poisson Regression. Verallgemeinerte Lineare Modelle (GLMs)
Poisson Regression Verallgemeinerte Lineare Modelle (GLMs) 28.11.2011 Poisson Regression Aus der Einführungsvorlesung Poisson-Verteilung ist in der Regel gut geeignet, um Anzahlen zu modellieren. Frage
Auswertung und Lösung
Körperkraft [Nm] 0 50 100 150 200 250 0 20 40 60 80 Lean Body Mass [kg] Dieses Quiz soll Ihnen helfen, den R Output einer einfachen linearen Regression besser zu verstehen (s. Kapitel 5.4.1) Es wurden
Logistische Regression I. Odds, Logits, Odds Ratios, Log Odds Ratios
Logistische Regression I. Odds, Logits, Odds Ratios, Log Odds Ratios PD Dr.Gabriele Doblhammer, Fortgescrittene Methoden, SS2004 Logistische Regression Tabelle 2 Alter und Symptome von Herz-/Kreislauferkrankung(CD)
Prognoseintervalle für y 0 gegeben x 0
10 Lineare Regression Punkt- und Intervallprognosen 10.5 Prognoseintervalle für y 0 gegeben x 0 Intervallprognosen für y 0 zur Vertrauenswahrscheinlichkeit 1 α erhält man also analog zu den Intervallprognosen
Seminar zur Energiewirtschaft:
Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable
1 Analyse von Kontigenztafeln: Das loglineare Modell
Übung zur Vorlesung Kategoriale Daten Blatt 3 Gerhard Tutz, Moritz Berger WiSe 15/16 1 Analyse von Kontigenztafeln: Das loglineare Modell Aufgabe 12 Analyse des Datensatzes EyeColor (a) Visualisierung
Unterlagen zu Fisher s Exact Test, Vergleich von Anteilswerten und logistischer Regression. Robin Ristl. Wintersemester 2012/13
Unterlagen zu Fisher s Exact Test, Vergleich von Anteilswerten und logistischer Regression Robin Ristl Wintersemester 2012/13 1 Exakter Test nach Fisher Alternative zum Chi-Quadrat Unabhängigkeitstest
Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik
Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:
1 Binäre Regression (I)
Übung zur Vorlesung Generalisierte Regressionsmodelle Blatt 2 Gerhard Tutz, Moritz Berger, Wolfgang Pößnecker WiSe 14/15 1 Binäre Regression (I) Aufgabe 1 Der Datensatz shuttle beschreibt für die 23 Space
Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)
3 Einfache lineare Regression Einfache lineare Modelle mit R 36 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula =
Ordinale abhängige Variablen. Einführung Regressionsmodelle für ordinale Variablen Empirisches Beispiel Ausblick
Kap. 6: Ordinale abhängige Variablen Einführung Regressionsmodelle für ordinale Variablen Empirisches Beispiel Ausblick 6.1 Einführung Typische ökonomische Beispiele für ordinale abhängige Variablen: Bildungsniveau
Diagnose und Prognose: Kurzfassung 4
Diagnose und Prognose: Kurzfassung 4 Ziele der 4. Vorlesung Inhaltliche Verbindung zwischen inhaltlicher Statistisches Konzept / Problemstellung Problemstellung und statistischem statistische Methode Konzept/Methode
Empirische Analysen mit dem SOEP
Empirische Analysen mit dem SOEP Methodisches Lineare Regressionsanalyse & Logit/Probit Modelle Kurs im Wintersemester 2007/08 Dipl.-Volksw. Paul Böhm Dipl.-Volksw. Dominik Hanglberger Dipl.-Volksw. Rafael
2.Tutorium Generalisierte Regression
2.Tutorium Generalisierte Regression - Binäre Regression - Moritz Berger: 04.11.2013 und 11.11.2013 Shuai Shao: 06.11.2013 und 13.11.2013 Institut für Statistik, LMU München 1 / 16 Gliederung 1 Erweiterte
Schriftliche Prüfung (90 Minuten)
Dr. M. Kalisch Probeprüfung Statistik 1 Sommer 2014 Schriftliche Prüfung (90 Minuten) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten!
Willkommen zur Vorlesung Statistik (Master)
Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften
Maximum-Likelihood Schätzung
Maximum-Likelihood Schätzung VL Forschungsmethoden 1 Wiederholung Einführung: Schätzung 2 Likelihood-Schätzung und Generalisiertes Lineares Modell Zufallsverteilungen 3 Lernziele 1 Grundzüge der Likelihood-Schätzung
Statistische Analyse von Ereigniszeiten
Statistische Analyse von Survival Analysis VO Biostatistik im WS 2006/2007 1 2 3 : Leukemiedaten (unzensiert) 33 Patienten mit Leukemie; Zielvariable Überlebenszeit. Alle Patienten verstorben und Überlebenszeit
Vorlesung: Statistik II für Wirtschaftswissenschaft
Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation
Lineare Regressionen mit R (Ökonometrie SS 2014 an der UdS)
Lineare Regressionen mit R (Ökonometrie SS 2014 an der UdS) Es soll untersucht werden, ob und wie sich Rauchen während der Schwangerschaft auf den Gesundheitszustand des Neugeborenen auswirkt. Hierzu werden
Eine Einführung in R: Varianzanalyse
Eine Einführung in R: Varianzanalyse Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 6. Januar 2011 Bernd Klaus, Verena Zuber Das
Statistik Einführung // Lineare Regression 9 p.2/72
Statistik Einführung Lineare Regression Kapitel 9 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Ledold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Lineare Regression
Tutorial: Regression Output von R
Tutorial: Regression Output von R Eine Firma erzeugt Autositze. Ihr Chef ist besorgt über die Anzahl und die Kosten von Maschinenausfällen. Das Problem ist, dass die Maschinen schon alt sind und deswegen
Nicht-kontinuierliche abhängige Variablen: Das generalisierte lineare Modell und die Parameterschätzung via Maximum Likelihood
Nicht-kontinuierliche abhängige Variablen: Das generalisierte lineare Modell und die Parameterschätzung via Maximum Likelihood Interaktionseffekte Varianz-Kovarianz-Matrix Interaktionseffekte Varianz-Kovarianz-Matrix
Vergleich von Gruppen I
Vergleich von Gruppen I t-test und einfache Varianzanalyse (One Way ANOVA) Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Der unverbundene t-test mit homogener Varianz Beispiel Modell Teststatistik
8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme)
8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme) Annahme B4: Die Störgrößen u i sind normalverteilt, d.h. u i N(0, σ 2 ) Beispiel: [I] Neoklassisches Solow-Wachstumsmodell Annahme einer
Vorlesung: Lineare Modelle
Vorlesung: Lineare Modelle Prof Dr Helmut Küchenhoff Institut für Statistik, LMU München SoSe 2014 5 Metrische Einflußgrößen: Polynomiale Regression, Trigonometrische Polynome, Regressionssplines, Transformationen
Willkommen zur Vorlesung Statistik (Master)
Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Inferenzstatistik in Regressionsmodellen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für
1 Beispiel zur Methode der kleinsten Quadrate
1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25
Dr. Matthias Rudolf: M3 Multivariate Statistik Vorlesung LogRA. Folie Nr. 1
2.1 Beispiele 2.2 Odds Ratio 2.3 Modell der logistischen Regression 2.3.1 Modellgleichung 2.3.2 Voraussetzungen 2.4 Schätzungen, Tests und Modellgüte 2.4.1 Schätzung der logistischen Regressionskoeffizienten
Fall-Kontroll Studien und Selection Bias. 1.4 Fall-Kontroll Studien: Vorbemerkungen
1.4 Fall-Kontroll Studien: Vorbemerkungen Fall-Kontroll Studien und Selection Bias Fall-Kontroll Studien versuchen in gewisser Weise, eine Kohortenstudie zu imitieren, aber auf das oft zeit- und kostenaufwendige
4 Binäre Regressionsmodelle, Folien 2
4 Binäre Regressionsmodelle, Folien 2 Ludwig Bothmann (basierend auf Unterlagen von Nora Fenske) Statistik III für Nebenfachstudierende WS 2014/2015 4.5 Hypothesentests Lineare Hypothesen Betrachtet werden
Bivariate Analyseverfahren
Bivariate Analyseverfahren Bivariate Verfahren beschäftigen sich mit dem Zusammenhang zwischen zwei Variablen Beispiel: Konservatismus/Alter Zusammenhangsmaße beschreiben die Stärke eines Zusammenhangs
Epidemiologie / Biometrie
Wintersemester 2004 / 2005 Epidemiologie / Biometrie Robert Hochstrat 14. März 2005 Zusammenschrift der Übung zur Vorlesung aus dem WS 04/05 Rückfragen, Ergänzungen und Korrekturen an robert [email protected]
Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38
Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate
Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen
Breusch-Pagan-Test I Ein weiterer Test ist der Breusch-Pagan-Test. Im Gegensatz zum Goldfeld-Quandt-Test ist es nicht erforderlich, eine (einzelne) Quelle der Heteroskedastizität anzugeben bzw. zu vermuten.
2-Stichprobentest für Anteilswerte
-Stichprobentest für Anteilswerte Wir betrachten den Anteilswert (Prozentsatz) für ein interessierendes Ereignis in zwei verschiedenen Grundgesamtheiten (π 1, π ) Ziel: Auf der Basis von Stichprobenerhebungen
Übung zur Vorlesung Statistik II SoSe Übungsblatt 7
Übung zur Vorlesung Statistik II SoSe 2014 Übungsblatt 7 2. Juni 2014 ufgabe 24 (4 Punkte): (1.5 Punkte) Berechnen Sie für die folgenden Wahrscheinlichkeiten die zugehörigen Odds: (a) 0.6 (b) 0.2 (c) 0.02
1 Gliederung Zeitreihenökonometrie. Angewandte Ökonometrie (Folien) Zeitreihenökonometrie Universität Basel, FS 09. Dr. Sylvia Kaufmann.
Angewandte Ökonometrie (Folien) Zeitreihenökonometrie Universität Basel, FS 09 Dr Sylvia Kaufmann Februar 2009 Angewandte Ökonometrie, Sylvia Kaufmann, FS09 1 1 Gliederung Zeitreihenökonometrie Einführung
Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Regression. Einfache lineare Regression
Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik Regression Dozent: Fabian Scheipl Material: H. Küchenhoff LMU München 39 Einfache lineare Regression Bestimmung der Regressionsgerade
Allgemein zu Hypothesentests: Teststatistik. OLS-Inferenz (Small Sample) Allgemein zu Hypothesentests
OLS-Inferenz (Small Sample) K.H. Schild 3. Mai 017 Allgemein zu Hypothesentests: Teststatistik Konstruktion eines Hypothesentests erfolgt meistens über eine Teststatistik Eine Teststatistik T ist eine
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und
erwartete Häufigkeit n=80 davon 50% Frauen fe=40 davon 50% Männer fe=40 Abweichung der beobachteten von den erwarteten Häufigkeiten:
Verfahren zur Analyse von Nominaldaten Chi-Quadrat-Tests Vier-Felder Kontingenztafel Mehrfach gestufte Merkmale Cramers V, Kontingenzkoeffizient, Phi-Koeffizient Muster aller Chi-Quadrat-Verfahren eine
Lösung Übungsblatt 5
Lösung Übungsblatt 5 5. Januar 05 Aufgabe. Die sogenannte Halb-Normalverteilung spielt eine wichtige Rolle bei der statistischen Analyse von Ineffizienzen von Produktionseinheiten. In Abhängigkeit von
Lineare Modelle in R: Klassische lineare Regression
Lineare Modelle in R: Klassische lineare Regression Achim Zeileis 2009-02-20 1 Das Modell Das klassische lineare Regressionsmodell versucht den Zusammenhang zwischen einer abhängigen Variablen (oder Responsevariablen)
Fragen. Einführung in die induktive Statistik. Übersicht. Lineare Einfachregression
Fragen Welche Unsicherheitsfaktoren beeinflussen die Schätzung einer Regressionsgeraden? Einführung in die induktive Statistik Friedrich Leisch Institut für Statistik Ludwig-Maximilians-Universität München
Eine Einführung in R: Das Lineare Modell
Eine Einführung in R: Das Lineare Modell Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 6. Januar 2009 Bernd Klaus, Verena Zuber
Analyse von Querschnittsdaten. Signifikanztests I Basics
Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004
Kap. 9: Regression mit einer binären abhängigen Variablen
Kap. 9: Regression mit einer binären abhängigen Variablen Motivation Lineares Wahrscheinlichkeitsmodell Probit- und Logit-Regression Maximum Likelihood Empirisches Beispiel: Analyse der HMDA-Daten Ausblick:
Lineare Regression in R, Teil 1
Lineare Regression in R, Teil 1 Christian Kleiber Abt. Quantitative Methoden, WWZ, Universität Basel October 6, 2009 1 Vorbereitungen Zur Illustration betrachten wir wieder den Datensatz CASchools aus
Kategoriale abhängige Variablen:
Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell Statistik II
Schriftliche Prüfung (90 Minuten)
Dr. M. Kalisch Prüfung Statistik I Winter 2015 Schriftliche Prüfung (90 Minuten) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten! Die Prüfung
Logit-Analyse mit ordinalen und nominalen abhängigen Variablen
Logit-Analyse mit ordinalen und nominalen abhängigen Variablen Regressionsmodelle für Politikwissenschaftler Übersicht Das multinomiale Logit-Modell Das konditionale Logit-Modell Regressionsmodelle für
Multivariate Verfahren
Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie
8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.
L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 8. Februar 2007 Hinweise:
Mehrfache und polynomiale Regression
Mehrfache und polynomiale Regression Kriteria für die Durchführung einer Regression Jonathan Harrington Bitte datasets.zip (unter 5.5, Tabellarische Daten) neu herunterladen und in pfad auspacken Einfache
Logistische Regression
Logistische Regression Teil 2: Beispiel Dirk Enzmann Fortgeschrittene quantitative Methoden der Kriminologie 29.04.206 Universität Hamburg Dirk Enzmann (Hamburg) Logistische Regression UHH, 29.04.206 /
Wichtige Definitionen und Aussagen
Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge
Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk
Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC Referenten: Linda Gräfe & Konstantin Falk 1 Agenda Schätzverfahren ML REML Beispiel in SPSS Modellbeurteilung Devianz AIC BIC
9. Lineare Regression
9. Lineare Regression y 3.0 3.5 4.0 4.5 0.0 0.2 0.4 0.6 0.8 1.0 Fabian Scheipl, Bernd Bischl Stochastik und Statistik SoSe 2016 1 / 40 x KQ-Schätzung Es ist eine Gerade y = β 1 + β 2 x gesucht, welche
Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2011/12. Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2011/12 Aufgabe 1 Übungsleiter
Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik. 7. Februar 2008
L. Fahrmeir, G. Walter Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 7. Februar 8 Hinweise:. Überprüfen
Statistisches Testen
Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall
Forschungsstatistik I
Psychologie Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
Syntax. Ausgabe *Ü12. *1. corr it25 with alter li_re kontakt.
Syntax *Ü2. *. corr it25 with alter li_re kontakt. *2. regression var=it25 alter li_re kontakt/statistics /dependent=it25 /enter. regression var=it25 li_re kontakt/statistics /dependent=it25 /enter. *3.
Fragestunde zur Übung
Prof. Bernd Fitzenberger, Ph.D. Dr. Roland Füss Aderonke Osikominu Übung zur Veranstaltung Empirische Wirtschaftsforschung Albert-Ludwigs-Universität Freiburg Wintersemester 2007/08 Fragestunde zur Übung
Übung V Lineares Regressionsmodell
Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung
Statistischer Rückschluss und Testen von Hypothesen
Statistischer Rückschluss und Testen von Hypothesen Statistischer Rückschluss Lerne von der Stichprobe über Verhältnisse in der Grundgesamtheit Grundgesamtheit Statistischer Rückschluss lerne aus Analyse
Die partielle Likelihood-Funktion
Die partielle Likelihood-Funktion Roger Züst 12. Juni 26 1 Repetition: Maximum-Likelihood-Methode Hat man n unabhängige Beobachtungen x 1, x 2,..., x n einer Zufallsvariablen X und eine Familie von möglichen
Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen
Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung
Strukturgleichungsmodellierung
Strukturgleichungsmodellierung FoV Methodenlehre FSU-Jena Dipl.-Psych. Norman Rose Parameterschätzung, Modelltest & Fit Indizes bei SEM Forschungsorientierte Vertiefung - Methodenlehre Dipl.-Psych. Norman
5. Spezielle stetige Verteilungen
5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für
Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 27. f X Y (a i b j ) = f i j = f ij f j
1 Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS 2011 Lösung Aufgabe 27 (a) Notation: X: Rauchen, Y : chronische Bronchitis S X {ja, nein} {a 1, a 2 }, S Y {ja, nein} {b
Fit for Abi & Study Stochastik
Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen
Übungsblatt 7: Schätzung eines Mietspiegels
Prof. Bernd Fitzenberger, Ph.D. Ute Leuschner Stefanie Schäfer Übung zur Veranstaltung Empirische Wirtschaftsforschung Albert-Ludwigs-Universität Freiburg Wintersemester 2010/11 Übungsblatt 7: Schätzung
Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen
4 Multiple lineare Regression Tests auf Heteroskedastie 4.11 Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen Ein weiterer Test auf Heteroskedastie in den Störgrößen ist der Breusch-Pagan-Test.
Statistik II. IV. Hypothesentests. Martin Huber
Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur
Kategorielle Daten. Seminar für Statistik Markus Kalisch
Kategorielle Daten Markus Kalisch 1 Phase 3 Studie: Wirksamer als Placebo? Medikament Placebo Total Geheilt 15 9 24 Nicht geheilt 10 11 21 Total 25 20 45 Grundfrage: Sind Heilung und Medikamentengabe unabhängig?
Wahrscheinlichkeitsverteilungen
Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet
Kap. 2: Generalisierte lineare Modelle (GLMs) Lineare und generalisierte lineare Modelle Schätzung und Inferenz in GLMs Literatur
Kap. 2: Generalisierte lineare Modelle (GLMs) Lineare und generalisierte lineare Modelle Schätzung und Inferenz in GLMs Literatur 2.1 Lineare und generalisierte lineare Modelle Das klassische lineare Regressionsmodell
Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen
Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung
Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13
Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Grundidee: Eine abhängige Variable soll als Linearkombination mehrerer unabhängiger
Regressionsmodelle für diskrete Zielgrößen und korrelierte Beobachtungen. Oliver Kuß*; Uwe Hasenbein**;
Regressionsmodelle für diskrete Zielgrößen und korrelierte Beobachtungen Oliver Kuß*; Uwe Hasenbein**; *Institut für Medizinsche Epidemiologie, Biometrie und Informatik, Martin-Luther-Universität Halle-Wittenberg,
Musterlösung. Modulklausur Multivariate Verfahren
Musterlösung Modulklausur 31821 Multivariate Verfahren 25. September 2015 Aufgabe 1 (15 Punkte) Kennzeichnen Sie die folgenden Aussagen zur Regressionsanalyse mit R für richtig oder F für falsch. F Wenn
Generalisierte lineare Modelle. Statistik 3 im Nebenfach. Binäre Regressionsmodelle. 4.1 Binäre Regression
Generalisierte lineare Modelle Statistik 3 im Nebenfach Friedrich Leisch Institut für Statistik Ludwig-Maximilians-Universität München WS 2010/2011 basierend auf Fahrmeir, Kneib & Lang (2007) 4 Generalisierte
Statistische Modellierung Merkblatt
Inhaltsverzeichnis Statistische Modellierung Merkblatt Welches Modell nimmt man wann?... 1 Logit:... 2 Probit:... 2 Poisson:...2 Loglinear:... 2 multinomiales Logit:... 2 Ordinales Logit (PROC LOGISTIC
Das Lineare Regressionsmodell
Das Lineare Regressionsmodell Bivariates Regressionsmodell Verbrauch eines Pkw hängt vom Gewicht des Fahrzeugs ab Hypothese / Theorie: Je schwerer ein Auto, desto mehr wird es verbrauchen Annahme eines
Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien
Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische
6.4 Kointegration Definition
6.4 Kointegration 6.4.1 Definition Nach Engle und Granger (1987): Wenn zwei oder mehrere Variablen I(1) sind, eine Linearkombination davon jedoch I() ist, dann sind die Variablen kointegriert. Allgemein:
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir
