Lineare Regression in R, Teil 1
|
|
|
- Meta Auttenberg
- vor 8 Jahren
- Abrufe
Transkript
1 Lineare Regression in R, Teil 1 Christian Kleiber Abt. Quantitative Methoden, WWZ, Universität Basel October 6, Vorbereitungen Zur Illustration betrachten wir wieder den Datensatz CASchools aus der Vorlesung. Laden der Daten: R> data("caschools", package = "AER") Die benötigten Variablen müssen zunächst erzeugt werden: R> CASchools$stratio <- with(caschools, students/teachers) R> CASchools$score <- with(caschools, (math + read)/2) (Es gibt weitere Möglichkeiten, diese Variablen zu erzeugen, obige Lösung ist aber sehr kompakt.) 2 Schätzung der Regressionskoeffizienten Zur Schätzung des Modells benutzt man score i = β 1 + β 2 stratio i + Fehler i R> fm <- lm(score ~ stratio, data = CASchools) Die Funktion lm() schätzt ein lineares Regressionsmodell mit der Methode der kleinsten Quadrate (OLS). Die Ergebnisse des Funktionsaufrufs werden hier zunächst in einem Objekt fm (der Klasse "lm") gespeichert, deshalb gibt es auch keine Ausgabe auf dem Schirm. Dies ist die typische Arbeitsweise in R: weitere Ergebnisse erhält man durch Anwendung diverser Extraktorfunktionen auf dieses Objekt. Ruft man das Objekt selbst auf, R> fm Call: lm(formula = score ~ stratio, data = CASchools) Coefficients: so ist dies gleichbedeutend mit der Eingabe print(fm)) und es werden nur der vorherige Funktionsaufruf sowie die geschätzten Regressionskoeffizienten angezeigt. (Wir erhalten die gleichen Ergebnisse wie Stock und Watson, S. 120, Gleichung (4.11).) Das Objekt fm enthält aber viel mehr: die Extraktorfunktion summary() liefert bspw.
2 Lineare Regression in R, Teil 1 2 R> summary(fm) Call: lm(formula = score ~ stratio, data = CASchools) Residuals: Min 1Q Median 3Q Max Coefficients: (Intercept) < 2e-16 stratio Residual standard error: 18.6 on 418 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: 22.6 on 1 and 418 DF, p-value: Hierbei erhält man neben einer Kurzanalyse der Residuen die üblichen Regressionsergebnisse: eine Tabelle mit Regressionskoeffizienten, deren Standardfehlern, t-statistiken und zugehörigen p-werten. Mit dem Objekt fm kann man auch über die Funktion abline() die Regressionsgerade zu einem Streudiagramm hinzufügen: R> plot(score ~ stratio, data = CASchools, pch = 20) R> abline(fm) score stratio abline() ist eigentlich eine Funktion, die über einen Aufruf abline(a, b) eine Gerade mit Achsenabschnitt a und Steigung b zu einer bestehenden Graphik hinzufügt. Wendet man die Funktion wie hier auf ein Objekt der Klasse "lm" an, so weiss die Funktion, dass sie die Regressionskoeffizienten extrahieren soll.
3 Lineare Regression in R, Teil Tests und Konfidenzintervalle Tests zur Überprüfung der Hypothesen H 0 : β j = 0, d.h. der Hypothese, dass der Regressor Nr. j weggelassen werden kann, sind Bestandteil des Regressionsoutputs: t test of coefficients: (Intercept) < 2e-16 stratio Eine ANOVA-Tafel (Varianzanalysetafel) nebst F -Test liefert der Befehl R> anova(fm) Analysis of Variance Table Response: score Df Sum Sq Mean Sq F value Pr(>F) stratio Residuals und Konfidenzintervalle für die Regressionskoeffizienten erhält man über R> confint(fm, level = 0.95) 2.5 % 97.5 % (Intercept) stratio Die Voreinstellung ist 95%, d.h. man hätte hier das Argument level nicht angeben müssen. Bem.: Weitere Extraktor-Funktionen sind resid() oder gleichbedeutend residuals(), die die Residuen liefern, fitted() für den Vektor ŷ, coef() oder coefficients() für die Regressionskoeffizienten. Diese Liste ist keineswegs vollständig der Aufruf methods(class="lm") liefert eine Liste aller generischen Funktionen, die Methoden für Objekte der Klasse "lm" haben. [Die Bedeutung der Begriffe generische Funktion, Klasse bzw. Methode in R wird später noch erklärt.] 4 Prognosen Prognosen erhält man über die (generische) Funktion predict(), die man direkt auf das Objekt fm anwenden kann. R erwartet die neuen Daten wieder in der Form eines data.frame, den man ggf. erst erzeugen muss: R> new <- data.frame(stratio = 20) R> predict(fm, newdata = new) Natürlich kann man auch für einen ganzen Satz von neuen x-werten Prognosen bekommen: R> new <- data.frame(stratio = c(10, 20, 30)) R> predict(fm, newdata = new)
4 Lineare Regression in R, Teil Will man nicht nur Punkt-, sondern Intervallprognosen (Prognoseintervalle), muss man das Argument interval spezifizieren: R> predict(fm, newdata = new, interval = "prediction") fit lwr upr Hier ist fit die (Punkt-)Prognose und lwr bzw. upr ist die untere bzw. obere Intervallgrenze. Das per Voreinstellung verwendete Konfidenzniveau ist dabei 0.95, will man ein anderes, muss man auch noch das Argument level benutzen. 5 Heteroskedastie-robuste Standardfehler Die per Voreinstellung in R erhältlichen Standardfehler sind wie in den meisten Programmpaketen Standardfehler unter der Annahme (bedingter) Homoskedastizität, d.h. Var(y i x i ) = σ 2. In ökonometrischen Querschnittsregressionen ist es oft sinnvoll, heteroskedastiekonsistente (oder -robuste) Standardfehler zu verwenden. Das Buch von Stock und Watson arbeitet von Anfang an mit diesen Fehlern. Dabei ersetzt man in der einfachsten Version den Standardschätzer für die OLS-Kovarianzmatrix (es ist durchsichtiger, alles gleich für Matrizen aufzuschreiben!) durch ( Var( ˆβ) n = ˆσ 2 (X X) 1 = ˆσ 2 x i x i ) 1 ( n ) 1 ( Var( ˆβ) n ) ( n = x i x i û 2 i x i x i x i x i Dieser Schätzer heisst Eicker-White-Schätzer der OLS-Kovarianzmatrix. In R sind solche allgemeineren Schätzer über das Paket sandwich erhältlich. Man kann neben den korrigierten Standardfehlern selbst auch t-statistiken und p-werte basierend auf diesen Fehlern bekommen. Dazu benötigt man die Funktion coeftest() aus dem Paket lmtest, in der man eine Kovarianzmatrixschätzung über das Argument vcov wählen kann. Modifizierten Regressionsoutput unter Verwendung von Eicker-White-Standardfehlern erhält man nun über R> library("sandwich") R> library("lmtest") R> coeftest(fm, vcov = sandwich) t test of coefficients: (Intercept) < 2e-16 stratio Etwas technischer: Wir können die Schätzungen der Standardfehler (klassisch und heteroskedastierobust) vergleichen über ) 1
5 Lineare Regression in R, Teil 1 5 R> sqrt(diag(vcov(fm))) R> sqrt(diag(sandwich(fm))) also über das Extrahieren der Wurzeln der Diagonalelemente (= Varianzen) der jeweiligen Kovarianzmatrizen. Die Eicker-White-Fehler sind damit hier etwas grösser als die unter der Annahme von Homoskedastie berechneten. Bem.: Da der Eicker-White-Schätzer immer noch gewisse Nachteile hat, gibt es Modifikationen (üblicherweise bezeichnet mit HC1-HC4) dieser Grundversion HC0. Alle Varianten sind im R-Paket sandwich erhältlich.
Lineare Regression in R, Teil 2
Lineare Regression in R, Teil 2 Christian Kleiber Abt. Quantitative Methoden, WWZ, Universität Basel 28. Oktober 2009 1 Vorbereitungen Zur Illustration betrachten wir wieder den Datensatz CASchools. Laden
Lineare Modelle in R: Klassische lineare Regression
Lineare Modelle in R: Klassische lineare Regression Achim Zeileis 2009-02-20 1 Das Modell Das klassische lineare Regressionsmodell versucht den Zusammenhang zwischen einer abhängigen Variablen (oder Responsevariablen)
Lineare Regressionen mit R (Ökonometrie SS 2014 an der UdS)
Lineare Regressionen mit R (Ökonometrie SS 2014 an der UdS) Es soll untersucht werden, ob und wie sich Rauchen während der Schwangerschaft auf den Gesundheitszustand des Neugeborenen auswirkt. Hierzu werden
Eine Einführung in R: Varianzanalyse
Eine Einführung in R: Varianzanalyse Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 6. Januar 2011 Bernd Klaus, Verena Zuber Das
Versuchsplanung SoSe 2015 R - Lösung zu Übung 1 am 24.04.2015 Autor: Ludwig Bothmann
Versuchsplanung SoSe 2015 R - Lösung zu Übung 1 am 24.04.2015 Autor: Ludwig Bothmann Contents Aufgabe 1 1 b) Schätzer................................................. 3 c) Residuenquadratsummen........................................
Vorlesung: Statistik II für Wirtschaftswissenschaft
Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation
Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell
Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften
Regressionsanalyse in R
Regressionsanalyse in R Session 6 1 Einfache Regression Lineare Regression ist eines der nützlichsten Werkzeuge in der Statistik. Regressionsanalyse erlaubt es Zusammenhänge zwischen Parametern zu schätzen
3.1 Modell und Statistik Zusammenhang zwischen einer Zielgrösse Y und mehreren Eingangsgrössen X (1), X (2),..., X (m)
3.1. MODELL UND STATISTIK 32 3 Multiple lineare Regression a 3.1 Modell und Statistik Zusammenhang zwischen einer Zielgrösse Y und mehreren Eingangsgrössen X (1), X (2),..., X (m) Y i = β 0 + β 1 x (1)
Lineare Modelle in R: Einweg-Varianzanalyse
Lineare Modelle in R: Einweg-Varianzanalyse Achim Zeileis 2009-02-20 1 Datenaufbereitung Wie schon in der Vorlesung wollen wir hier zur Illustration der Einweg-Analyse die logarithmierten Ausgaben der
y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen.
Aufgabe 1 (25 Punkte Zur Schätzung des Werbe-Effekts in einem Getränke-Unternehmen wird das folgende lineare Modell aufgestellt: Dabei ist y t = β 1 + x t2 β 2 + e t. y t : x t2 : Umsatz aus Getränkeverkauf
Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Regression. Einfache lineare Regression
Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik Regression Dozent: Fabian Scheipl Material: H. Küchenhoff LMU München 39 Einfache lineare Regression Bestimmung der Regressionsgerade
1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt:
Beispiele zum Üben und Wiederholen zu Wirtschaftsstatistik 2 (Kurs 3) 1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Haushaltseinkommen 12 24 30 40 80 60
Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell
1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs
Statistik Vorlesung 7 (Lineare Regression)
Statistik Vorlesung 7 (Lineare Regression) K.Gerald van den Boogaart http://www.stat.boogaart.de/ Statistik p.1/77 Gerade als Vereinfachung Wachstum bei Kindern height 76 78 80 82 18 20 22 24 26 28 age
Analyse von Querschnittsdaten. Signifikanztests I Basics
Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004
Eine Einführung in R: Das Lineare Modell
Eine Einführung in R: Das Lineare Modell Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 6. Januar 2009 Bernd Klaus, Verena Zuber
Regression mit Faktoren, Interaktionen und transformierten Variablen
Kap. 5: Regression mit Faktoren, Interaktionen und transformierten Variablen Motivation Regressionen mit transformierten Variablen Ausblick: Nichtlineare Regression Mehr zu Regressionen mit qualitativen
Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg
Übungsklausur Lineare le Prof. Dr. H. Toutenburg Aufgabe Ein lineares Regressionsmodell mit der abhängigen Variablen Körpergröße und der unabhängigen Variablen Geschlecht wurde einmal mit der dummykodierten
Statistik Einführung // Lineare Regression 9 p.2/72
Statistik Einführung Lineare Regression Kapitel 9 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Ledold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Lineare Regression
Tutorial: Regression Output von R
Tutorial: Regression Output von R Eine Firma erzeugt Autositze. Ihr Chef ist besorgt über die Anzahl und die Kosten von Maschinenausfällen. Das Problem ist, dass die Maschinen schon alt sind und deswegen
Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen
4 Multiple lineare Regression Tests auf Heteroskedastie 4.11 Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen Ein weiterer Test auf Heteroskedastie in den Störgrößen ist der Breusch-Pagan-Test.
Lineare Regression mit einem Regressor: Einführung
Lineare Regression mit einem Regressor: Einführung Quantifizierung des linearen Zusammenhangs von zwei Variablen Beispiel Zusammenhang Klassengröße und Testergebnis o Wie verändern sich Testergebnisse,
Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade
Version 2015 Formelsammlung für das Modul Statistik 2 Bachelor Sven Garbade Prof. Dr. phil. Dipl.-Psych. Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg [email protected]
3. Das einfache lineare Regressionsmodell
3. Das einfache lineare Regressionsmodell Ökonometrie: (I) Anwendung statistischer Methoden in der empirischen Forschung in den Wirtschaftswissenschaften Konfrontation ökonomischer Theorien mit Fakten
4. Das multiple lineare Regressionsmodell
4. Das multiple lineare Regressionsmodell Bisher: 1 endogene Variable y wurde zurückgeführt auf 1 exogene Variable x (einfaches lineares Regressionsmodell) Jetzt: Endogenes y wird regressiert auf mehrere
Ergänzung der Aufgabe "Mindestlöhne" zu einer multiplen Regression
Prof. Dr. Peter von der Lippe ( Übungsblatt E) Ergänzung der Aufgabe "Mindestlöhne" zu einer multiplen Regression Das Beispiel "Mindestlöhne" zur einfachen multiplen Regression ergab die folgenden Parameter
1 Interaktion von zwei Dummyvariablen. 2 Interaktion einer Dummyvariablen mit einer kardinalskalierten Variablen
Modelle mit Interationsvariablen I Modelle mit Interationsvariablen II In der beim White-Test verwendeten Regressionsfuntion y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 2 1 + β 4 x 2 2 + β 5 x 1 x 2, ist anders
Kap. 8: Regression mit Paneldaten
Kap. 8: Regression mit Paneldaten Einführung Paneldaten für zwei Perioden Regression mit festen Effekten bzgl. Individuen Regression mit festen Effekten bzgl. Zeit Annahmen in der Paneldatenanalyse Empirisches
Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell
Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010
13. Übungswoche. Kapitel 12: Varianzanalyse (Fortsetzung)
1 13. Übungswoche Kapitel 12: Varianzanalyse (Fortsetzung) [ 3 ] Im Vorkurs Mathematik für Wirtschafstwissenschaftler vor Beginn des Sommersemesters 2009 wurde am Anfang und am Ende ein Test geschrieben,
Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO
Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung
Korrelation - Regression. Berghold, IMI
Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines
Schriftliche Prüfung (90 Minuten)
Dr. M. Kalisch Probeprüfung Statistik 1 Sommer 2014 Schriftliche Prüfung (90 Minuten) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten!
Metrische und kategoriale Merkmale
Kapitel 6 Metrische und kategoriale Merkmale 6.1 Wie kann man metrische und kategoriale Merkmale numerisch beschreiben? Typischerweise will man geeignete Maßzahlen (beispielsweise Lage- oder Streuungsmaße)
Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13
Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Grundidee: Eine abhängige Variable soll als Linearkombination mehrerer unabhängiger
Analyse von Querschnittsdaten. Heteroskedastizität
Analyse von Querschnittsdaten Heteroskedastizität Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Annahmen gegeben? kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004 03.11.2004
Einführung in die multiple Regression
Einführung in die multiple Regression Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg [email protected] Bachelor S. Garbade (SRH Heidelberg) Multiple Regression Bachelor
Kapitel 3. Inferenz bei OLS-Schätzung I (small sample, unter GM1,..., GM6)
8 SMALL SAMPLE INFERENZ DER OLS-SCHÄTZUNG Damit wir die Verteilung von t (und anderen Teststatistiken) exakt angeben können, benötigen wir Verteilungsannahmen über die Störterme; Kapitel 3 Inferenz bei
Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1
Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...
Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. Regina T. Riphahn, Ph.D. Diplomvorprüfung Statistik II Einf. Ökonometrie im WS 06/07
Aufgabe 1: [21 Punkte] Ein Forschungsinstitut hat den Auftrag bekommen, die individuellen monatlichen Ausgaben für Bioprodukte zu erklären. Es wird eine Kleinstquadrate Regression der Höhe der Ausgaben
Multiple Regression Mais-NP Zweidimensionale lineare Regression Data Display Dreidimensionale lineare Regression Multiple Regression
Multiple Regression! Zweidimensionale lineare Regression Modell Bestimmung der Regressionsebene Multiples Bestimmtheitsmaß Test des Bestimmtheitsmaßes Vertrauensintervalle für die Koeffizienten Test des
Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004
Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Aufgabe 1 U t bedeute weißes Rauschen und B den Backshift
Variablen Selektion beste Volles Modell
Variablen Selektion Wähle das beste Modell aus einer Klasse von MLR s. Volles Modell enthält alle m möglicherweise erklärenden Größen (Prädiktoren) Suche nach dem besten Modell, das nur eine Teilmenge
> ### Beispiel 7 ### > > library(faraway); options(digits = 5) > data(savings) > savings.lm = lm(sr ~ pop15 + pop75 + dpi + ddpi, savings)
> ### Beispiel 7 ### > > library(faraway); options(digits = 5) > data(savings) > savings.lm = lm(sr ~ pop15 + pop75 + dpi + ddpi, savings) > # Indexplot der Residuen > plot(savings.lm$res, ylab="residuen",
Musterlösung zu Serie 14
Dr. Lukas Meier Statistik und Wahrscheinlichkeitsrechnung FS 21 Musterlösung zu Serie 14 1. Der Datensatz von Forbes zeigt Messungen von Siedepunkt (in F) und Luftdruck (in inches of mercury) an verschiedenen
1 Gemischte Lineare Modelle
1 Gemischte Lineare Modelle Wir betrachten zunächst einige allgemeine Aussagen für Gemischte Lineare Modelle, ohne zu tief in die mathematisch-statistische Theorie vorzustoßen. Danach betrachten wir zunächst
Übungsaufgaben. zahlen bis auf das 3. und 7. Element enthält. (e) Erstellen Sie einen Vektor. zahlen3, der ein Klon von
Kurzeinführung in R Prof. Dr. Andreas Behr 1. Erzeugen Sie folgende Vektoren: (a) a : {1, 3, 7} Übungsaufgaben (b) b : { Katja, Christoph, Gerald, Jurij } (c) d : {T RUE, T RUE, F ALSE} 2. Erzeugen Sie
1. Lösungen zu Kapitel 7
1. Lösungen zu Kapitel 7 Übungsaufgabe 7.1 Um zu testen ob die Störterme ε i eine konstante Varianz haben, sprich die Homogenitätsannahme erfüllt ist, sind der Breusch-Pagan-Test und der White- Test zwei
Statistik II Übung 1: Einfache lineare Regression
Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der
Tests einzelner linearer Hypothesen I
4 Multiple lineare Regression Tests einzelner linearer Hypothesen 4.5 Tests einzelner linearer Hypothesen I Neben Tests für einzelne Regressionsparameter sind auch Tests (und Konfidenzintervalle) für Linearkombinationen
Statistik II Übung 1: Einfache lineare Regression
Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der
Kovarianz, Korrelation, (lineare) Regression
Kovarianz, Korrelation, (lineare) Regression Jonathan Harrington Die R-Befehle: reg.txt epg.txt (aus der Webseite) pfad = "Das Verzeichnis, wo die Daten gespeichert ist" edat = read.table(paste(pfad, "epg.txt",
Inferenz im multiplen Regressionsmodell
1 / 40 Inferenz im multiplen Regressionsmodell Kapitel 4, Teil 2 Ökonometrie I Michael Hauser 2 / 40 Inhalt ANOVA, analysis of variance korrigiertes R 2, R 2 F-Test F-Test bei linearen Restriktionen Erwartungstreue,
Statistik, Datenanalyse und Simulation
Dr. Michael O. Distler [email protected] Mainz, 31. Mai 2011 4. Methode der kleinsten Quadrate Geschichte: Von Legendre, Gauß und Laplace zu Beginn des 19. Jahrhunderts eingeführt. Die Methode der
Finanzmarkttheorie I. Performancemessung in EViews Übungsunterlage. Prof. Dr. Heinz Zimmermann WWZ Uni Basel Frühling 2015
Prof. Dr. Heinz Zimmermann WWZ Uni Basel Frühling 2015 Finanzmarkttheorie I Performancemessung in EViews Übungsunterlage Die vorliegende Unterlage liefert eine kurze Einführung in die Schätzung linearer
Lösung zu Kapitel 11: Beispiel 1
Lösung zu Kapitel 11: Beispiel 1 Eine Untersuchung bei 253 Personen zur Kundenzufriedenheit mit einer Einzelhandelskette im Südosten der USA enthält Variablen mit sozialstatistischen Daten der befragten
1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest.
Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden
Kapitel 4: Binäre Regression
Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,
8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme)
8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme) Annahme B4: Die Störgrößen u i sind normalverteilt, d.h. u i N(0, σ 2 ) Beispiel: [I] Neoklassisches Solow-Wachstumsmodell Annahme einer
Statistik Vorlesung 7 (Lineare Regression)
Statistik Vorlesung 7 (Lineare Regression) K.Gerald van den Boogaart http://www.stat.boogaart.de/ Statistik p.1/77 > Brustkrebs Chroma
Statistische Eigenschaften der OLS-Schätzer, Residuen,
Statistische Eigenschaften der OLS-Schätzer, Residuen, Bestimmtheitsmaß Stichwörter: Interpretation des OLS-Schätzers Momente des OLS-Schätzers Gauss-Markov Theorem Residuen Schätzung von σ 2 Bestimmtheitsmaß
Statistik II Übung 4: Skalierung und asymptotische Eigenschaften
Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden
Prognose. Kapitel 5. Ökonometrie I Michael Hauser
1 / 31 Prognose Kapitel 5 Ökonometrie I Michael Hauser 2 / 31 Inhalt Prognose, allgemein Prognosebeispiel Punktprognose Prognosefehler Intervallprognose Mean square error, Prognosegüte 3 / 31 Prognose
Kap. 12: Regression mit Zeitreihendaten und Prognosemodelle
Kap. 12: Regression mit Zeitreihendaten und Prognosemodelle Motivation Grundbegriffe Autoregressionen (AR-Modelle) Dynamische Regressionsmodelle (ADL-Modelle) Nichstationarität Ausblick 12.1 Motivation
Statistik II Übung 2: Multivariate lineare Regression
Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden
Nachschreibklausur im Anschluss an das SS 2009
Nachschreibklausur im Anschluss an das SS 2009 08. Oktober 2009 Lehrstuhl: Prüfungsfach: Prüfer: Hilfsmittel: Klausurdauer: Wirtschaftspolitik Empirische Wirtschaftsforschung Prof. Dr. K. Kraft Nicht-programmierbarer
Lineare Regression. Gebrauchtwagenpreise. Varianzanalyse. Methoden empirischer Sozialforschung. 2 (oder mehr) metrische Variablen.
Lineare Regression 2 (oder mehr) metrische Variablen. Methoden empirischer Sozialforschung Lineare Modelle Von welcher Form ist der Zusammenhang zwischen zwei metrischen Variablen? Läßt sich der Wert einer
Demokurs. Modul Vertiefung der Wirtschaftsmathematik Vertiefung der Statistik
Demokurs Modul 3741 Vertiefung der Wirtschaftsmathematik und Statistik Kurs 41 Vertiefung der Statistik 15. Juli 010 Seite: 14 KAPITEL 4. ZUSAMMENHANGSANALYSE gegeben, wobei die Stichproben(ko)varianzen
ANalysis Of VAriance (ANOVA) 1/2
ANalysis Of VAriance (ANOVA) 1/2 Markus Kalisch 16.10.2014 1 ANOVA - Idee ANOVA 1: Zwei Medikamente zur Blutdrucksenkung und Placebo (Faktor). Gibt es einen sign. Unterschied in der Wirkung (kontinuierlich)?
Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik
Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:
Drittvariablenkontrolle in der linearen Regression: Trivariate Regression
Drittvariablenkontrolle in der linearen Regression: Trivariate Regression 14. Januar 2002 In der Tabellenanalyse wird bei der Drittvariablenkontrolle für jede Ausprägung der Kontrollvariablen eine Partialtabelle
2 Anwendungen und Probleme
Universität Ulm 89069 Ulm Germany Prof. Dr. Werner Smolny Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Institutsdirektor 2 Anwendungen
Lineare Regression 1 Seminar für Statistik
Lineare Regression 1 Seminar für Statistik Markus Kalisch 17.09.2014 1 Statistik 2: Ziele Konzepte von einer breiten Auswahl von Methoden verstehen Umsetzung mit R: Daten einlesen, Daten analysieren, Grafiken
Die Varianzanalyse ohne Messwiederholung. Jonathan Harrington. Bi8e noch einmal datasets.zip laden
Die Varianzanalyse ohne Messwiederholung Jonathan Harrington Bi8e noch einmal datasets.zip laden Variablen, Faktoren, Stufen Eine Varianzanalyse ist die Erweiterung von einem t- test t- test oder ANOVA
Formale Methoden der Ökonomik: Einführung in die empirische Wirtschaftsforschung
Übung Formale Methoden der Ökonomik: Einführung in die empirische Wirtschaftsforschung BACHELOR FT 2013 (HSU) Übung Emp. WiFo FT 2013 1 / 1 Maßzahlen für den Zusammenhang zwischen Merkmalen Kontingenztabelle:
Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS
Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelation vs. Regression 2. Ziele der Regressionsanalyse 3. Syntax für
Interne und externe Modellvalidität
Interne und externe Modellvalidität Interne Modellvalidität ist gegeben, o wenn statistische Inferenz bzgl. der untersuchten Grundgesamtheit zulässig ist o KQ-Schätzer der Modellparameter u. Varianzschätzer
Wiederholung Qualitätssicherung Drittvariablen. Regression II. Statistik I. Sommersemester Statistik I Regression II (1/33) Wiederholung
Regression II Statistik I Sommersemester 2009 Statistik I Regression II (1/33) R 2 Root Mean Squared Error Statistik I Regression II (2/33) Zum Nachlesen Agresti: 9.1-9.4 Gehring/Weins: 8 Schumann: 8.1-8.2
Übungsaufgaben Angewandte Ökonometrie I
Département d Économie Quantitative Departement für Quantitative Wirtschaftsforschung Übungsaufgaben Angewandte Ökonometrie I c Séminaire de Statistique Université de Fribourg c Seminar für Statistik Universität
Die Varianzanalyse. Analysis of Variance (ANOVA) Jonathan Harrington
Die Varianzanalyse Analysis of Variance (ANOVA) Jonathan Harrington path = "Verzeichnis wo Sie anova1 gespeichert haben" attach(paste(path, "anova1", sep="/")) Variablen, Faktoren, Ebenen Faktoren oder
Vergleich von Gruppen I
Vergleich von Gruppen I t-test und einfache Varianzanalyse (One Way ANOVA) Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Der unverbundene t-test mit homogener Varianz Beispiel Modell Teststatistik
Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)
Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang
Kapitel 2. OLS-Schätzung. 2.1 Methode der kleinsten Quadrate 12 OLS METHODE DER KLEINSTEN QUADRATE (ALGEGRA)
2 OLS METHODE DER KLEINSTEN QUADRATE (ALGEGRA) Kapitel 2 OLS-Schätzung 2. Methode der kleinsten Quadrate Einleitung OLS aus Sicht der linearen Algebra Die Methode der kleinsten Quadrate (OLS Ordinary least
Teil: lineare Regression
Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge
Statistik II Übung 2: Multivariate lineare Regression
Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden
Seminar zur Energiewirtschaft:
Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable
Biometrische und Ökonometrische Methoden I Lösungen 9
TECHNISCHE UNIVERSITÄT MÜNCHEN - WEIHENSTEPHAN WS 00/01 MATHEMATIK UND STATISTIK, INFORMATIONS- UND DOKUMENTATIONSZENTRUM Biometrische und Ökonometrische Methoden I Lösungen 9 1. a) MTB > Retrieve "H:\STUDENT\MINITAB\OPELVW.MTW".
Statistik II für Betriebswirte Vorlesung 12
Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 12 11. Januar 2013 7.3. Multiple parameterlineare Regression Im Folgenden soll die
Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X.
Lineare Regression Einfache Regression Beispieldatensatz: trinkgeld.sav Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X. H0: Y lässt sich nicht durch X erklären, das heißt
