Mathematische und statistische Methoden I
|
|
|
- Susanne Sauer
- vor 9 Jahren
- Abrufe
Transkript
1 Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum ) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected] WS 2010/2011 Fachbereich Sozialwissenschaften Psychologisches Institut Johannes Gutenberg Universität Mainz
2 Definition Es wird eine Einheit definiert Es existiert kein natürlicher Nullpunkt Differenzen von Werten können verglichen werden, nicht aber die Werte selbst Wird am häufigsten in empirischen psychologischen Untersuchungen angenommen Intervallskalierte Variablen können diskret oder stetig sein
3 Beispiel Attitudes Toward Housecleaning Scale von Ogletree, Worthen, Turner & Vickers (2006). Ihre Aufgabe ist es, ihre Gefühle gegenüber jeder Aussage dahingehend zu kennzeichnen, ob sie (1) stark zustimmen, (2) etwas zustimmen, (3) weder zustimmen noch ablehnen, (4) etwas ablehnen oder (5) stark ablehnen. Bitte verdeutlichen Sie Ihre Meinung dadurch, dass sie entweder 1, 2, 3, 4 oder 5 auf dem Antwortblatt schwärzen. Einen Stapel dreckigen Geschirrs über Nacht im Spülbecken liegen zu lassen finde ich ekelhaft. Ich finde Staubwischen entspannend. Den Müll rauszubringen macht mir Spaß Frauen sollten die primäre Verantwortung für die Hausarbeit übernehmen. Eine unordentliche Wohnung zu haben macht mir nichts
4 Zulässige Transformationen Zulässige Operationen sind Äquivalenzrelationen, d.h. Gleich und Ungleich Zudem erlaubt sind qualitative Vergleichsrelationen, d.h. Größer oder Kleiner Erlaubt sind weiterhin quantitative Vergleichsrelationen, die sich auf Differenzen beziehen Eine Aussage wie Der Unterschied zwischen A und B ist doppelt so groß wie zwischen A und C ist bei einer intervallskalierten Variable zulässig, nicht aber A ist doppelt so groß wie B.
5 Zulässige Transformationen Zulässig sind alle linearen Transformationen (die Grundrechenarten), so dass die Verhältnisse zwischen Differenzen erhalten bleiben.
6 Zulässige Transformationen Die Aussage Person E ist doppelt so gut wie Person C, ausgehend von Skala 1, gilt nicht für Skala 3 und 4.
7 Zulässige Transformationen Wohl aber gilt immer: Der Unterschied zwischen A und B ist doppelt so groß wie zwischen B und C
8 Kritische Betrachtung Die bekanntesten und am meisten verbreiteten statistischen Verfahren setzen eine voraus Der Umgang mit niedrigeren Skalenniveaus ist mathematisch oftmals weitaus komplexer Die ungeprüfte Annahme der in psychologischen Untersuchungen ist oft problematisch Beispiele: IQ-Skala, 7-Punkte Likert Skala, Becks Depressionsskala (BDI) 0 13: Keine bis minimale Depression 14 19: Milde Depression 20 28: Moderate Depression 29 63: Schwere Depression
9 Numerische Beschreibung: Problem: Intervallskalierte Variablen können u.u. beliebige Ausprägungen besitzen, die sich nicht mehr sinnvoll in einer Tabelle darstellen lassen Beispiele: Körpergrößen, Serotoninspiegel, Reaktionszeit Lösung: Es muss eine Aggregation vieler Ausprägungen in wenige Kategorien (oder Klassen ) stattfinden Bei der Klassenbildung für eine Variable X findet im Prinzip nichts anderes als eine Transformation von X in eine neue Variable Y statt, und zwar gemäß Y y1 : X = { K} y2 : X = { K} = K yk : X = { K}
10 Numerische Beschreibung: Klassenbildung Die Messwertklassen dürfen sich nicht überschneiden, sie sind also wechselseitig ausschließend. Die untere und obere Klassengrenze UG j und OG j gehören zur Klasse c j, die obere Grenze der vorherigen Klasse OG j-1 jedoch nicht. c j = [UG j OG j ] oder c j = (UG j-1 UG j+1 ] Alle Klassen haben im Normalfall dieselbe Breite. Die Anzahl der Klassen ist zunächst frei wählbar. Es ist aber zu beachten: 1. Es sollte möglichst wenige leere Klassen geben 2. Es sollten keine in den Daten enthaltenen wichtigen Informationen herausggregiert werden (z.b. mehrere Modalwerte)
11 Numerische Beschreibung: Klassenbildung Zur Bestimmung der Anzahl von Klassen gibt es verschiedene Formeln. Als Faustregeln gelten: Anzahl der Ausprägungen k 5 bis 50 5 bis 8 Klassenzahl c 50 bis bis bis bis 12 >250 8 bis 25 Eine einfache Formel, die oft zu einer sinnvollen Klassenanzahl c führt, lautet ( n) c= log2 + 1 mit = Aufrundung Statt der Beobachtungen n wird manchmal auch die Anzahl der Realisationen k verwendet.
12 Numerische Beschreibung: Klassenbildung Die Klassenbreite d bei einer gewünschten Anzahl von c gleich breiten Klassen wird berechnet als max( X ) min( X ) d = c Hier ist X die ursprüngliche intervallskalierte Variable Bei der Berechnung der Klassenbreite muss auf Ausreißer in der Variablen X geachtet werden, da solche die Klassenbreite erheblich verzerren können.
13 Numerische Beschreibung: Klassenbildung 25 Abiturienten erreichen in ihrer Abschlussarbeit folgende Punktzahlen: (11, 15, 8, 13, 8, 11, 14, 11, 11, 14, 13, 11, 2, 9, 10, 10, 14, 7, 7, 12, 12, 8, 6, 11, 13) Unter der Annahme, dass die Notenskala von 1 bis 15 reicht, ergibt sich diese Häufigkeitstabelle bei 5 Klassen: Note h(x) f(x) F(x)
14 Numerische Beschreibung: Klassenbildung 25 Ratten erreichen in einem Experiment folgende Reaktionszeiten: (11.23, 15.1, , 13.3, 8.955, 11.0, , 11.63, 11.39, , , 11.32, 2.5, 9.814, 10.03, 10.99, 14.3, 7.523, 7.49, , 12.88, 8.0, 6.748, 11.1, 13.0) Schreibweise der Klassengrenzen in der Tabelle? Note h(x) f(x) F(x) Es galt per Konvention: Die obere Grenze gehört zur Klasse, die untere nicht (außer bei erster Kategorie).
15 Numerische Beschreibung: Klassenbildung Bei diskreten Daten werden die Klassengrenzen nach Möglichkeit nicht-überlappend angegeben. Die Klassenbreite ist dann d = OG UG + 1 Bei kontinuierlichen Daten werden die Klassengrenzen überlappend angegeben, wobei per Konvention die obere Grenze zur Klasse gehört, die untere aber nicht. Die Klassenbreite ist dann d= OG - UG
16 Beschreibung: Histogramm Das Histogramm stellt die Häufigkeiten vieler Kategorien in einem Säulendiagramm mit weniger Klassen als Kategorien dar Die Klassen müssen nicht notwendig gleich breit sein Für die Klassenbildung beim Histogramm gelten dieselben Faustregeln wie bei den Die Häufigkeiten können entweder absolute Häufigkeiten (absolutes Histogramm) sein oder relative Häufigkeiten (relatives Histogramm) Die Fläche einer Säule repräsentiert dabei die Häufigkeit der Elemente in der Klasse.
17 Beschreibung: Histogramm Frage: Warum soll beim Histogramm die Fläche der Säule die Häufigkeit repräsentieren und nicht wie beim Säulen-/Balkendiagramm die Höhe der Säule Beispiel: Säule 1 ist etwas höher als Säule 3, allerdings ist die Klassenbreite unterschiedlich groß Aufgrund der Flächenbewertung des menschlichen Sehsystems scheint Klasse 3 wesentlich mehr Merkmalsträger zu umfassen als Klasse 1
18 Beschreibung: Histogramm Prinzip: Wählt man ungleiche Klassenbreiten, muss das Histogramm normiert werden (wegen der Flächenbeurteilung des menschlichen Sehsystems). Da die Fläche A j einer Säule die Häufigkeit repräsentiert, gilt für eine Klasse y j A = f(x j ), und damit f(x j ) = a j d j (a j ist die Höhe der Säule, d j die Klassenbreite) Somit ist die Höhe einer Säule a j = f(x j ) / d j Dies gilt auch für die Darstellung mit absoluten Häufigkeiten h(x j ) Dann ist die Höhe einer Säule a j = h(x j ) / d j
19 Beschreibung: Histogramm Prinzip: Wählt man ungleiche Klassenbreiten, muss das Histogramm normiert werden (wegen der Flächenbeurteilung des menschlichen Sehsystems). Da die Fläche A j einer Säule die Häufigkeit repräsentiert, gilt für eine Klasse y j A = f(x j ), und damit f(x j ) = a j d j (a j ist die Höhe der Säule, d j die Klassenbreite)
20 Beschreibung: Histogramm Problem: Ein normiertes Histogramm ist in Bezug auf die y-achse nur schwer interpretierbar. Um die relative/absolute Häufigkeit einer Klasse zu bestimmen, muss außer bei einer Klassenbreite von 1 stets gerechnet werden Bei gleichen Klassenbreiten wird ein Histogramm daher oft wie ein Säulendiagramm erstellt.
21 Beschreibung: Histogramm Beispiel: Verteilung des IQ in diesem Raum. Student IQ f(iq) h(iq) 92 Werte zwischen 89 und 140
22 Beschreibung: Histogramm Achtung: Die Wahl der Klassenanzahl kann für die Aussage entscheidend sein. Beispiel: Körpergrößen an der Geisteswissenschaftlichen Fakultät der Uni Mainz Klassenanzahl: 25 Klassenanzahl: 10 f(iq) f(iq)
23 /verbale Beschreibung: Modalität Je nach Anzahl der (lokalen) Maxima unterscheidet man uni-, bi- und multimodale Verteilungen.
24 /verbale Beschreibung: Schiefe Symmetrische Verteilungen: Häufigkeiten für die Ausprägungen einer Zufallsvariablen verlaufen gleichartig um den Mittelwert. Linkssteile/rechtsschiefe Verteilungen: Häufigkeiten laufen rechts des Mittelwertes flacher aus. Rechtssteile/linksschiefe Verteilungen: Häufigkeiten laufen links des Mittelwertes flacher aus.
25 Beschreibung: Empirische Verteilungsfunktion Die empirische Verteilungsfunktion bei c Klassen ist j F( X x ) = F( x ) = f ( x ) j j c c= 1 mit j = 1 k Note x h(x) f(x) F(x) Zur grafischen Darstellung werden also die empirischen relativen Häufigkeiten aufsummiert
26 Relevante Excel Funktionen Klassenbildung LOG() AUFRUNDEN()
Forschungsstatistik I
Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike [email protected]
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt & Statistik Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike [email protected]
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
Forschungsstatistik I
Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
Forschungsstatistik I
Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt Statistik & Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike [email protected]
Forschungsstatistik I
Psychologie Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
Forschungsmethoden VORLESUNG WS 2017/2018
Forschungsmethoden VORLESUNG WS 2017/2018 SOPHIE LUKES Übersicht Letzte Sitzung: Psychologie als empirische Wissenschaft Heute: Messen Rückblick: Qualitativer vs. quantitativer Ansatz Qualitativ Quantitativ
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected]
Mathematische und statistische Methoden II
Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike [email protected]
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
Mathematische und statistische Methoden II
Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike [email protected]
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected]
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt Statistik & Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike [email protected]
Forschungsmethoden VORLESUNG SS 2017
Forschungsmethoden VORLESUNG SS 2017 SOPHIE LUKES Übersicht Letzte Sitzung: Psychologie als empirische Wissenschaft Heute: Messen Rückblick: Qualitativer vs. quantitativer Ansatz Qualitativ Quantitativ
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 6-6) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected]
Mathematische und statistische Methoden II
Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike [email protected] lordsofthebortz.de lordsofthebortz.de/g+
Kapitel 2. Häufigkeitsverteilungen
6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
Mathematische und statistische Methoden II
Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike [email protected] lordsofthebortz.de lordsofthebortz.de/g+
Mathematische und statistische Methoden II
Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte
WISTA WIRTSCHAFTSSTATISTIK
WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 23042013 Datenlagen und Darstellung eindimensionaler Häufigkeitsverteilungen
2 Häufigkeitsverteilungen
2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation An n Einheiten ω 1,,ω n sei das Merkmal X beobachtet worden x 1 = X(ω 1 ),,x n = X(ω n ) Also
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected]
Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)
Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke
Kreisdiagramm, Tortendiagramm
Kreisdiagramm, Tortendiagramm Darstellung der relativen (absoluten) Häufigkeiten als Fläche eines Kreises Anwendung: Nominale Merkmale Ordinale Merkmale (Problem: Ordnung nicht korrekt wiedergegeben) Gruppierte
SozialwissenschaftlerInnen II
Statistik für SozialwissenschaftlerInnen II Henning Best [email protected] Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen
Kapitel V - Graphische Darstellung von Häufigkeitsverteilungen
Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel V - Graphische Darstellung von Häufigkeitsverteilungen Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Senska
Forschungsstatistik I
Prof. Dr. G. Meinhardt. Stock, Taubertsberg R. 0-0 (Persike) R. 0-1 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet0.sowi.uni-mainz.de/
Grafische Darstellung von Häufigkeitsverteilungen (1)
Grafische Darstellung von Häufigkeitsverteilungen () Grafische Darstellungen dienen... - Einführung - der Unterstützung des Lesens und Interpretierens von Daten. der Veranschaulichung mathematischer Begriffe
3 Häufigkeitsverteilungen
3 Häufigkeitsverteilungen 3.1 Absolute und relative Häufigkeiten 3.2 Klassierung von Daten 3.3 Verteilungsverläufe 3.1 Absolute und relative Häufigkeiten Datenaggregation: Bildung von Häufigkeiten X nominal
Forschungsstatistik I
Psychologie Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine Universität Düsseldorf 14. Oktober 2010 Übungen Aufgabenblatt 1 wird heute Nachmittag auf das Weblog gestellt. Geben Sie die Lösungen dieser
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten
Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1
Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,
Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg
Lagemaße Übung M O D U S, M E D I A N, M I T T E L W E R T, M O D A L K L A S S E, M E D I A N, K L A S S E, I N T E R P O L A T I O N D E R M E D I A N, K L A S S E M I T T E Zentrale Methodenlehre, Europa
0 Einführung: Was ist Statistik
0 Einführung: Was ist Statistik 1 Datenerhebung und Messung 2 Univariate deskriptive Statistik Häufigkeitsverteilungen Statistische Kennwerte 3 Multivariate Statistik 4 Regression 5 Ergänzungen Deskriptive
Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 1
1 Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS 2011 Lösung Aufgabe 1 (a) Es sollen die mathematischen Vorkenntnisse der Studenten, die die Vorlesung Statistik I für Statistiker,
Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien
Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische
Wahrscheinlichkeits - rechnung und Statistik
Michael Sachs Mathematik-Studienhilfen Wahrscheinlichkeits - rechnung und Statistik für Ingenieurstudenten an Fachhochschulen 4., aktualisierte Auflage 2.2 Eindimensionale Häufigkeitsverteilungen 19 absolute
Primer: Deskriptive Statistik 1.0
Primer: Deskriptive Statistik 1.0 Dr. Malte Persike [email protected] methodenlehre.com twitter.com/methodenlehre methodenlehre.com/g+ Folie 1 Variablen & Skalen Nominaldaten Variablen Deskriptive Statistik
3 Häufigkeitsverteilungen
3 Häufigkeitsverteilungen 3.1 Absolute und relative Häufigkeiten 3.2 Klassierung von Daten 3.3 Verteilungsverläufe 3.1 Absolute und relative Häufigkeiten Datenaggregation: Bildung von Häufigkeiten X nominal
Forschungsstatistik I
Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] http://psymet03.sowi.uni-mainz.de/
Statistik I für Betriebswirte Vorlesung 9
Statistik I für Betriebswirte Vorlesung 9 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik Vorlesung am 8. Juni 2017 im Audi-Max (AUD-1001) Dr. Andreas Wünsche Statistik I für Betriebswirte
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
Die folgende Tabelle 1 wurde im Rahmen einer Umfrage unter den Studenten eines Statistikseminars erstellt.
Nr. Die folgende Tabelle wurde im Rahmen einer Umfrage unter den Studenten eines Statistikseminars erstellt. Gewicht (x i ) Raucher Geschlecht Lieblingssportart Ausübung des Sports Geld pro Monat Klassenmitte
1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik:
. Einführung und statistische Grundbegriffe Beispiele aus dem täglichen Leben Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: Quantitative Information Graphische oder tabellarische
Empirische Verteilungsfunktion
Empirische Verteilungsfunktion H(x) := Anzahl der Werte x ist. Deskriptive
Lage- und Streuungsparameter
Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch
P (X = 2) = 1/36, P (X = 3) = 2/36,...
2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel
4. Kumulierte Häufigkeiten und Quantile
4. Kumulierte Häufigkeiten und Quantile Statistik für SoziologInnen 1 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen
Deskriptive Statistik Erläuterungen
Grundlagen der Wirtschaftsmathematik und Statistik Erläuterungen Lernmaterial zum Modul - 40601 - der Fernuniversität Hagen 7 2.1 Einfache Lageparameter aus einer gegebenen Messreihe ablesen Erklärung
Deskriptivstatistik a) Univariate Statistik Weiters zum Thema der statistischen Informationsverdichtung
20 Weiters zum Thema der statistischen Informationsverdichtung M a ß z a h l e n Statistiken bei Stichproben Parameter bei Grundgesamtheiten Maßzahlen zur Beschreibung univariater Verteilungen Maßzahlen
Willkommen zur Vorlesung Statistik
Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Häufigkeiten und ihre Verteilung, oder: Zusammenfassende Darstellungen einzelner Variablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen
Verteilungsfunktion und Quantile
Statistik 1 für SoziologInnen Verteilungsfunktion und Quantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit das Kumulieren inhaltlich sinnvoll ist, muss das auszuwertende Merkmal
Musterlösung zur Übungsklausur Statistik
Musterlösung zur Übungsklausur Statistik WMS15B Oettinger 9/216 Aufgabe 1 (a) Falsch: der Modus ist die am häufigsten auftretende Merkmalsausprägung in einer Stichprobe. (b) Falsch: die beiden Größen sind
Forschungsstatistik I
Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] WS 008/009 Fachbereich
Voraussetzung für statistische Auswertung: jeder Fall besitzt in bezug auf jedes Merkmal genau eine Ausprägung
Rohdaten Urliste oder Rohdaten sind die auszuwertenden Daten in der Form, wie sie nach der Datenerhebung vorliegen. Dimensionen der Urliste sind die Fälle, Merkmale und ihre Ausprägungen. Voraussetzung
Stichwortverzeichnis. Symbole
Stichwortverzeichnis Symbole 50ste Perzentil 119 A Absichern, Ergebnisse 203 Abzählbar unendliche Zufallsvariable 146 Alternativhypothese 237 238 formulieren 248 Anekdote 340 Annäherung 171, 191 Antwortquote
Mathematische und statistische Methoden II
Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike [email protected] lordsofthebortz.de lordsofthebortz.de/g+
Deskriptive Statistik
Deskriptive Statistik Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst aufräumen 1 Modell vs. Daten Bis jetzt
Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen
DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung
Einführung in Quantitative Methoden
Einführung in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2014 Christodoulides / Waldherr Einführung in Quantitative Methoden- 2.VO 1/57 Die Deskriptivstatistik
4. Kumulierte Häufigkeiten und Quantile
4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen interessiert, sondern an der Häufigkeit von Intervallen. Typische Fragestellung:
Lösungen zur Klausur zur Statistik Übung am
Lösungen zur Klausur zur Statistik Übung am 28.06.2013 Fabian Kleine Staatswissenschaftliche Fakultät Aufgabe 1 Gegeben sei die folgende geordneten Urliste des Merkmals Y. 30 Punkte Y : 5 5 5 5 10 10 10
Deskriptive Statistik Aufgaben und Lösungen
Grundlagen der Wirtschaftsmathematik und Statistik Aufgaben und en Lernmaterial zum Modul - 40601 - der Fernuniversität Hagen Inhaltsverzeichnis 1 Daten und Meßskalen 5 1.1 Konkrete Beispiele...................................
