3. Deskriptive Statistik
|
|
|
- Gotthilf Fried
- vor 9 Jahren
- Abrufe
Transkript
1 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht einer Person, - Gehalt einer Person, - Wohngegend Zweidimensionale (bivariate) Daten: Pro Objekt werden zwei Merkmale erhoben: (Gewicht und Größe einer Person) (Ausbildung, Gehalt) (Wohngegend, Wagentyp) 1
2 3.1. Univariate Verteilungen, grafische Darstellungen und Kenngrößen Selbststudium Ausgangspunkt: Urliste Häufigkeiten: x 1, x 2,..., x n H i... Anzahl oder absolute Häufigkeit des Auftretens der Merkmalsausprägung a i, i = 1,..., l Darstellung in Strichlisten, Häufigkeitstabellen, Balkenoder Stabdiagrammen bei zu vielen Ausprägungen (und ordinalen Daten): Klasseneinteilung; subjektiv, Manipulationsmöglichkeit! h i = H i /n... relative Häufigkeit von a i, i = 1,..., l. Darstellung in Kreisdiagrammen bei ordinalen Daten: kumulierte absolute und relative Häufigkeiten: K i = i j=1 H j, k i = i h j j=1 Darstellung in Summenkurven (Summenpolygon) 2
3 Kenngrößen eindimensionaler Verteilungen Charakterisierung von Verteilungen durch statistische Maßzahlen (Kenngrößen, Parameter), die die Eigenschaften (Zentrum, Ausbreitung, Form) der Verteilung widerspiegeln wichtigste Maßzahlen sind Lage- und Streuungsparameter Wichtig: Skalierungsniveau beachten Lageparameter: Der Modalwert = die am häufigsten auftretende Merkmalsausprägung = die Klasse (Klassenmitte) mit der größten Häufigkeit bei gruppierten Daten (Klassen) Mehrere Maxima: kein Modalwert Eigenschaften und Interpretation: Wert, der am ehesten zu beobachten ist (sprachl. Formulierungen wie: Diese Krankheit dauert normalerweise 3 Tage., Die Fahrzeit beträgt normalerweise 2 Stunden. ) unempfindlich gegenüber Ausreißern (extremen Werten) 3
4 Median mindestens ordinale Daten Median heißt jede Merkmalsausprägung a, für die gilt: h i 1/2, h i 1/2 i : x i a i : x i a oberhalb und unterhalb der Mediane befinden sich gleichviele Elemente der Stichprobe Bei metrischen Daten wird häufig der Mittelwert der Mediane als Median angegeben. Eigenschaften und Interpretation: zentraler Wert bei ordinalen Merkmalen unempfindlich gegenüber Ausreißern Minimaleigenschaft bez. absoluter Abweichungen (metrische Daten), jeder Median löst n x i z min 4
5 Das arithmetische Mittel metrische Daten x = 1 n n x i = l j=1 a j h j Eigenschaften und Interpretation: Schwerpunkt der Verteilung, empfindlich gegenüber Ausreißern (vgl. Median), Minimaleigenschaft bezüglich quadratischer Abweichungen: n hat die Lösung z = x (x i z) 2 min (Beweis: Übung). bei gruppierten Daten mit Klassenmitten x i Klassenhäufigkeiten n i : und x = 1 n k n i x i gewichtetes Mittel der Klassenmitten Im Gegensatz zum Median kann das arithmetische Mittel bei gruppierten Daten mit offenen Randklassen nicht berechnet werden. 5
6 Streuungsparameter (Variabilitätsparameter) Maßzahlen zur Bewertung der Variabilität der Messwerte, der Breite einer Verteilung, der Abweichungen vom Mittelwert Ziel von Analysen: Zerlegung der Variabilität der Messwerte nach verschiedenen Ursachen (Faktoren, Fehler des Messgerätes usw.), Analyse der Wirkung des Zufalls Streuungsparameter für metrische Daten Spannweite: v = x max x min empirische Varianz: s 2 s 2 = 1 n 1 n (x i x) 2 = 1 ( n n 1 mittlere quadratische Abweichung 1 n 1 2 ( ) Dimension von s 2 : ist z.b. x i eine Konzentration, dann mg 2 /l 2 x 2 i n x 2 ) Eigentlich müsste durch n geteilt werden. Grund für die Division durch n 1 ist die Anwendung der so erhaltenen Größe in der schließenden Statistik. Standardabweichung s = s 2, gleiche Dimension wie x i. Variationskoeffizient v = 100% s x dimensionslos 6
7 Quartilsabstand Grundgedanke: Ähnlich der Spannweite (s.o.) wird die Spannweite der mittleren 50% der Werte berechnet. Unteres Quartil q 0.25 heißt jede Merkmalsausprägung a, für die gilt: i : x i a h i 1/4, i : x i a h i 3/4. Oberes Quartil q 0.75 heißt jede Merkmalsausprägung a, für die gilt: i : x i a h i 3/4, i : x i a h i 1/4. q 0.25 und q 0.75 sind i.a. nicht eindeutig bestimmt. Falls doch, dann heißt q 0.75 q 0.25 (empirischer) Quartilsabstand, Interquartilbereich, IQR. In Statistiksoftware sind unterschiedliche Interpolationsregeln für die Quartile realisiert. 7
8 Veranschaulichung von Median, Quartilen, IQR, Minimum, Maximum im Boxplot: Ausreißer (mit Fallnummer) maximale Zaunlänge = 1,5 Boxlänge oberes Quartil unteres Quartil Median kleinster Wert, der nicht als Ausreißer erkannt wird Beispiel: ALLBUS, Monatliches Haushalt-Nettoeinkommen (die ersten 300 Fälle, nur 178 haben geantwortet). 8
1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18
3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen
Charakterisierung der Daten: Sind es genug? Sind alle notwendig? Was ist naturgegeben, was von Menschen beeinflusst (beeinflussbar)?
3 Beschreibende Statistik 3.1. Daten, Datentypen, Skalen Daten Datum, Daten (data) das Gegebene Fragen über Daten Datenerhebung: Was wurde gemessen, erfragt? Warum? Wie wurden die Daten erhalten? Versuchsplanung:
Statistik I für Betriebswirte Vorlesung 9
Statistik I für Betriebswirte Vorlesung 9 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik Vorlesung am 8. Juni 2017 im Audi-Max (AUD-1001) Dr. Andreas Wünsche Statistik I für Betriebswirte
Einführung in Quantitative Methoden
Einführung in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2014 Christodoulides / Waldherr Einführung in Quantitative Methoden- 2.VO 1/57 Die Deskriptivstatistik
Der Modus ist. Der Median ist. 3. Übung. Aufgabe 1. a) der häufigste Wert. b) der Wert unter dem 50 % aller anderen Werte liegen.
3. Übung Aufgabe 1 Der Modus ist a) der häufigste Wert. b) der Wert unter dem 50 % aller anderen Werte liegen. c) der Durchschnitt aller Werte. d) der Wert mit der größten Häufigkeitsdichte. e) der Schwerpunkt
Statistik K urs SS 2004
Statistik K urs SS 2004 3.Tag Grundlegende statistische Maße Mittelwert (mean) Durchschnitt aller Werte Varianz (variance) s 2 Durchschnittliche quadrierte Abweichung aller Werte vom Mittelwert >> Die
Kapitel 1 Beschreibende Statistik
Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)
Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien
Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische
Weitere Lagemaße: Quantile/Perzentile I
3 Auswertung von eindimensionalen Daten Lagemaße 3.3 Weitere Lagemaße: Quantile/Perzentile I Für jeden Median x med gilt: Mindestens 50% der Merkmalswerte sind kleiner gleich x med und ebenso mindestens
Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:
1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 20. Oktober 2010 1 empirische Verteilung 2 Lageparameter Modalwert Arithmetisches Mittel Median 3 Streuungsparameter
Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit
TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Häufigkeitsverteilungen und Statistische Maßzahlen Statistik SS Variablentypen Qualitative
Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management
Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 03 Hochschule Augsburg : Gliederung Einführung Deskriptive Statistik 3 Wahrscheinlichkeitstheorie
Empirische Verteilungsfunktion
Empirische Verteilungsfunktion H(x) := Anzahl der Werte x ist. Deskriptive
Einführung in Quantitative Methoden
Einführung in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2011 Christodoulides / Waldherr Einführung in Quantitative Methoden- 2.VO 1/62 Summenzeichen
Verfahren für metrische Variable
Verfahren für metrische Variable Grafische Methoden Histogramm Mittelwertsplot Boxplot Lagemaße Mittelwert, Median, Quantile Streuungsmaße Standardabweichung, Interquartilsabstand Lagemaße und Streumaße
Deskriptivstatistik a) Univariate Statistik Weiters zum Thema der statistischen Informationsverdichtung
20 Weiters zum Thema der statistischen Informationsverdichtung M a ß z a h l e n Statistiken bei Stichproben Parameter bei Grundgesamtheiten Maßzahlen zur Beschreibung univariater Verteilungen Maßzahlen
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten
Deskriptive Statistik Erläuterungen
Grundlagen der Wirtschaftsmathematik und Statistik Erläuterungen Lernmaterial zum Modul - 40601 - der Fernuniversität Hagen 7 2.1 Einfache Lageparameter aus einer gegebenen Messreihe ablesen Erklärung
Deskriptive Statistik
Deskriptive Statistik 1 Ziele In der deskriptiven (=beschreibenden) Statistik werden Untersuchungsergebnisse übersichtlich dargestellt, durch Kennzahlen charakterisiert und grafisch veranschaulicht. 2
Grundlagen der Statistik
www.nwb.de NWB Studium Betriebswirtschaft Grundlagen der Statistik Band 1: Beschreibende Verfahren Von Professor Dr. Jochen Schwarze 12., vollständig überarbeitete Auflage nwb STUDIUM Inhaltsverzeichnis
Grundlagen der Statistik I
NWB-Studienbücher Wirtschaftswissenschaften Grundlagen der Statistik I Beschreibende Verfahren Von Professor Dr. Jochen Schwarze 10. Auflage Verlag Neue Wirtschafts-Briefe Herne/Berlin Inhaltsverzeichnis
Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66
Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation
Das arithmetische Mittel. x i = = 8. x = 1 4. und. y i = = 8
.2 Einige statistische Maßzahlen.2. Die Schusser in zwei Familien Die vier Kinder der Familie Huber haben x = 5, x 2 = 7, x 3 = 9, x 4 = Schusser. Die vier Kinder der Familie Maier haben y = 7, y 2 = 7,
Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durc
SS 2017 Torsten Schreiber 222 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durch Summierung je Ausprägung
4 Statistische Maßzahlen
4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer
Lösungen. w58r4p Lösungen. w58r4p. Name: Klasse: Datum:
Testen und Fördern Name: Klasse: Datum: 1) Ermittle jeweils das arithmetische Mittel. Ordne die Datenerhebungen nach der Größe der arithmetischen Mittel. Beginne mit dem Größten. 45, 39, 44, 48, 42, 39,
Aufgabe 3 Bei 16 PKWs desselben Typs wurde der Benzinverbrauch pro 100 km gemessen. Dabei ergab sich die folgende Urliste (in Liter pro 100km):
Mathematik II für Naturwissenschaften Dr. Christine Zehrt 21.02.19 Übung 1 (für Pharma/Geo/Bio/Stat) Uni Basel Besprechung der Lösungen: 26./27. Februar 2019 in den Übungsstunden Bestimmen Sie zu den folgenden
Kapitel 3: Lagemaße. Ziel. Komprimierung der Daten zu einer Kenngröße, welche die Lage, das Zentrum der Daten beschreibt
Kapitel 3: Lagemaße Ziel Komprimierung der Daten zu einer Kenngröße, welche die Lage, das Zentrum der Daten beschreibt Dr. Matthias Arnold 52 Definition 3.1 Seien x 1,...,x n Ausprägungen eines kardinal
Fachrechnen für Tierpfleger
Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:
Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung
FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer
Kapitel VI - Lage- und Streuungsparameter
Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel VI - Lage- und Streuungsparameter Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh
Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)
Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke
1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43
1) Ermittle jeweils das arithmetische Mittel. Ordne die Datenerhebungen nach der Größe der arithmetischen Mittel. Beginne mit dem Größten. 1 45, 39, 44, 48, 42, 39, 40, 31 2 35, 31, 46, 35, 31, 42, 51,
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung Übung 3 1 Inhalt der heutigen Übung Vorrechnen der Hausübung B.7 Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben C.1: Häufigkeitsverteilung C.2: Tukey
Ü B U N G S S K R I P T S T A T I S T I K
Ü B U N G S S K R I P T S T A T I S T I K A. Ploner H. Strelec C. Yassouridis Universität für Bodenkultur Department für Raum, Landschaft und Infrastruktur Institut für Angewandte Statistik & EDV Peter-Jordan-Strasse
Grundlagen der empirischen Sozialforschung
Grundlagen der empirischen Sozialforschung Sitzung 10 - Datenanalyseverfahren Jan Finsel Lehrstuhl für empirische Sozialforschung Prof. Dr. Petra Stein 22. Dezember 2008 1 / 21 Online-Materialien Die Materialien
Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter
Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Georg Bol [email protected] Markus Höchstötter, [email protected] Agenda 1. Ziele 2. Lageparameter 3.
Lage- und Streuungsmaße
Statistik 1 für SoziologInnen Lage- und Streuungsmaße Univ.Prof. Dr. Marcus Hudec Streuungsmaße Statistische Maßzahlen, welche die Variabilität oder die Streubreite in den Daten messen. Sie beschreiben
Median 2. Modus < Median < Mittelwert. Mittelwert < Median < Modus. 2 Modalwerte oder Modus viel größer bzw. viel kleiner als Mittelwert
Universität Flensburg Zentrum für Methodenlehre Tutorium Statistik I Modus oder Modalwert (D) : - Geeignet für nominalskalierte Daten - Wert der häufigsten Merkmalsausprägung - Es kann mehrere Modalwerte
beruflicher Bildungsabschluss incl. Hochschulabschl. 4Kat.(m) Häufigkeit Prozent Gültig Lehre/Beruffachgesundh.Schule ,2 59,2 59,2
Häufigkeiten Deskriptive Statistiken Häufigkeiten Beruflicher Bildungsabschluss (Mbfbil4) Zielvariablenliste OK Er erscheint: Statistiken beruflicher Bildungsabschluss incl. N Gültig 3445 Fehlend 0 beruflicher
4 Statistische Maßzahlen
4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer
Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016
Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016 1. Daten erfassen 1. Aufgabe: Würfeln Sie 30-mal mit einem regelmäßigen Oktaeder und dokumentieren
Günther Bourier. Beschreibende Statistik. Praxisorientierte Einführung - Mit. Aufgaben und Lösungen. 12., überarbeitete und aktualisierte Auflage
i Günther Bourier Beschreibende Statistik Praxisorientierte Einführung - Mit Aufgaben und Lösungen 12., überarbeitete und aktualisierte Auflage 4^ Springer Gabler Inhaltsverzeichnis Vorwort V 1 Einführung
Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel.
Zusammenfassung und wichtiges zur Prüfungsvorbereitung 9. Dezember 2008 Begriffe Kenntnis der wichtigen Begriffe und Unterscheidung dieser. Beispiele: Merkmal, Merkmalsraum, etc. Skalierung: Nominal etc
Beschreibende Statistik
Gunther Bourier Beschreibende Statistik Praxisorientierte Einfuhrung Mit Aufgaben und Losungen 7., uberarbeitete Auflage GABIER Inhaltsverzeichnis Vorwort Inhaltsverzeichnis V VII 1 Einfuhrung 1 1.1 Begriff
Musterlösung zur Übungsklausur Statistik
Musterlösung zur Übungsklausur Statistik WMS15B Oettinger 9/216 Aufgabe 1 (a) Falsch: der Modus ist die am häufigsten auftretende Merkmalsausprägung in einer Stichprobe. (b) Falsch: die beiden Größen sind
Deskriptive Statistik Auswertung durch Informationsreduktion
Deskriptive Statistik Auswertung durch Informationsreduktion Gliederung Ø Grundbegriffe der Datenerhebung Total-/Stichprobenerhebung, qualitatives/quantitatives Merkmal Einteilung der Daten (Skalierung,
Beispiel 4 (Einige weitere Aufgaben)
1 Beispiel 4 (Einige weitere Aufgaben) Aufgabe 1 Bestimmen Sie für die folgenden Zweierstichproben, d. h. Stichproben, die jeweils aus zwei Beobachtungen bestehen, a) den Durchschnitt x b) die mittlere
a) x = 1150 ; x = 950 ; x = 800 b) Die Lagemaße unterscheiden sich voneinander. c) Der Median charakterisiert die Stichprobe am besten.
R. Brinkmann http://brinkmann-du.de Seite 6.0.2009 Lösungen Mittelwert, Median II se: E E2 E3 E4 E5 E6 a) Notendurchschnitt 2,6 b) Säulendiagramm siehe ausführliche Lösung. c) Kreisdiagramm siehe ausführliche
Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es
Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle
Streuungsmaße von Stichproben
Streuungsmaße von Stichproben S P A N N W E I T E, V A R I A N Z, S T A N D A R D A B W E I C H U N G, Q U A R T I L E, K O V A R I A N Z, K O R R E L A T I O N S K O E F F I Z I E N T Zentrale Methodenlehre,
Arbeitsbuch zur deskriptiven und induktiven Statistik
Helge Toutenburg Michael Schomaker Malte Wißmann Christian Heumann Arbeitsbuch zur deskriptiven und induktiven Statistik Zweite, aktualisierte und erweiterte Auflage 4ü Springer Inhaltsverzeichnis 1. Grundlagen
Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale
1. Grundlagen... 1 1.1 Grundgesamtheit und Untersuchungseinheit................ 1 1.2 Merkmal oder statistische Variable........................ 2 1.3 Datenerhebung.........................................
Lage- und Streuungsparameter
Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch
Kreisdiagramm, Tortendiagramm
Kreisdiagramm, Tortendiagramm Darstellung der relativen (absoluten) Häufigkeiten als Fläche eines Kreises Anwendung: Nominale Merkmale Ordinale Merkmale (Problem: Ordnung nicht korrekt wiedergegeben) Gruppierte
1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n
3.2. Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare von Merkmalsausprägungen (x, y) Beispiele:
Deskriptive Statistik
Helge Toutenburg Christian Heumann Deskriptive Statistik Eine Einführung in Methoden und Anwendungen mit R und SPSS Siebte, aktualisierte und erweiterte Auflage Mit Beiträgen von Michael Schomaker 4ü Springer
Das Ergebnis der Untersuchung eines kardinalskalierten Merkmals X sei in folgender Tabelle wiedergegeben: Ausprägung Anzahl
Aufgabe 10 Deskriptiv: Lageparameter Das Ergebnis der Untersuchung eines kardinalskalierten Merkmals X sei in folgender Tabelle wiedergegeben: Ausprägung 1 2 3 4 7 Anzahl 4 4 6 4 2 a) Bestimmen Sie das
Statistische Kennzahlen für die Lage
Statistische Kennzahlen für die Lage technische universität ach der passenden grafischen Darstellung der Werte eines Merkmals auf der Gesamtheit der Beobachtungen interessieren jetzt geschickte algebraische
Wahrscheinlichkeits - rechnung und Statistik
Michael Sachs Mathematik-Studienhilfen Wahrscheinlichkeits - rechnung und Statistik für Ingenieurstudenten an Fachhochschulen 4., aktualisierte Auflage 2.2 Eindimensionale Häufigkeitsverteilungen 19 absolute
1 Grundlagen statistischer Versuchsauswertung
1 Grundlagen statistischer Versuchsauswertung 1.1 Statistische Daten Schon vor der Erhebung von Daten sollten erste statistische Überlegungen mit in das Erhebungsprogramm aufgenommen werden. Primäres Ziel
PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale)
PROC MEAS zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) Allgemeine Form: PROC MEAS DATA=name Optionen ; VAR variablenliste ; CLASS vergleichsvariable ; Beispiel und Beschreibung der
Statistik Skalen (Gurtner 2004)
Statistik Skalen (Gurtner 2004) Nominalskala: Daten haben nur Namen(Nomen) und (eigentlich) keinen Zahlenwert Es kann nur der Modus ( ofteste Wert) berechnet werden Beispiel 1: Die Befragung von 48 Personen
Graphische Darstellung einer univariaten Verteilung:
Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit
Stochastik Deskriptive Statistik
Stochastik Deskriptive Statistik 3 % 3 8% % % % 99 997 998 999 3 7 8 % 99 997 998 999 3 7 8 8 8 99 997 998 999 3 7 8 99 99 998 8 8 Typ A % Typ B % 998 Typ C % 99 3 Diese Diagramme stellen weitgehend dieselben
absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten
Statistik Eine Aufgabe der Statistik ist es, Datenmengen zusammenzufassen und darzustellen. Man verwendet dazu bestimmte Kennzahlen und wertet Stichproben aus, um zu Aussagen bzw. Prognosen über die Gesamtheit
Deskriptive Statistik Aufgaben und Lösungen
Grundlagen der Wirtschaftsmathematik und Statistik Aufgaben und en Lernmaterial zum Modul - 40601 - der Fernuniversität Hagen Inhaltsverzeichnis 1 Daten und Meßskalen 5 1.1 Konkrete Beispiele...................................
Deskriptive Statistik
Deskriptive Statistik Lösungen+ Aufgabe 1.1 (a) Sammelnde Statistik: Wahl einer zufälligen Stichprobe aus der Grundgesamtheit. (b) Beschreibende (deskriptive) Statistik: Aufbereitung der Stichprobe (oder
Stochastik 01 Deskriptive Statistik
Grundbegrie der Statistik 23. August 2018 Grundbegrie der Statistik Grundlagen der Statistik (bis Klasse 10) Grundlagen der Stochastik (bis Klasse 10) Zufallsgrößen und Verteilungen Beurteilende Statistik
Deskriptive Statistik
Deskriptive Statistik Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst aufräumen 1 Modell vs. Daten Bis jetzt
Bachelor BEE Statistik Übung: Blatt 1 Ostfalia - Hochschule für angewandte Wissenschaften Fakultät Versorgungstechnik Aufgabe (1.1): Gegeben sei die folgende Messreihe: Nr. ph-werte 1-10 6.4 6.3 6.7 6.5
htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK
htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 2 Grundbegriffe htw saar 3 Grundgesamtheit und Stichprobe Ziel: Über eine Grundgesamtheit (Population) soll eine Aussage über ein
Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man:
Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man: a) Die absoluten Häufigkeit: Sie gibt an, wie oft ein Variablenwert vorkommt b) Die relative Häufigkeit: Sie erhält
Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen.
Welche der folgenden Maßzahlen sind resistent gegenüber Ausreißer? Der Mittelwert und die Standardabweichung. Der und die Standardabweichung. Der und die Spannweite. Der und der Quartilsabstand. Die Spannweite
Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler
Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung
WISTA WIRTSCHAFTSSTATISTIK
WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 23042013 Datenlagen und Darstellung eindimensionaler Häufigkeitsverteilungen
Anwendung A_0801_Quantile_Minimum_Maximum
8. Lageparameter 63 8.3 Interaktive EXCEL-Anwendungen (CD-ROM) Anwendung A_080_Quantile_Minimum_Maimum Die Anwendung besteht aus einem Tabellenblatt Simulation : In der Simulation wird aus einer Urliste
Inhaltsverzeichnis DESKRIPTIVE STATISTIK. 1 Grundlagen Grundbegriffe Skalen... 15
Inhaltsverzeichnis 1 Grundlagen... 13 1.1 Grundbegriffe...13 1.2 Skalen... 15 DESKRIPTIVE STATISTIK 2 Eindimensionale Häufigkeitsverteilungen...16 2.1 Häufigkeiten... 16 2.1.1 Grundbegriffe... 16 2.1.2
Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum
1 Merkmalstypen Quantitativ: Geordnete Werte, Vielfache einer Einheit Stetig: Prinzipiell sind alle Zwischenwerte beobachtbar Beispiele: Gewicht, Größe, Blutdruck Diskret: Nicht alle Zwischenwerte sind
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine Universität Düsseldorf 19. Oktober 2009 Hinweise Internetseite zur Vorlesung: http://blog.ruediger-braun.net Dort können Sie Materialien
Die erhobenen Daten (Urliste) werden mithilfe einer Strichliste geordnet. Damit kann die absolute Häufigkeit einfach und schnell erfasst werden.
Kennzahlen der Statistik Die Aufgabe der Statistik besteht in der Analyse und der Deutung von Daten. Dies geschieht mit bestimmten Kennzahlen wie: en, arithmetischer Mittelwert, Modalwert, Zentralwert,
Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert
Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht
1 GRUNDLAGEN Grundbegriffe Skalen...15
Inhaltsverzeichnis 1 GRUNDLAGEN...13 1.1 Grundbegriffe...13 1.2 Skalen...15 DESKRIPTIVE STATISTIK 2 EINDIMENSIONALE HÄUFIGKEITSVERTEILUNGEN...16 2.1 Häufigkeiten...16 2.1.1 Grundbegriffe...16 2.1.2 Klassieren
2. Beschreibung von eindimensionalen (univariaten) Stichproben
1 2. Beschreibung von eindimensionalen (univariaten) Stichproben Bei eindimensionalen (univariaten) Daten wird nur ein Merkmal untersucht. Der Fall von zwei- oder mehrdimensionalen Daten wird im nächsten
benötigen. Die Zeit wird dabei in Minuten angegeben und in einem Boxplot-Diagramm veranschaulicht.
, D 1 Kreuze die richtige Aussage an und stelle die anderen Aussagen richtig. A Das arithmetische Mittel kennzeichnet den mittleren Wert einer geordneten Datenliste. B Die Varianz erhält man, wenn man
5 Exkurs: Deskriptive Statistik
5 EXKURS: DESKRIPTIVE STATISTIK 6 5 Ekurs: Deskriptive Statistik Wir wollen zuletzt noch kurz auf die deskriptive Statistik eingehen. In der Statistik betrachtet man für eine natürliche Zahl n N eine Stichprobe
Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5
Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung
