Übungen mit dem Applet Rangwerte
|
|
|
- Heinrich Thomas
- vor 7 Jahren
- Abrufe
Transkript
1 Rangwerte 1 Übungen mit dem Applet Rangwerte 1 Statistischer Hintergrund Verteilung der Einzelwerte und der Rangwerte Kurzbeschreibung des Applets Ziel des Applets Visualisierungen mit dem Applet Was ist der Rangwert x (i)? Verteilung der Rangwerte ist schmäler als die Verteilung aller Werte...6
2 Rangwerte 2 1 Statistischer Hintergrund 1.1 Verteilung der Einzelwerte und der Rangwerte Die Einzelwerte einer Stichprobe werden häufig in guter Näherung durch die Normalverteilung beschrieben. Die Dichte der Normalverteilung ist gegeben durch g(x) = 1 e 2π σ (x μ) 2 2σ 2 wobei μ = Mittelwert und σ = Standardabweichung (bzw. σ 2 = Varianz) der Normalverteilung zwei Parameter sind, die Lage bzw. Breite der Verteilung beschreiben. G(x) ist die Verteilungsfunktion (vgl. Applet stetige Verteilungen). Hier wird die Verteilung des kleinsten, zweitkleinsten usw. bis zum größten Wert einer Stichprobe betrachtet. Für die Verteilung des i-ten Wertes x (i) (der Größe nach sortiert = Rang i) einer Stichprobe vom Umfang n gilt n! i 1 n i gx ( i) (x) = (G(x)) (1 G(x)) g(x) (i 1)!(n i)! Die Verteilung der Rangwerte ist die Grundlage für die Eintragung der Werte ins Wahrscheinlichkeitsnetz (vgl. Applet Wahrscheinlichkeitsnetz ) und für die Berechnung der Verteilung des Medians und der Spannweite einer Stichprobe. 1.2 Kurzbeschreibung des Applets Stichprobenergebnisse In der Darstellung "Stichprobenergebnisse und Histogramm" simuliert das Applet 7 bis 50 Stichproben des Umfangs n (zwischen 1 und 20) aus einer normalverteilten Grundgesamtheit mit veränderbaren Werten μ und σ und stellt die Ergebnisse wie im Applet "erwartungstreu" grafisch dar.
3 Rangwerte 3 Der i-te Wert (i zwischen 1 (=kleinster Wert) und n (=größter Wert)) wird farblich hervorgehoben (blau statt rot). Am rechten Bildrand wird die relative Häufigkeitsdichte der Werte als Histogramm dargestellt, zusammen mit der theoretischen Dichte der Verteilung g x (i) (x) des i-ten Wertes und der Dichte g(x) der Verteilung aller Werte. Abbildung Stichprobenergebnisse und Histogramm Verteilung In der Darstellung "Verteilung x (i) " zeigt das Applet die Dichten der Verteilung von x (i) für alle i zwischen 1 (=kleinster Wert) und n (=größter Wert) im Vergleich mit der Verteilung g(x) aller Werte.
4 Rangwerte 4 Abbildung Verteilung x (i) 1.3 Ziel des Applets Das Applet soll grafisch zeigen und plausibel machen, was ein Rangwert x (i) ist dass die Verteilung der Rangwerte schmäler ist als die Verteilung aller Werte (und zwar umso schmäler, je größer der Stichprobenumfang n ist) dass die Verteilung der Rangwerte in der Mitte schmäler ist als die Verteilung des kleinsten bzw. größten Wertes dass die Verteilung der Rangwerte asymmetrisch ist (nicht normalverteilt), obwohl alle Werte zusammen normalverteilt sind.
5 Rangwerte 5 2 Visualisierungen mit dem Applet 2.1 Was ist der Rangwert x (i)? Nach dem Start stellt das Applet 20 Stichproben des Umfangs 5 dar, wobei in jeder Stichprobe der zweitkleinste Wert blau hervorgehoben ist. Dies ist der Rangwert x (2) d.h. Rang 2. Abbildung Anzahl der Stichproben und Stichprobenumfangumfang Abbildung Einstellung des Rangwertes i Verändern Sie nun i mit dem Schieber. Bei i=1 werden die kleinsten Werte jeder Stichprobe hervorgehoben Rang 1. Bei i=3 werden die drittkleinsten Werte hervorgehoben (bei n=5 ist dies der Median) Rang 3, usw. i=n ergibt die größten Werte jeder Stichprobe. Rangwerte sind die der Größe nach sortierten Werte in einer Stichprobe. Rang 1 Rang 2 Rang 3 Rang 4 Rang 5 (n) Abbildung Rangwert i des Stichprobenumfangs 5
6 Rangwerte Verteilung der Rangwerte Das Histogramm zeigt die relative Häufigkeitsdichte (bei jeder Simulation etwas anders stoßen Sie mit mehrere Simulationen an). Betrachtet man unendlich viele Stichproben, so geht die relative Häufigkeitsdichte in die Dichte der Verteilung (x) des i-ten Wertes über (blaue Kurve, berechnet mit der Formel in 1.1). g x (i) Sie ist immer schmäler als die Dichte g(x) der Verteilung aller Werte (rote Kurve). Und natürlich liegt die Verteilung der kleinsten Werte (i=1) am unteren Ende von g(x), die Verteilung der größten Werte (i=n) am oberen Ende von g(x). Beachten Sie auch, dass die Verteilung der Medianwerte schmäler ist als die der Extremwerte (in der Mitte gleichen sich zufällige Abweichungen besser aus als an den Extremen). Schalten Sie um zur Darstellung "Verteilung" sie zeigt die Verteilungen aller Rangwerte im Vergleich, die Verteilung des Rangwertes i ist farblich hervorgehoben. Beachten Sie, dass die Verteilung der Rangwerte i asymmetrisch ist (besonders für den kleinsten (i=1) und den größten (i=n) Wert. Die senkrechte Linie markiert den Mittelwert der Verteilung des ausgewählten Rangwertes i. Beachten Sie, dass der Mittelwert nicht mit dem Maximum übereinstimmt. Aufgrund der Asymmetrie der Verteilung der Rangwerte ist der Mittelwert immer "extremer" als das Maximum der Verteilung die Asymmetrie zieht den Mittelwert nach außen. Je größer der Stichprobenumfang n ist, desto stärker unterscheidet sich der Mittelwert von x (1) vom Mittelwert von x (n) die Spannweite einer Stichprobe nimmt mit dem Stichprobenumfang n zu.
Übungen mit dem Applet Vergleich von zwei Mittelwerten
Vergleich von zwei Mittelwerten 1 Übungen mit dem Applet Vergleich von zwei Mittelwerten 1 Statistischer Hintergrund... 2 1.1 Typische Fragestellungen...2 1.2 Fehler 1. und 2. Art...2 1.3 Kurzbeschreibung
Übungen mit dem Applet x /s-regelkarte nach Shewhart
x /s-regelkarte nach Shewhart 1 Übungen mit dem Applet x /s-regelkarte nach Shewhart 1 Statistischer Hintergrund... 2 1.1 Ziel und Vorgehensweise der x /s-regelkarte nach Shewhart...2 1.2 Kurzbeschreibung
Anleitung zum Applet. Rangwerte
Rangwerte 1 Anleitung zum Applet Rangwerte bearbeitet von: Erwin Wagner WS 2006/2007 E/TI betreut von: Prof. Dr. Wilhelm Kleppmann Rangwerte 2 Inhaltsverzeichnis 1 VORWORT... 3 2 BENUTZEROBERFLÄCHE...
Übungen mit dem Applet Wahrscheinlichkeitsnetz
Wahrscheinlichkeitsnetz 1 Übungen mit dem Applet Wahrscheinlichkeitsnetz 1 Statistischer Hintergrund... 1.1 Verteilungen... 1. Darstellung von Daten im Wahrscheinlichkeitsnetz...4 1.3 Kurzbeschreibung
Übungen mit dem Applet
Übungen mit dem Applet 1. Visualisierung der Verteilungsform... 1.1. Normalverteilung... 1.. t-verteilung... 1.3. χ -Verteilung... 1.4. F-Verteilung...3. Berechnung von Wahrscheinlichkeiten...3.1. Visualisierung
Binomialverteilung Vertrauensbereich für den Anteil
Übungen mit dem Applet Binomialverteilung Vertrauensbereich für den Anteil Binomialverteilung Vertrauensbereich für den Anteil 1. Statistischer Hintergrund und Darstellung.... Wie entsteht der Vertrauensbereich?...
Übungen mit dem Applet Zentraler Grenzwertsatz
Zentraler Grenzwertsatz 1 Übungen mit dem Applet Zentraler Grenzwertsatz 1 Statistischer Hintergrund... 1.1 Zentraler Grenzwertsatz... 1. Beispiel Würfeln... 1.3 Wahrscheinlichkeit und relative Häufigkeit...3
Anleitung zum Applet
Anleitung zum Applet Visualisierung des Begriffs erwartungstreu bearbeitet von: Edwin Rohr WS 2004/2005 E/TI - 7 betreut von: Prof. Dr. Wilhelm Kleppmann Edwin Rohr - 1 - Inhaltsverzeichnis 1 Vorwort..
Statistik K urs SS 2004
Statistik K urs SS 2004 3.Tag Grundlegende statistische Maße Mittelwert (mean) Durchschnitt aller Werte Varianz (variance) s 2 Durchschnittliche quadrierte Abweichung aller Werte vom Mittelwert >> Die
Wahrscheinlichkeitsverteilungen
Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet
Statistik I für Betriebswirte Vorlesung 4
Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung
Anleitung zum Applet
Vertrauensbereich für Anteile (Binomialverteilung) 1 Anleitung zum Applet Vertrauensbereich für Anteile (Binomialverteilung) bearbeitet von: Armin Heiter WS 2007/2008 IN betreut von: Prof. Dr. Wilhelm
2.3 Intervallschätzung
2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau
2.3 Intervallschätzung
2.3.1 Motivation und Hinführung Bsp. 2.15. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler unter allen Wählern war 2009 auf eine Nachkommastelle gerundet genau 33.7%. Wie groß ist die Wahrscheinlichkeit,
Statistische Methoden in den Umweltwissenschaften
Statistische Methoden in den Umweltwissenschaften Stetige und diskrete Wahrscheinlichkeitsverteilungen Lageparameter Streuungsparameter Diskrete und stetige Zufallsvariablen Eine Variable (oder Merkmal
Übung zur Vorlesung: Geostatistik 1 Philipp, Mo. 15: Türcode: 1516
Übung zur Vorlesung: Geostatistik 1 Philipp, Mo. 15:45 3067 Türcode: 1516 Deskriptive Statistik Maße der Zentraltendenz Deskriptive Statistik Maße der Zentraltendenz arithmetischer Mittewert klassenorientierter
8 Stichprobenkennwerteverteilung
8 Stichprobenkennwerteverteilung 8.1 Vorbemerkungen 8.2 Die Normalverteilung: Teil 2 8.3 Die t Verteilung 8.4 Normalverteilungs Approximation: Der zentrale Grenzwertsatz 8.1 Vorbemerkungen Daten x 1,...,
Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential
Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:
Verfahren für metrische Variable
Verfahren für metrische Variable Grafische Methoden Histogramm Mittelwertsplot Boxplot Lagemaße Mittelwert, Median, Quantile Streuungsmaße Standardabweichung, Interquartilsabstand Lagemaße und Streumaße
Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien
Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische
Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung
Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Typisierung der stetigen theoretischen Verteilungen Bibliografie:
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf. Vorlesung 04 Mathematische Grundlagen II,
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf 1 Was sollen Sie heute lernen? 2 Agenda Wiederholung stetige Renditen deskriptive Statistik Verteilungsparameter
Kapitel VII. Einige spezielle stetige Verteilungen
Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,
Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de
rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent
Statistik Einführung // Stichprobenverteilung 6 p.2/26
Statistik Einführung Kapitel 6 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // 6 p.0/26 Lernziele 1. Beschreiben
Normalverteilung. Erwartungswert, Median und Modus sind identisch. Symmetrieeigenschaft um den Erwartungswert
Normalverteilung Stetige Wahrscheinlichkeitsverteilung, die zahlreiche natur, wirtschafts und sozialwissenschaftliche Merkmalsausprägungen mit guter Näherung abbilden kann und somit von elementarer Bedeutung
Stichprobenverteilung bei unterschiedlichen Auswahlsätzen
Stichprobenverteilung bei unterschiedlichen Auswahlsätzen Begleitende Unterlagen zur Übung Induktive Statistik Michael Westermann Universität Essen Inhaltsverzeichnis 1 Einleitung.......................................................
Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}.
Binomialverteilung Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder nicht. X = Häufigkeit, mit
In den letzten zwei Abschnitten wurde die tatsächliche Häufigkeitsverteilung bzw. prozentuale Häufigkeitsverteilung abgehandelt.
.3.3 Theoretisch-prozentuale Häufigkeitsverteilung In den letzten zwei Abschnitten wurde die tatsächliche Häufigkeitsverteilung bzw. prozentuale Häufigkeitsverteilung abgehandelt. Charakteristisch für
Der Weg eines Betrunkenen
Der Weg eines Betrunkenen 2 Hätte es damals schon Computer gegeben, wäre es für unseren Mathematiker um einiges leichter gewesen, den Weg des Betrunkenen zu bestimmen. Er hätte nicht nur eine beliebige
Zufallsvariablen [random variable]
Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
Übungsaufgabe Parameter und Verteilungsschätzung
Übungsaufgabe Parameter und Verteilungsschätzung Prof. Dr. rer. nat. Lüders Datum: 21.01.2019 Autor: Marius Schulte Matr.-Nr.: 10049060 FH Südwestfalen Aufgabenstellung Analysiert werden sollen die Verteilungen
Kennwerteverteilungen von Häufigkeiten und Anteilen
Kennwerteverteilungen von Häufigkeiten und Anteilen SS200 6.Sitzung vom 29.05.200 Die hypergeometrische Verteilung Wahrscheinlichkeitsverteilung der Häufigkeit eines binären Merkmals bei Einfacher Zufallsauswahl
Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1
Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,
5 Exkurs: Deskriptive Statistik
5 EXKURS: DESKRIPTIVE STATISTIK 6 5 Ekurs: Deskriptive Statistik Wir wollen zuletzt noch kurz auf die deskriptive Statistik eingehen. In der Statistik betrachtet man für eine natürliche Zahl n N eine Stichprobe
Anleitung zum Java - Applet
Anleitung zum Java - Applet Stetige Verteilungen Visualisierung von Wahrscheinlichkeit und Zufallsstreubereich bearbeitet von: WS 2004 / 2005 E/TI 7 betreut von: Prof. Dr. Wilhelm Kleppmann Inhaltsverzeichnis
SozialwissenschaftlerInnen II
Statistik für SozialwissenschaftlerInnen II Henning Best [email protected] Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen
Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme
Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder
Willkommen zur Vorlesung Statistik (Master)
Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.
Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte
Hochschule RheinMain WS 2018/19 Prof. Dr. D. Lehmann Probe-Klausur zur Vorlesung Ökonometrie Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte (die eigentliche Klausur wird
Willkommen zur Vorlesung Statistik (Master)
Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.
Statistische Methoden in den Umweltwissenschaften
Statistische Methoden in den Umweltwissenschaften t-test Varianzanalyse (ANOVA) Übersicht Vergleich von Mittelwerten 2 Gruppen: t-test einfaktorielle ANOVA > 2 Gruppen: einfaktorielle ANOVA Seeigel und
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten
Mittelwert Median Stabw StabwN 1. Quartil 3. Quartil 27,22 % 26,06 % 8,07 % 8,03 % 22,12 % 31,25 %
3. a) Mit Hilfe der Excel-Funktionen Mittelwert(DB), Median(DB), Stabw(DB) sowie Quantil(DB;P) 1 werden aus den gegebenen Leberfettgehaltmessdaten Mittelwert, Median, Standardabweichung (Stabw) sowie das
Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Stetige Verteilungen
Materialien zur Lösung der folgenden Aufgaben: - in Übung 3 beigefügte Tabelle Wahrscheinlichkeitsverteilungen diskreter und stetiger Zufallsgrößen - Übersicht - beigefügte Tabelle spezieller stetiger
Zentraler Grenzwertsatz/Konfidenzintervalle
/ Statistik I Sommersemester 2009 Statistik I ZGWS/ (1/37) Kann Ahmadinejad die Wahl gewonnen haben? Im wesentlichen Dreiteilung der polit. Elite 2005: 17.3 Millionen Stimmen (Stichwahl), Wahlbeteiligung
5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)
5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte
Anleitung: Standardabweichung
Anleitung: Standardabweichung So kann man mit dem V200 Erwartungswert und Varianz bzw. Standardabweichung bei Binomialverteilungen für bestimmte Werte von n, aber für allgemeines p nach der allgemeinen
= 3. Kapitel 4: Normalverteilung.. und Standardnormalverteilung und: das Konfidenzintervall..
Kapitel : Normalverteilung.. und Standardnormalverteilung und: das Konfidenzintervall.. Mittelwert = Summe aller Einzelwerte / n = durchschnittliche Ausprägung, wenn alle gleich viel hätten. Streuung =
6. Schätzverfahren für Parameter
6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen
Wahrscheinlichkeitsrechnung und Statistik
10. Vorlesung - 2018 Grundbegriffe der Statistik statistische Einheiten = Objekte an denen interessierende Größen erfaßt werden z.b. Bevölkerung einer Stadt; Schüler einer bestimmten Schule; Patienten
3) Testvariable: T = X µ 0
Beispiel 4.9: In einem Molkereibetrieb werden Joghurtbecher abgefüllt. Der Sollwert für die Füllmenge dieser Joghurtbecher beträgt 50 g. Aus der laufenden Produktion wurde eine Stichprobe von 5 Joghurtbechern
Statistische Tests für unbekannte Parameter
Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung
5. Stichproben und Statistiken
5. Stichproben und Statistiken Problem: Es sei X eine ZV, die einen interessierenden Zufallsvorgang repräsentiere Man möchte die tatsächliche Verteilung von X kennenlernen (z.b. mittels der VF F X (x)
2 Aufgaben aus [Teschl, Band 2]
20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:
f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212
1.6.2 Poisson Verteilung Eine weitere wichtige diskrete Verteilung ist die Poisson-Verteilung. Sie modelliert die Anzahl (eher seltener) Ereignisse in einem Zeitintervall (Unfälle, Todesfälle; Sozialkontakte,
Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5
Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung
Jost Reinecke. 7. Juni 2005
Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung
Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation
Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit
Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik
Demokurs Modul 31101 Grundlagen der Wirtschaftsmathematik und Statistik Kurs 40601 Grundlagen der Statistik 13. Juli 2010 KE 1 2.4 Schiefe und Wölbung einer Verteilung Seite: 53 2.4 Schiefe und Wölbung
Tests für Erwartungswert & Median
Mathematik II für Biologen 26. Juni 2015 Prolog Varianz des Mittelwerts Beispiel: Waage z-test t-test Vorzeichentest Wilcoxon-Rangsummentest Varianz des Mittelwerts Beispiel: Waage Zufallsvariable X 1,...,X
Beispiel 4 (Einige weitere Aufgaben)
1 Beispiel 4 (Einige weitere Aufgaben) Aufgabe 1 Bestimmen Sie für die folgenden Zweierstichproben, d. h. Stichproben, die jeweils aus zwei Beobachtungen bestehen, a) den Durchschnitt x b) die mittlere
Wahrscheinlichkeitsrechnung und Statistik
9. Vorlesung - 2017 Monte Carlo Methode für numerische Integration Sei g : [0, 1] R stetige Funktion; man möchte 1 0 g(t)dt numerisch approximieren mit Hilfe von Zufallszahlen: Sei (U n ) n eine Folge
Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr
Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne
4 Absolutstetige Verteilungen und Zufallsvariablen 215/1
4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral
Stoffverteilungsplan Mathematik Leistungskurs. Lambacher Schweizer Stochastik ISBN Klassenarbeit
Lambacher Schweizer Q3.1 Grundlegende Begriffe der Grundlagen der Wahrscheinlichkeitstheorie: Beschreiben von Zufallsexperimenten (Laplace-Experimente) unter Verwendung der Begriffe Ergebnis, Ergebnismenge,
JosefPuhani. Kleine Formelsammlung zur Statistik. 10. Auflage. averiag i
JosefPuhani Kleine Formelsammlung zur Statistik 10. Auflage averiag i Inhalt- Vorwort 7 Beschreibende Statistik 1. Grundlagen 9 2. Mittelwerte 10 Arithmetisches Mittel 10 Zentral wert (Mediän) 10 Häufigster
1. Was ist eine Wahrscheinlichkeit P(A)?
1. Was ist eine Wahrscheinlichkeit P(A)? Als Wahrscheinlichkeit verwenden wir ein Maß, welches die gleichen Eigenschaften wie die relative Häufigkeit h n () besitzt, aber nicht zufallsbehaftet ist. Jan
Klassifikation von Signifikanztests
Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests
1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung
0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau
Chi-Quadrat-Verteilung
Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf 1 Agenda Wiederholung stetige Renditen deskriptive Statistik Verteilungsparameter Erwartsungswert und Varianz
Wichtige Definitionen und Aussagen
Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge
7.5 Erwartungswert, Varianz
7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir
1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent
Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte
Statistische Tests für unbekannte Parameter
Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung
Kapitel 38 Verteilungsdiagramme
Kapitel 38 Verteilungsdiagramme Mit Verteilungsdiagrammen können Sie grafisch untersuchen, inwieweit die Stichprobenverteilung einer Variablen mit einer theoretischen Verteilung übereinstimmt. So können
1 Dichte- und Verteilungsfunktion
Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen [email protected] 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die
Maurizio Musso, Universität Salzburg, ver Physikalische Grundlagen der Meßtechnik. Teil 2
Teil 2 Auswertung von Messungen, zufällige oder statistische Abweichungen Auswertung direkter Messungen Häufigkeitsverteilung, Häufigkeitsfunktion Mittelwert, Standardabweichung der Einzelwerte Standardabweichung
Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler
6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung
Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz
Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis
Kapitel XI - Operationscharakteristik und Gütefunktion
Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XI - Operationscharakteristik und Gütefunktion Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo
Übungen mit dem Applet Grundfunktionen und ihre Ableitungen
Grundfunktionen und ihre Ableitungen 1 Übungen mit dem Applet Grundfunktionen und ihre Ableitungen 1 Ziele des Applets... Überblick über die Funktionen....1 Sinusfunktion y = f(x) = a sin(bx + c).... Cosinusfunktion
