Stochastische Geometrie und ihre Anwendungen Thema: Faserprozesse

Größe: px
Ab Seite anzeigen:

Download "Stochastische Geometrie und ihre Anwendungen Thema: Faserprozesse"

Transkript

1 Stochastische Geometrie und ihre Anwendungen Thema: Faserprozesse Universität Ulm Degang Kong

2 Inhaltsverzeichnis 1. Ungerichtete Linienprozesse als Faserprozesse. Planare Faserprozesse.1 Grundlagen. Schnittpunktprozesse.3 Schätzung der Richtungsrose

3 . Planare Faserprozesse Beispiel: Poisson Geraden-Mosaik (PGM) 3

4 . Planare Faserprozesse { l1, l, l3,...} Sei eine Familie von Geraden im Dann ist das Maß gegeben durch ( B) h1 ( l B) l wobei - B ( ) - ist das 1-dimensionale Hausdorff Maß h 1 4

5 . Planare Faserprozesse Beispiel: - X { X1, X,...} ein stationärer Poisson Prozess auf mit Intensität - M U(0, ), i i Markierter PP ( X1, M1),( X, M)... x 1 x m 1 x 3 m m3 5

6 . Planare Faserprozesse Definition: Das gewichtete zufällige Maß ( BL) h( B l) l, ( l) L 1 wobei - () l (0, ] ist die Richtung von - ( ), B L (0, ] l 6

7 . Planare Faserprozesse Definition: L A Intensität von : für stationär gilt L ( ) ( ( )) Av B E B für alle B ( ) Intensitätsmaß von : v LA wobei - ist ein Wahrscheinlichkeitsmaß auf (0, ], heißt the rose of directions oder Richtungsrose 7

8 . Planare Faserprozesse Definition: L A Intensität von : für stationär gilt L ( ) ( ( )) Av B E B für alle B ( ) Intensitätsmaß von : v LA wobei - ist ein Wahrscheinlichkeitsmaß auf (0, ], heißt the rose of directions oder Richtungsrose 8

9 Inhaltsverzeichnis. Planare Faserprozesse.1 Grundlagen Fasern und Fasersysteme Faserprozess. Schnittpunktprozesse.3 Schätzung der Richtungsrose 9

10 . Planare Faserprozesse.1 Grundlagen Fasern und Fasersysteme Definition: Faser ist das Bild der Kurve () t ( 1(), t ()) t mit den Eigenschaften: :[0,1] ist einmal stetig differenzierbar '( t) '() 1 t '() t 0, t[0,1] ist injektiv kann auch als Maß gesehen werden: B 1 ( B) h( B) ( ( t)) ( '( t)) ( '( t)) dt für B ( ) 10

11 . Planare Faserprozesse.1 Grundlagen Fasern und Fasersysteme Definition: Faser ist das Bild der Kurve () t ( 1(), t ()) t mit den Eigenschaften: :[0,1] ist einmal stetig differenzierbar '( t) '() 1 t '() t 0, t[0,1] ist injektiv kann auch als Maß gesehen werden: B 1 ( B) h( B) ( ( t)) ( '( t)) ( '( t)) dt für B ( ) 11

12 . Planare Faserprozesse.1 Grundlagen Fasern und Fasersysteme Definition: (1) () Fasersystem {,,...} ist eine abgeschlossene Menge auf, lokal endlich () i ( j) mit ((0,1)) ((0,1)) falls i j ( B) das entsprechende Längemaß : () i ( B) ( B) ( i ) für B ( ) 1

13 . Planare Faserprozesse.1 Grundlagen Faserprozess Definition: Ein (planarer) Faserprozess : ist eine Zufallsvariable, d.h. eine messbare Abbildung vom Wahrscheinlichkeitsraum [,, P] nach[, ] wobei - ist die Familie von allen Fasersystemen im - ist die von den Mengen { : ( B) x} BB( ) kompakt, x erzeugte - Algebra ( B) bezeichnet auch das Längemaß ( B) h( B) für 1 B ( ) 13

14 . Planare Faserprozesse.1 Grundlagen Faserprozess Definition: Ein (planarer) Faserprozess : ist eine Zufallsvariable, d.h. eine messbare Abbildung vom Wahrscheinlichkeitsraum [,, P] nach[, ] wobei - ist die Familie von allen Fasersystemen im - ist die von den Mengen { : ( B) x} BB( ) kompakt, x erzeugte - Algebra ( B) bezeichnet auch das Längemaß ( B) h( B) für 1 B ( ) 14

15 . Planare Faserprozesse.1 Grundlagen Faserprozess Definition: Stationarität und Isotropie stationär, falls der verschobene Faserprozess die gleiche Verteilung wie besitzt, d.h. x wobei P( Y) P( Y x ) Y x { : Y} x für alle Y und alle x isotrop, falls sich die Verteilung nach der Drehung um den Ursprung nicht ändert 15

16 . Planare Faserprozesse.1 Grundlagen Faserprozess Definition: Intensität Intensitätsmaß: ( B) E( (B))=E h1( B) für B ( ) falls der Prozess stationär ist, dann gilt L v A 16

17 . Planare Faserprozesse.1 Grundlagen Faserprozess Definition: Gewichtetes zufälliges Maß mit ( BL) 1 L( w( x)) ( dx) B : ( ) ((0, ]) [0, ) für B L ( ), ((0, ]) wobei - wx ( ) (0, ] ist die Tangentenrichtung in x - ( BL) ist die Länge aller Fasern in B mit Richtung in L 17

18 . Planare Faserprozesse.1 Grundlagen Faserprozess () x (1) x () w( x ) (1) wx ( ) x1 Achse Tangentenrichtung wx ( ) 18

19 . Planare Faserprozesse.1 Grundlagen Faserprozess Intensitätsmaß von ( BL) E( ( BL)) für Falls stationär ist, dann gilt wobei ist die Richtungsrose, wird als Verteilung der Tangentenrichtung in einem typischen Punkt einer Faser bezeichnet. Bew. ( BL) L v ( B) ( L) A für B L ( ), ((0, ]) B L ( ), ((0, ]) 19

20 . Planare Faserprozesse.1 Grundlagen Faserprozess Intensitätsmaß von ( BL) E( ( BL)) für Falls stationär ist, dann gilt wobei ist die Richtungsrose, wird als Verteilung der Tangentenrichtung in einem typischen Punkt einer Faser bezeichnet. Bew. ( BL) L v ( B) ( L) A für B L ( ), ((0, ]) B L ( ), ((0, ]) 0

21 Inhaltsverzeichnis. Planare Faserprozesse.1 Grundlagen. Schnittpunktprozesse Schnitt mit Geraden Schnitt mit Fasersystemen.3 Schätzung der Richtungsrose 1

22 . Planare Faserprozesse. Schnittpunktprozesse mit Linien Sei ein stationärer Faserprozess mit Verteilung Intensität P L A Richtungsrose, mit ({ }) 1 eine feste vorgegebene Gerade e (hier: x1 Achse )

23 . Planare Faserprozesse. Schnittpunktprozesse mit Linien Sei {[ yn; w( yn)]} ein markierter Punktprozess, wobei alle Punkte yn e mit dem Schnittwinkel zur x1-achse wy ( n ) markiert sind. y y 1 y3 y4 y5 x1 Achse 3

24 . Planare Faserprozesse. Schnittpunktprozesse mit Linien Seien PL die Intensität des stationären Prozesses und H die Markenverteilung auf (0, ] dann gilt: P h(, z) H( d) dz L h(, z)sin ( d) dz L (0, ] A (0, ] wobei eine nicht-negative und messbare Funktion auf ist Bew. h (0, ] 4

25 . Planare Faserprozesse. Schnittpunktprozesse mit Linien Folgerung: für alle (0, ] gilt PH((0, ]) L sin ( d) L A (0, ] somit ist die Verteilungsfunktion F H ( ) H((0, ]) (0, ] (0, ] sin ( d) sin ( d) Bew. 5

26 . Planare Faserprozesse. Schnittpunktprozesse mit Fasersystem Sei ein stationärer Faserprozess mit Intensität L A Richtungsrose einem vorgegebenen nicht-zufälligen planaren Fasersystem mit der gesamten Länge L Hier wird der Schnittpunktprozess diskutiert. 6

27 . Planare Faserprozesse. Schnittpunktprozesse mit Fasersystem Die Winkelverteilung ist ein Maß auf (0, ],mit ( A) 1 für wobei w ( x) ist der Winkel der Fasertangenten von x Die gesamte Länge ( ) der Projektion von der Richtung h({ x : w ( x) A}) L L L ( ) #{ ( l y)} dy l A B((0, ]) wobei - l l ist eine Gerade mit Richtung und ist die Senkrechte zu l 7

28 . Planare Faserprozesse. Schnittpunktprozesse mit Fasersystem Die Winkelverteilung ist ein Maß auf (0, ],mit ( A) 1 für wobei w ( x) ist der Winkel der Fasertangenten von x Die gesamte Länge ( ) der Projektion von der Richtung h({ x : w ( x) A}) L L L ( ) #{ ( l y)} dy l A B((0, ]) wobei - l l ist eine Gerade mit Richtung und ist die Senkrechte zu l 8

29 . Planare Faserprozesse. Schnittpunktprozesse mit Fasersystem Beispiel: Falls ein Kreis mit Radius R ist, dann ist gleich verteilt auf (0, ] mit L ( ) L/ 9

30 Inhaltsverzeichnis. Planare Faserprozesse.1 Grundlagen. Schnittpunktprozesse.3 Schätzung der Richtungsrose 30

31 . Planare Faserprozesse.3 Schätzung der Richtungsrose Definition: Schnittpunktrose P () L mit der Dichte f P ( L ) Intensität des Punktprozesses der Schnittpunkte von mit einer Geraden mit Winkel zu e es gilt: P L ( ) L F ( ) A wobei - F ( ) sin( ) ( d) (0, ] 31

32 . Planare Faserprozesse.3 Schätzung der Richtungsrose Beispiel: i (1 i), i 0,1,,3 4 Anzahl der Schnittpunkte 3, 7, 7, 6 3

33 . Planare Faserprozesse.3 Schätzung der Richtungsrose Falls eine stetige Dichte besitzt, gilt für die Verteilung: Durch ableiten erhält man f 0 F ( ) f ( ) d ((0, ]) d P ( ) ( ) ( ) L PL LAf d 33

34 . Planare Faserprozesse.3 Schätzung der Richtungsrose Schätzer: F P d 1 dpl( ) ( ) L ( ) für 0 L d 0 P A ( ) ( ) #{ T W} L wobei - ( ) h, W- Beobachtungsfenster 1( T W) ( ) (kompakt), mit ein Testsystem von Linien mit dem Winkel zur x -Achse T 1 34

35 Literatur: [1]. D.Stoyan, W.S.Kendall, J.Mecke(1995) Stochastic Geometry and its Applications. J. Wiley & Sons, Chichester []. Prof. Dr. Volker Schmidt, Räumliche Statistik. Vorlesungsskript, WS 007/08, Universität Ulm [3]. V.Benes, J.Rataj (004), Stochastic Geometry: Selected Topics. Kluwer Academic, New York 35

36 Vielen Dank für Ihre Aufmerksamkeit! 36

Seminar stochastische Geometrie. 25. Januar Faserprozesse im R 2. Simona Renner. Faserprozesse. Kenngrößen Intensität Richtungsrose

Seminar stochastische Geometrie. 25. Januar Faserprozesse im R 2. Simona Renner. Faserprozesse. Kenngrößen Intensität Richtungsrose Seminar stochastische Geometrie 25. Januar 2010 Contents 1 2 3 4 5 Definitionen Faser: glatte Kurve endlicher Länge in der Ebene Faser γ ist das Bild der Kurve γ(t) = (γ 1 (t), γ 2 (t)) mit (i) γ : [0,

Mehr

Allgemeine Punktprozesse

Allgemeine Punktprozesse Allgemeine Punktprozesse Michael Auchter 17. Mai 2010 Seite 2 Allgemeine Punktprozesse 17. Mai 2010 Inhaltsverzeichnis Definitionen Definition von Punktprozessen Das Intensitätsmaß Stationarität, Isotropie

Mehr

Markierte Punktprozesse und zufällige Tesselationen

Markierte Punktprozesse und zufällige Tesselationen und zufällige Tesselationen Seminar stochastische Geometrie und ihre Anwendungen 7. Dezember 2009 und zufällige Tesselationen Gliederung 1 2 3 und zufällige Tesselationen Gliederung 1 2 3 und zufällige

Mehr

Das Boolesche Modell. Olaf Wied. November 30, 2009

Das Boolesche Modell. Olaf Wied. November 30, 2009 November 30, 2009 Inhalt 1. Einführung und Definition 2. Eigenschaften 3. Modell mit konvexen Körnern 4. Statistiken und Anwendung in R Keim - Korn Modell Punkte im R d um jeden Punkt: beliebige, kompakte

Mehr

Alois Fichtl, Julius Vogelbacher 10. Juni Voronoi und Johnson-Mehl Mosaike

Alois Fichtl, Julius Vogelbacher 10. Juni Voronoi und Johnson-Mehl Mosaike Alois Fichtl, Julius Vogelbacher 10. Juni 2008 Voronoi und Johnson-Mehl Mosaike Seite 2 Voronoi- und Johnson-Mehl-Mosaike Alois Fichtl, Julius Vogelbacher 10. Juni 2008 Inhaltsverzeichnis Einführung Mosaike

Mehr

Das Boolesche Modell

Das Boolesche Modell mit konvexen Körnern 3.12.2009 mit konvexen Körnern Ziele des heutigen Seminars: ist sehr anwendungsbezogen. Daher ist unser Ziel, am Ende die folgenden statistischen Fragen zu beantworten: Wann ist das

Mehr

Inhalt. Einführung. Deterministische Mosaike. Zufällige Mosaike. Mathematische Analyse. Statistik. Schluss

Inhalt. Einführung. Deterministische Mosaike. Zufällige Mosaike. Mathematische Analyse. Statistik. Schluss Zufällige Mosaike: Eine Einführung Zhanlong Tao, Tobias Krejci 27.05.2008 Seite 2 Zufällige Mosaike 27.05.2008 Zhanlong Tao, Tobias Krejci Einführung Inhalt Einführung Deterministische Mosaike Zufällige

Mehr

Jurij-Andrei Reichenecker 21. Juni Tessellationen

Jurij-Andrei Reichenecker 21. Juni Tessellationen Jurij-Andrei Reichenecker 21. Juni 2010 Tessellationen Seite 2 Tessellationen 21. Juni 2010 Jurij-Andrei Reichenecker Inhalt Einführung Voronoi Tessellation Algorithmus zur Erstellung von Voronoi Tessellationen

Mehr

Hawkes Prozesse Grundlagen

Hawkes Prozesse Grundlagen Hawkes Prozesse Grundlagen Im Folgenden sei (Ω, F, F, P) eine stochastische Basis. Das heißt F = (F t ) t ist eine rechtsstetige Filtration mit F t F für alle t und P ein Wahrscheinlichkeitsmaß auf dem

Mehr

Zufällige Tessellationen II: komplexere Modelle

Zufällige Tessellationen II: komplexere Modelle Zufällige Tessellationen II: komplexere Modelle Seminar: Stochastische Geometrie und ihre Anwendungen Benjamin Lang Universität Ulm 15. Januar 2010 Ziel: Warum braucht man komplexere Modelle? angemessenes

Mehr

8 Verteilungsfunktionen und Dichten

8 Verteilungsfunktionen und Dichten 8 Verteilungsfunktionen und Dichten 8.1 Satz und Definition (Dichten) Eine Funktion f : R R heißt Dichtefunktion, kurz Dichte, wenn sie (Riemann-) integrierbar ist mit f(t) 0 für alle t R und Setzt man

Mehr

Punktprozesse. Andreas Frommknecht Seminar Zufällige Felder Universität Ulm

Punktprozesse. Andreas Frommknecht Seminar Zufällige Felder Universität Ulm Einführung in Beispiele für Andreas Seminar Zufällige Felder Universität Ulm 20.01.2009 Inhalt Einführung in Beispiele für Definition Markierte 1 Einführung in Definition Markierte 2 Beispiele für Homogener

Mehr

Scheinklausur zur Vorlesung Stochastik II

Scheinklausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 2007/2008 Universität Karlsruhe 25. 02. 2008 Dr. B. Klar Scheinklausur zur Vorlesung Stochastik II Muster-Lösung Dauer: 90 Minuten Name: Vorname: Matrikelnummer:

Mehr

Optimales Routing. Paul Kunze

Optimales Routing. Paul Kunze Optimales Routing Paul Kunze 10.07.2015 Grundlagen Grundlagen endliche Menge an Punkten Φ = {x i } aus R 2 hier: gebildet durch Poisson-Punktprozess A = A D : Route zum Ziel D Φ. Abbildung auf einem Graphen

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 3/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge

Mehr

Statistische Methoden für planare Punktfelder

Statistische Methoden für planare Punktfelder Statistische Methoden für planare Punktfelder Franz Király Universität Ulm Seminar Simulation und Bildanalyse mit Java 27. Januar 2004 Gliederung 1. Einführung und Grundlagen 2. Intensitätsschätzung Intensität

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 29 UNIVERSITÄT KARLSRUHE Blatt 6 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 27: Sei X eine R + -wertige

Mehr

Brownsche Bewegung: Eine Einführung

Brownsche Bewegung: Eine Einführung Brownsche Bewegung: Eine Einführung Batu Güneysu Institut für Mathematik Humboldt-Universität zu Berlin Greifswald, 18.04.2018 Batu Güneysu Brownsche Bewegung: Eine Einführung 1 / 14 Wir fixieren m N und

Mehr

Simulation von Zufallsvariablen und Punktprozessen

Simulation von Zufallsvariablen und Punktprozessen Simulation von Zufallsvariablen und Punktprozessen 09.11.2009 Inhaltsverzeichnis 1 Einleitung 2 Pseudozufallszahlen 3 Punktprozesse Zufallszahlen Definition (Duden): Eine Zufallszahl ist eine Zahl, die

Mehr

Brownsche Bewegung. Satz von Donsker. Bernd Barth Universität Ulm

Brownsche Bewegung. Satz von Donsker. Bernd Barth Universität Ulm Brownsche Bewegung Satz von Donsker Bernd Barth Universität Ulm 31.05.2010 Page 2 Brownsche Bewegung 31.05.2010 Inhalt Einführung Straffheit Konvergenz Konstruktion einer zufälligen Funktion Brownsche

Mehr

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik Institut für Stochastik 18. Juni 2013 Inhalt 1 2 3 4 5 Nach ZGWS konvergiert für n F n (x) = P{ X 1+...+X n np npq x} gegen F(x) = 1 2π x e 1 2 u2 du, wenn die X i unabhängig und bernoulliverteilt sind

Mehr

Verschiedene stochastische Prozesse. Ann-Kathrin Ru ger 27. Mai 2013 Institut fu r Stochastik

Verschiedene stochastische Prozesse. Ann-Kathrin Ru ger 27. Mai 2013 Institut fu r Stochastik Verschiedene stochastische Prozesse Ann-Kathrin Ru ger 27. Mai 2013 Institut fu r Stochastik Seite 2 Verschiedene stochastische Prozesse Ann-Kathrin Rüger 27. Mai 2013 Inhalt Stochastische Prozesse Grenzüberschreitende

Mehr

7 Poisson-Punktprozesse

7 Poisson-Punktprozesse Poisson-Punktprozesse sind natürliche Modelle für zufällige Konfigurationen von Punkten im Raum Wie der Name sagt, spielt die Poisson-Verteilung eine entscheidende Rolle Wir werden also mit der Definition

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Seminarvortrag Schnitte von Fraktalen

Seminarvortrag Schnitte von Fraktalen Seminarvortrag Schnitte von Fraktalen Matthias Schmid matthias.schmid@uni-ulm.de Universität Ulm 9. Februar 2007 Inhaltsverzeichnis 1 Einleitung 2 1.1 Einordnung................................... 2 1.2

Mehr

Zufällige Tessellationen II :

Zufällige Tessellationen II : Zufällige Tessellationen II : David Neuhäuser Seminar: "Stochastische Geometrie und ihre Anwendungen" Universität Ulm 11.01.2010 Wiederholung Inhalt 1 Wiederholung Tessellation Zufällige Tessellation k-facetten

Mehr

Markierte Punktprozesse und abstrakte kollektive Modelle

Markierte Punktprozesse und abstrakte kollektive Modelle Festkolloquium 20 Jahre (neue) Versicherungsmathematik an der TU Dresden Markierte Punktprozesse und abstrakte kollektive Modelle Anke Todtermuschke 21. Oktober 2011 Gliederung 1 Modellierung einer Folge

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. April 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 2 Version: 9. April

Mehr

3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte

3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. Jan Johannes Sandra Schluttenhofer Wintersemester 208/9 3. Übungsblatt - Lösungsskizzen Aufgabe 9 Stetige Verteilungen, 4 =.5 +.5 +

Mehr

8 Beispiele von Koordinatentransformationen

8 Beispiele von Koordinatentransformationen 8 Beispiele von Koordinatentransformationen Wir diskutieren nun diejenigen Koordinatentransformationen, die in der Praxis wirklich gebraucht werden (ebene und räumliche Polarkoordinaten sowie Zylinderkoordinaten).

Mehr

Schwache Konvergenz von Wahrscheinlichkeitsmaßen

Schwache Konvergenz von Wahrscheinlichkeitsmaßen Schwache Konvergenz von Wahrscheinlichkeitsmaßen 6. Juli 2010 Inhaltsverzeichnis 1 Definition 2 3 Lindeberg-Bedingung Interpretation Definition Motivation (Konvergenz von Wahrscheinlichkeitsmaßen) Sind

Mehr

Topologische Räume und stetige Abbildungen

Topologische Räume und stetige Abbildungen TU Dortmund Mathematik Fakultät Proseminar Lineare Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Julia Schmidt Dozent: Prof. Dr. L. Schwachhöfer Datum: 29.11.2013 Inhaltsverzeichnis

Mehr

Kapitel 2 Grundbegriffe der allgemeinen Theorie stochastischer Prozesse

Kapitel 2 Grundbegriffe der allgemeinen Theorie stochastischer Prozesse Kapitel 2 Grundbegriffe der allgemeinen Theorie stochastischer Prozesse 2.1 Definitionen stochastische Prozesse 2.1 Definitionen stochastische Prozesse 2.1.1 Klassische Definition: als Familien von Zufallsvariablen

Mehr

Lineare Transformationen und Determinanten. 10-E Ma 1 Lubov Vassilevskaya

Lineare Transformationen und Determinanten. 10-E Ma 1 Lubov Vassilevskaya Lineare Transformationen und Determinanten 10-E Ma 1 Lubov Vassilevskaya Lineare Transformation cc Definition: V und W sind zwei Vektorräume. Eine Funktion T nennt man eine lineare Transformation von V

Mehr

Stoppzeiten und Charakteristische Funktionen. Tutorium Stochastische Prozesse 15. November 2016

Stoppzeiten und Charakteristische Funktionen. Tutorium Stochastische Prozesse 15. November 2016 Stoppzeiten und Charakteristische Funktionen Tutorium Stochastische Prozesse 15. November 2016 Inhalte des heutigen Tutoriums Im heutigen Tutorium besprechen wir: (1) Eindeutigkeit von Maßen ohne schnittstabilen

Mehr

Stochastik Wiederholung von Teil 1

Stochastik Wiederholung von Teil 1 Stochastik Wiederholung von Teil 1 Andrej Depperschmidt Sommersemester 2016 Wahrscheinlichkeitsraum Definition Das Tripple (Ω, A, P) heißt Wahrscheinlichkeitsraum, falls gilt: (i) A ist eine σ-algebra,

Mehr

Inhaltsverzeichnis (Ausschnitt)

Inhaltsverzeichnis (Ausschnitt) 8 Messbarkeit und Bildwahrscheinlichkeit Inhaltsverzeichnis (Ausschnitt) 8 Messbarkeit und Bildwahrscheinlichkeit Messbare Abbildungen Bildwahrscheinlichkeit Deskriptive Statistik und Wahrscheinlichkeitsrechnung

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 20. April 2017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 18.

Mehr

Extrapolation und Interpolation von räumlichen Mustern

Extrapolation und Interpolation von räumlichen Mustern Extrapolation und Interpolation von räumlichen Mustern 01. Juli 2008 Inhaltsverzeichnis 1 Interpolation Extrapolation Beispiel: Mammutbaumsetzlinge 2 Grundlagen Keim-Korn- Clusterprozesse Cox-Clusterprozess

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung i Dominique Foata Aime Fuchs Wahrscheinlichkeitsrechnung Aus dem Französischen von Volker Strehl Birkhäuser Verlag Basel Boston Berlin INHALTSVERZEICHNIS Vorwort zur deutschen Ausgabe Liste der benutzten

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Statistik für Punktprozesse. Seminar Stochastische Geometrie und ihre Anwendungen WS 2009/2010

Statistik für Punktprozesse. Seminar Stochastische Geometrie und ihre Anwendungen WS 2009/2010 Statistik für Punktprozesse Seminar Stochastische Geometrie und ihre Anwendungen WS 009/00 Inhalt I. Fragestellung / Problematik II. Ansätze für a) die Schätzung der Intensität b) ein Testverfahren auf

Mehr

Transformation mehrdimensionaler Integrale

Transformation mehrdimensionaler Integrale Transformation mehrdimensionaler Integrale Für eine bijektive, stetig differenzierbare Transformation g eines regulären Bereiches U R n mit det g (x), x U, gilt für stetige Funktionen f : f g det g du

Mehr

Seminar in Statistik - FS Nonparametric Bayes. Handout verfasst von. Ivo Francioni und Philippe Muller

Seminar in Statistik - FS Nonparametric Bayes. Handout verfasst von. Ivo Francioni und Philippe Muller Seminar in Statistik - FS 2008 Nonparametric Bayes Handout verfasst von Ivo Francioni und Philippe Muller Zürich, 17. März 2008 1 EINLEITUNG 1 1 Einleitung Bis jetzt haben wir in der Bayes schen Statistik

Mehr

Schnitte von Fraktalen

Schnitte von Fraktalen Inhalt Eingliederung Vorwort matthias.schmid@uni-ulm.de 12. Dezember 2006 Inhalt Eingliederung Vorwort 1 Einleitung Inhalt Eingliederung Vorwort 2 Bewegung Isometrie Maße von Bewegungen 3 Satz 1 Bild eines

Mehr

Bayesian analysis of spatial point processes in the neighbourhood of Voronoi. networks

Bayesian analysis of spatial point processes in the neighbourhood of Voronoi. networks Bayesian analysis of spatial point processes in the neighbourhood of Voronoi networks Judith Schmidt und Bettina Hund 02 Juli 2008 Seminar: Stochastische Geometrie und ihre Anwendungen - Zufa llige Netzwerke

Mehr

Kapitel 4. Stochastische Grundlagen. 4.1 Filtrationen und Stoppzeiten

Kapitel 4. Stochastische Grundlagen. 4.1 Filtrationen und Stoppzeiten Kapitel 4 Stochastische Grundlagen An dieser Stelle möchte ich auf einige stochastische Grundlagen eingehen, die bisher im Kapitel 3 Anwendung gefunden haben und im Folgenden Anwendung finden werden. Grundproblem

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

1.1 Bestimmen Sie diejenigen Werte von a, für die f a mehr als eine Nullstelle hat. (3 P)

1.1 Bestimmen Sie diejenigen Werte von a, für die f a mehr als eine Nullstelle hat. (3 P) Schriftliche Abiturprüfung 215 HMF 1 - Analysis (Pool 1) Für jeden Wert von a (a R,a ) ist eine Funktion f a durch f a (x) = a x 6 x 4 (x R) gegeben. 1.1 Bestimmen Sie diejenigen Werte von a, für die f

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Marcel Thoms Mathematik Online Herbst 211 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge

Mehr

Brownsche Bewegung. M. Gruber. 20. März 2015, Rev.1. Zusammenfassung

Brownsche Bewegung. M. Gruber. 20. März 2015, Rev.1. Zusammenfassung Brownsche Bewegung M. Gruber 20. März 2015, Rev.1 Zusammenfassung Stochastische Prozesse, Pfade; Definition der Brownschen Bewegung; Eigenschaften der Brownschen Bewegung: Kovarianz, Stationarität, Selbstähnlichkeit;

Mehr

Elementare Stochastik

Elementare Stochastik Mathematik Primarstufe und Sekundarstufe I + II Elementare Stochastik Mathematische Grundlagen und didaktische Konzepte Bearbeitet von Herbert Kütting, Martin J. Sauer, Friedhelm Padberg 3. Aufl. 2011.

Mehr

Einführung in die Wahrscheinlichkeitstheorie

Einführung in die Wahrscheinlichkeitstheorie Ulrich Krengel Einführung in die Wahrscheinlichkeitstheorie und Statistik 8., erweiterte Auflage vieweg vn Inhaltsverzeichnis Kapitel I Diskrete Wahrscheinlichkeitsräume 1 1 Modelle für Zufallsexperimente,

Mehr

5 Zufallsvariablen, Grundbegriffe

5 Zufallsvariablen, Grundbegriffe II. Zufallsvariablen 5 Zufallsvariablen, Grundbegriffe Def. 12 Es seien (Ω 1, E 1,P 1 ) und (Ω 2, E 2,P 2 ) Wahrscheinlichkeitsräume. Eine Abbildung X : Ω 1 Ω 2 heißt E 1 E 2 meßbar, falls für alle Ereignisse

Mehr

Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments

Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig

Mehr

Brownsche Bewegung. M. Gruber SS 2016, KW 11. Zusammenfassung

Brownsche Bewegung. M. Gruber SS 2016, KW 11. Zusammenfassung Brownsche Bewegung M. Gruber SS 2016, KW 11 Zusammenfassung Stochastische Prozesse, Pfade; Definition der Brownschen Bewegung; Eigenschaften der Brownschen Bewegung: Kovarianz, Stationarität, Selbstähnlichkeit;

Mehr

Statistik für Informatiker, SS Grundlagen aus der Wahrscheinlichkeitstheorie

Statistik für Informatiker, SS Grundlagen aus der Wahrscheinlichkeitstheorie 1/19 Statistik für Informatiker, SS 2018 1 Grundlagen aus der Wahrscheinlichkeitstheorie 1.3 Bedingte Wahrscheinlichkeiten, Unabhängigkeit, gemeinsame Verteilung 1.3.4 Matthias Birkner http://www.staff.uni-mainz.de/birkner/statinfo18/

Mehr

Zufallsvariable, Verteilung, Verteilungsfunktion

Zufallsvariable, Verteilung, Verteilungsfunktion Kapitel 5 Zufallsvariable, Verteilung, Verteilungsfunktion 5.1 Zufallsvariable Sei (Ω, A, P ) ein beliebiger Wahrscheinlichkeitsraum. Häufig interessiert nicht ω selbst, sondern eine Kennzahl X(ω), d.h.

Mehr

x(t) := 1 k definierte Funktion. (a) Berechnen Sie ẋ(t) und ẍ(t). (b) Zeigen Sie, daß die Funktion x = x(t) eine Lösung der Differentialgleichung

x(t) := 1 k definierte Funktion. (a) Berechnen Sie ẋ(t) und ẍ(t). (b) Zeigen Sie, daß die Funktion x = x(t) eine Lösung der Differentialgleichung Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Algebra II SS 26 Blatt 7 3.5.26 Aufgabe 33: Die Funktion f : R R sei stetig. Betrachten Sie die durch x(t) : 1 k f(u) sin (k(t u)) du definierte Funktion.

Mehr

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya Zylinderkoordinaten E E E3 Berechnung in beliebigen krummlinigen Koordinaten Die Koordinaten sind durch die Beziehungen definiert: x x u, v, w, y y u, v, w, z z u, v, w Für sie sollen stetige partielle

Mehr

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W.

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W. 8. Formelsammlung 8.1 Gesetze zum Rechnen mit Ereignissen Im Folgenden seien A und B, sowie A 1,..., A n Ereignisse. Die Notation A B steht für A B und zugleich A B = (disjunkte Vereinigung). A 1... A

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume Kapitel II Kontinuierliche Wahrscheinlichkeitsräume 1. Einführung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 211/476 Beispiel 85 Wir betrachten

Mehr

Integralgeometrie und Stereologie

Integralgeometrie und Stereologie Integralgeometrie und Stereologie Hans Friedrich April 2010 1/ 31 Integralgeometrie und Stereologie Hans Friedrich April 2010 Übersicht Grundlagen aus der Integralgeometrie Übergang zur Stereologie Stereologie

Mehr

L 2 -Theorie und Plancherel-Theorem

L 2 -Theorie und Plancherel-Theorem L -Theorie und Plancherel-Theorem Seminar Grundideen der Harmonischen Analysis bei Porf Dr Michael Struwe HS 007 Vortrag von Manuela Dübendorfer 1 Wiederholung aus der L 1 -Theorie Um die Fourier-Transformation

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Eine Einführung in die Differentialgeometrie

Eine Einführung in die Differentialgeometrie Eine Einführung in die Differentialgeometrie Nach einer Vorlesung von Prof. Helga Baum 1 Getippt haben Luise Fehlinger und Carsten Falk 4. Mai 2006 1 Der Inhalt dieses Skriptes beruht auf den Vorlesungen

Mehr

Das Black-Scholes Modell

Das Black-Scholes Modell Vathani Arumugathas Das Black-Scholes Modell 1 Das Black-Scholes Modell Vathani Arumugathas Seminar zu Finanzmarktmodellen in der Lebensversicherung, Universität zu Köln 10. Juni 016 Inhaltsverzeichnis

Mehr

Übungen mit dem Applet Kurven in Polarkoordinaten

Übungen mit dem Applet Kurven in Polarkoordinaten Kurven in Polarkoordinaten 1 Übungen mit dem Applet Kurven in Polarkoordinaten 1 Ziele des Applets...2 2 Wie entsteht eine Kurve in Polarkoordinaten?...3 3 Kurvenverlauf für ausgewählte r(ϕ)...4 3.1 r

Mehr

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen Konvergenz gegen einen rozess mit unabhängigen Zuwächsen - Anwendungen Saskia F. Glaffig 20.07.17 "Wiederholung" Definition (vgl. Jacod, Shiryaev, I.3.26: oissonprozess). Ein erweiterter oissonprozess

Mehr

11.3. Variablentrennung, Ähnlichkeit und Trajektorien

11.3. Variablentrennung, Ähnlichkeit und Trajektorien 3 Variablentrennung, Ähnlichkeit und Trajektorien Trennung der Veränderlichen (TdV) Es seien zwei stetige Funktionen a (der Variablen ) und b (der Variablen ) gegeben Die Dgl a( ) b( ) b( ) d d läßt sich

Mehr

3 Produktmaße und Unabhängigkeit

3 Produktmaße und Unabhängigkeit 3 Produktmaße und Unabhängigkeit 3.1 Der allgemeine Fall Im Folgenden sei I eine beliebige Indexmenge. i I sei (Ω i, A i ein messbarer Raum. Weiter sei Ω : i I Ω i ein neuer Ergebnisraum. Wir definieren

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer«

Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer« Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer«Werner Linde WS 2008/09 Inhaltsverzeichnis 1 Wahrscheinlichkeiten 2 1.1 Wahrscheinlichkeitsräume...........................

Mehr

Mathematik für Sicherheitsingenieure I B

Mathematik für Sicherheitsingenieure I B Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 3.3.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I B Aufgabe. (5+8+7 Punkte a Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

Studienbegleitende Prüfung Stochastik 2

Studienbegleitende Prüfung Stochastik 2 Universität Karlsruhe (TH) Institut für Stochastik Prof. Dr. N. Bäuerle Name: Vorname: Matr.-Nr.: Studienbegleitende Prüfung Stochastik 2 27. März 2007 Diese Klausur hat bestanden, wer mindestens 20 Punkte

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 9 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 40: Es sei (X t ) t 0 ein

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Brownsche Bewegung. M. Gruber. 19. März Zusammenfassung

Brownsche Bewegung. M. Gruber. 19. März Zusammenfassung Brownsche Bewegung M. Gruber 19. März 2014 Zusammenfassung Stochastische Prozesse, Pfade; Brownsche Bewegung; Eigenschaften der Brownschen Bewegung: Kovarianz, Stationarität, Selbstähnlichkeit, quadratische

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz

Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz - 1 - Grundgesamtheit, Merkmale, Stichprobe Dimension, Umfang Skalierung Eigenschaften der Stichprobe kennzeichnende Größen Eigenschaften der Stichprobe kennzeichnende Größen Punktediagramm, Regressionsgerade,

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Probeklausur Statistik II

Probeklausur Statistik II Prof. Dr. Chr. Müller PROBE-KLAUSUR 1 1 2 3 4 5 6 7 8 Gesamt: 15 8 16 16 7 8 15 15 100 Probeklausur Statistik II Name: Vorname: Fachrichtung: Matrikel-Nummer: Bitte beachten Sie folgendes: 1) Die Klausur

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

Abgabetermin: 5. Mai 2017, Uhr

Abgabetermin: 5. Mai 2017, Uhr Übungsblatt Nr. 1 26. April 2017 1. Sei F k, k K, eine Familie von σ-algebren, wobei K eine beliebige Menge ist. Zeigen Sie, daß F d = k K F k ebenfalls eine σ-algebra ist! Beweisen Sie, daß die Vereinigung

Mehr

Messbare Vektorräume

Messbare Vektorräume Messbare Vektorräume Hans-Jörg Starkloff TU Bergakademie Freiberg Westsächsische Hochschule Zwickau Dezember 2010 / Januar 2011 Hans-Jörg Starkloff Messbare Vektorräume 1 1. Definition Geg. X linearer

Mehr

Zeitstetige Markov-Prozesse: Einführung und Beispiele

Zeitstetige Markov-Prozesse: Einführung und Beispiele Zeitstetige Markov-Prozesse: Einführung und Beispiele Simone Wielart 08.12.10 Inhalt Q-Matrizen und ihre Exponentiale Inhalt Q-Matrizen und ihre Exponentiale Zeitstetige stochastische Prozesse Inhalt Q-Matrizen

Mehr

Mathematik für Sicherheitsingenieure I B (BScS 2011)

Mathematik für Sicherheitsingenieure I B (BScS 2011) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 5.9.7 Mathematik für Sicherheitsingenieure I B (BScS Aufgabe. (5+8+7 Punkte a eben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist. Eine Begründung

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 9 18. Dezember 2013 c Daria Apushkinskaya 2013 () Flächentheorie: Lektion 9 18. Dezember 2013 1 / 17 9. Einführung in der innere Geometrie

Mehr

Merkblatt zur Funktionalanalysis

Merkblatt zur Funktionalanalysis Merkblatt zur Funktionalanalysis Literatur: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Gaußsche Felder und Simulation

Gaußsche Felder und Simulation 3 2 data_2d_1.dat data_2d_2.dat data_2d_64.dat data_2d_128.dat 1-1 -2-3 1 2 3 4 5 6 7 Gaußsche Felder und Simulation Benedikt Jahn, Aaron Spettl 4. November 28 Institut für Stochastik, Seminar Zufällige

Mehr

Proseminar: Konvexe Mengen

Proseminar: Konvexe Mengen Proseminar: Konvexe Mengen Varianten vom Satz von Kirchberger Trennung von Mengen mit einer Kugeloberfläche Trennung von Mengen mit Zylindern Jens Siewert Vortrag vom 14.12.04 und 04.01.05 1 Varianten

Mehr

3 Bedingte Erwartungswerte

3 Bedingte Erwartungswerte 3 Bedingte Erwartungswerte 3.3 Existenz und Eindeutigkeit des bedingten Erwartungswertes E A 0(X) 3.6 Konvexitätsungleichung für bedingte Erwartungswerte 3.9 Konvergenzsätze von Levi, Fatou und Lebesgue

Mehr