Topologische Räume und stetige Abbildungen

Größe: px
Ab Seite anzeigen:

Download "Topologische Räume und stetige Abbildungen"

Transkript

1 TU Dortmund Mathematik Fakultät Proseminar Lineare Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Julia Schmidt Dozent: Prof. Dr. L. Schwachhöfer Datum:

2 Inhaltsverzeichnis 1 Topologie Definition Spezielle Topologien Definition Basis einer Topologie Eigenschaften von Basen Beispiele Umgebung Definition Umgebung von x Hilfssatz Beweis Definition Umgebung von Y Beispiele

3 1 Topologie 1.1 Definition (a) Ein System O von Teilmengen einer Menge X heißt Topologie auf X, wenn folgende Bedingungen erfüllt sind: 1. Jede Vereinigung von Mengen aus O gehört zu O: O i O, i I = i I O i O (1.1) 2. Jeder Durchschnitt von endlich vielen Mengen aus O gehört zu O: n O 1,..., O n O = O i O (1.2) 3. X, R (b) Ein topologischer Raum ist ein Paar (X, O), wobei X eine Menge und O eine Topologie auf X ist. Die Teilmengen von X, die zu O gehören, werden als offene Mengen von (X, O) bezeichnet, die Komplemente von offenen Mengen abgeschlossene Mengen von (X, O). i=1 1.2 Spezielle Topologien (a) Die indiskrete Topologie auf einer Menge X besteht lediglich aus zwei offenen Mengen, nämlich O ind = {, X} Beweis: Die Topologie besteht nur aus zwei offenen Mengen, nämlich aus der ganzen Menge X und aus der leeren Menge. Da X X = X = X und =, ist die Vereinigung von Mengen in O ind wieder in O ind enthalten. Damit ist die erste und die dritte Bedingung erfüllt. 1

4 Da X X = X, X = =, ist der Durchschnitt von offenen Mengen in O ind wieder in O ind enthalten. Damit ist die zweite Bedingung erfüllt. (b) Bei der diskreten Topologie auf einer Menge X ist O dis die Potenzmenge von X, d.h. die Menge aller Teilmengen von X, und (X, O) heißt diskreter topologischer Raum. Beweis: Die Vereinigung offener Teilmengen ist wieder in der ganzen Menge enthalten und damit ein Element der Topologie. O i O, i I = i I O i O (1.3) Außerdem gilt n O 1,..., O n O = O i O (1.4) Der Durchschnitt offener Teilmengen ist wieder in der ganzen Menge enthalten und damit ein Element der Topologie. i=1 (c) In einem metrischer Raum M bezeichnet B ε (x) = {y M d(x, y) < ε} die Kugel um den Punkt x mit Radius ε. Eine Teilmenge O M von M wird als offen definiert, wenn O mit jedem Punkt x auch noch eine ε-kugel um x enthält, in Formeln: für jeden Punkt x O gibt es ein ε > 0 mit B ε (x) O. Die so definierten offenen Mengen bilden die von der Metrik induzierte Topologie auf M. Die Vereinigung von offenen Kugeln ist in der Menge enthalten, da eben die Topologie aus Vereinigungsmengen von offenen Kugeln besteht. Der Durchschnitt von offenen Kugeln ist auch in der Menge enthalten. Also ist hier eine Topologie vorhanden. 2

5 Abbildung 1.1: Beispiel c (d) Beispiel: Der topologische Raum ist (M, d), M = R und die Metrik d ist definiert als d(x, y) = x y. Nun beschreiben wir die Kugeln Bε (x). n o Bε (x) = y R x y < ε x > y: x y < ε x ε < y x < y: y x < ε ε + x > y = x ε < y < x + ε Also ist die Kugel um x mit Radius ε gerade ein offenes Intervall der La nge 2 ε, welches in x zentriert ist, d.h. Bε (x) = (x ε, x + ε). 3

6 Abbildung 1.2: Beispiel d Die offenen Mengen in R sind also die Vereinigungen von offenen Intervallen. Die so entstandene Topologie auf R wird auch natu rliche Topologie genannt und mit On bezeichnet. Auch Rn, Qn und Cn sind metrische Ra ume mit d x1... xn, y1... yn = q x1 y xn yn 2 (1.5) Die dadurch definierte Topologie wird ebenfalls natu rliche Topologie genannt. (e) Die Menge aller offenen Intervalle ], a[ zusammen mit, R ist eine Topologie auf R. Diese wird mit O< bezeichnet. Wegen S i I ], ai [ = ], s[, s = sup {ai i I} ist die Vereinigung beliebig vieler offener Mengen wieder offen. Wegen 4

7 ], a 1 [... ], a n [ = ], m[, m = min {a 1,..., a n } ist der Durchschnitt endlich vieler Mengen wieder offen. Also ist O < eine Topologie. Im Folgenden tragen R, R n, C und Q die natürliche Topologie, wenn es nicht anders festgelegt wird 1.3 Definition Basis einer Topologie (a) Ein System B von offenen Mengen eines topologischen Raumes (X, O) heißt Basis der Topologie, wenn jede offene Menge von (X, O) Vereinigung von Mengen aus B ist, d.h. zu jedem x O O gibt es ein B B mit x B O. 1.4 Eigenschaften von Basen 1. Alle Topologien auf X, die B als Basis haben, stimmen überein. 2. Ist B eine Basis einer Topologie auf X, so gilt: (a) Die Vereinigung aller Mengen aus B ist X. (b) Der Durchschnitt zweier Mengen aus B ist Vereinigung von Mengen aus B. 3. Hat eine Menge B von Teilmengen einer Menge X, die unter (b) formulierten Eigenschaften, so ist B Basis einer eindeutig bestimmten Topologie auf X. Beweis von 2. : (a) gilt, da X offen ist und daher die Vereinigung von Mengen aus B sein muss. (b) gilt, da Mengen aus B offen sind. Also ist der Durchschnitt zweier solcher Mengen wieder offen. Daher ist ein solcher Durchschnitt aus B. 5

8 1.5 Beispiele (a) Für die indiskrete Topologie in Beispiel 1.2 (a) ist {X} eine Basis. Erklärung: Die einzige offene Menge, die nicht leer ist in O ind ist X, also: x X x X B X. (b) Für die diskrete Topologie in Beispiel 1.2 (b) ist {{x} x X} eine Basis. Erklärung: Ist O offen und x O, dann folgt für die Menge B = {x}: x B O. Dies zeigt, dass die Eigenschaft der Basis erfüllt ist. (c) Für die metrischen Räume in Beispiel 1.2 (c) bildet nach Definition die Menge der offenen Kugeln eine Basis. (d) Für die natürliche Topologie auf R in Beispiel 1.2 (d) bilden die offenen Intervalle mit rationalen Endpunkten eine Basis. Abbildung 1.3: Beispiel d Erklärung zu d): 6

9 Ist O R offen und x O,dann folgt nach Definition, dass es ein ε > 0 gibt mit (x ε, x+ε) O. In jedem Intervall muss mindestens eine rationale Zahl vorhanden sein. Also gibt es ein q 1 Q, q 1 (x ε, x) und ein q 2 Q, q 2 (x, x + ε). Daher ist x (q 1, q 2 ) (x ε, x + ε) O. (e) In Beispiel 1.2 (e) bilden die Intervalle ], a[ mit rationalem a eine Basis. Die Begrüdung ist analog zu der von d). 7

10 2 Umgebung Der in der Analysis häufig benutzte Begriff der ε-umgebung wird wie folgt verallgemeinert. 2.1 Definition Umgebung von x Es sei (X, O) ein topologischer Raum und x ein Punkt von X. Eine Teilmenge U X heißt Umgebung von x, wenn es eine offene Menge O O mit x O U gibt. Anmerkung: Umgebungen selbst müssen nicht offen sein. Eine offene Menge ist allerdings Umgebung aller ihrer Punkte, siehe 2.2. unten. Durch Umgebungen lassen sich die offenen Mengen einer Topologie charakterisieren: 2.2 Hilfssatz Folgende Aussagen sind äquivalent: (a) O ist offen. (b) O ist Umgebung jedes seiner Punkte. (c) Zu jedem x O gibt es eine Umgebung U mit U O. 2.3 Beweis (a) (b) Sei O offen, x O zu zeigen: O ist Umgebung von x Wähle in der Definition U = O x O O = O ist Umgebung von x. 8

11 (b) (c) Annahme: O ist Umgebung von jedem x O Wähle U = O. Daraus folgt, dass U Umgebung von x ist, U O (c) (a) Annahme:Für x O gibt es eine Umgebung U von x, U O Def. Es gibt O x offen mit x O x U O x O O x ist offen, da laut Regeln die Vereinigung von offenen Mengen wieder offen ist. Behauptung: O = x O O x : x O x O x O x : O x O O x O = O ist offen. 2.4 Definition Umgebung von Y Ist (X, O) ein topologischer Raum und Y X, so heißt eine Menge U X Umgebung von Y, wenn es eine offene Menge O O gibt mit Y O U. Abbildung 2.1: Umgebung von Y 9

12 2.5 Beispiele (a) Fu r eine Teilmenge Y eines metrischen Raumes (X, d) sind die ε-umgebungen O := {x X d(y, x) < ε} Umgebungen von Y. Kleine Wiederholung: d(x, Y ) := inf {d(x, y) x X, y Y } Begru ndung: y Y d(y, y) = 0 < ε Y O Behauptung: O ist offen. Fu r x O wa hle δ < ε d(y, x), δ > 0 z.z. : Bδ (x) O Sei z Bδ (x). Fu r jedes y Y gilt: d(z, y) d(z, x) + d(x, y), wobei d(z, x) < δ d(z, Y ) = infy Y d(z, y) infy Y (δ + d(x, y)) = δ + d(x, Y ) < ε z O Da dies fu r jedes beliebige z Bδ (x) gilt, folgt Bδ (x) O. Abbildung 2.2: Beispiel a (b)aber es braucht nicht jede Umgebung U von Y eine solche ε-umgebung zu enthalten. 10

13 Sei z.b. Y = { 1, 1 2, 1 3,...} R. Dann ist U = n=1 ] 1 n 1 2n(n + 1), 1 [ n + 1 2n(n + 1) (2.1) eine Umgebung von Y, die keine ε-umgebung von Y enthält. U enthält keine ε-umgebung Zeige: Für jedes ε > 0 gibt es Elemente in V := {x R d(y, x) < ε}, die nicht in U enthalten sind. Begründung, dass U keine ε-umgebung enthält: Ist ε > 0 gegeben, wähle n so, dass 1 < ε n Es gilt ( 1 ε, 1 + ε) = B n n ε( 1 ) V, aber ( 1 ε, 1 + ε) U, da das Intervall negative n n n Zahlen anthält, aber U (0, ) nicht. Abbildung 2.3: Beispiel b (c)auch besitzt jede Hyperbel H := { (x, y) y = 1 x, x > 0} eine Umgebung, die keinen Punkt der Asymptote A enthält, obgleich d(h, A) = 0 ist. Begründung: Hier ist genauso vorzugehen, wie in Beispiel (b). Sei ε > 0 gegeben und V := { (x, y) d ( (x, y), H ) < ε }. Für gegebenes ε > 0 enthält B ε (x, 1 ) Punkte mit negativer x-koordinate für 0 < x < ε. x 11

14 Diese Punkte sind nicht in U enthalten, aber in V. U = { (x, y) 1 x 1 2x(x + 1) < y < 1 } x + 1 2x(x + 1 (2.2) Abbildung 2.4: Beispiel c 12

Topologische Räume und stetige Abbildungen Teil 2

Topologische Räume und stetige Abbildungen Teil 2 TU Dortmund Mathematik Fakultät Proseminar zur Linearen Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Teil 2 Anna Kwasniok Dozent: Prof. Dr. L. Schwachhöfer Vorstellung des

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Etwas Topologie Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Literatur Abraham, Marsden, Foundations of Mechanics, Addison Wesley 1978, Seiten 3 17 Definition. Ein topologischer

Mehr

3 Topologische Gruppen

3 Topologische Gruppen $Id: topgr.tex,v 1.2 2010/05/26 19:47:48 hk Exp hk $ 3 Topologische Gruppen Als letztes Beispiel eines topologischen Raums hatten wir die Zariski-Topologie auf dem C n betrachtet, in der die abgeschlossenen

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

30 Metriken und Normen

30 Metriken und Normen 31 Metriken und Normen 153 30 Metriken und Normen Lernziele: Konzepte: Metriken, Normen, Skalarprodukte, Konvergenz von Folgen Frage: Versuchen Sie, möglichst viele verschiedene Konvergenzbegriffe für

Mehr

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge 1 Mengensysteme Ein Mengensystem ist eine Familie von Teilmengen einer Grundmenge und damit eine Teilmenge der Potenzmenge der Grundmenge. In diesem Kapitel untersuchen wir Mengensysteme, die unter bestimmten

Mehr

Kapitel 5 KONVERGENZ

Kapitel 5 KONVERGENZ Kapitel 5 KONVERGENZ Fassung vom 21. April 2002 Claude Portenier ANALYSIS 75 5.1 Metrische Räume 5.1 Metrische Räume DEFINITION 1 Sei X eine Menge. Eine Abbildung d : X X! R + heißt Metrik oder Distanz

Mehr

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit Vortrag zum Proseminar zur Analysis, 17.05.2010 Min Ge, Niklas Fischer In diesem Vortrag werden die Eigenschaften von kompakten, metrischen Räumen vertieft. Unser Ziel ist es Techniken zu erlernen, um

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Kapitel 8 - Kompakte Räume

Kapitel 8 - Kompakte Räume Kapitel 8 - Kompakte Räume Ein Vortrag von Philipp Dittrich nach B.v.Querenburg: Mengentheoretische Topologie Inhalt 8.1 Definition Kompaktheit....................... 2 Beispiel - das Intervall (0,1).....................

Mehr

Topologische Aspekte: Eine kurze Zusammenfassung

Topologische Aspekte: Eine kurze Zusammenfassung Kapitel 1 Topologische Aspekte: Eine kurze Zusammenfassung Wer das erste Knopfloch verfehlt, kommt mit dem Zuknöpfen nicht zu Rande J. W. Goethe In diesem Kapitel bringen wir die Begriffe Umgebung, Konvergenz,

Mehr

Mathematik I. Vorlesung 19. Metrische Räume

Mathematik I. Vorlesung 19. Metrische Räume Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 19 Metrische Räume Euklidische Räume besitzen nach Definition ein Skalarprodukt. Darauf aufbauend kann man einfach die Norm eines Vektors

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 2012 Mathematik für Anwender II Vorlesung 32 Metrische Räume Euklidische Räume besitzen nach Definition ein Skalarprodukt. Darauf aufbauend kann man einfach die Norm eines

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

2. Stetige Abbildungen

2. Stetige Abbildungen 4 Andreas Gathmann 2. Stetige Abbildungen Nachdem wir im letzten Kapitel topologische Räume eingeführt haben, wollen wir nun Abbildungen zwischen solchen Räumen untersuchen. Wie schon in der Einleitung

Mehr

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit Vortrag zum Seminar zur Analysis, 10.05.2010 Michael Engeländer, Jonathan Fell Dieser Vortrag stellt als erstes einige Sätze zu Cauchy-Folgen auf allgemeinen metrischen Räumen vor. Speziell wird auch das

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

3. Übungsblatt zur Analysis II

3. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. R. Farwig Ch. Komo J. Prasiswa R. Schulz SS 9.5.9. Übungsblatt zur Analysis II Gruppenübung Aufgabe G (Äquivalenz von Normen) i) etrachten Sie den Vektorraum R n mit der

Mehr

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit Vortrag zum Proseminar zur Analysis, 17.05.2010 Min Ge, Niklas Fischer 1 Überdeckungskompaktheit Einleitung P T Q A R S U B (a) (b) Abbildung 1: Beispiele verschiedener Überdeckungen (1.1) Definition (Überdeckung)

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also Festlegung Definitionsbereich 11.1 Festlegung Definitionsbereich Festlegung: Wir betrachten Funktionen f : D Ñ R, deren Definitionsbereich eine endliche Vereinigung von Intervallen ist, also z.b. D ra,

Mehr

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16 Lineare Algebra I - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß 1. Mengen und Abbildungen: Mengen gehören zu den Grundlegendsten Objekten in der Mathematik Kurze Einführung in die (naive) Mengelehre

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Übungsblatt 2 - Analysis 2, Prof. G. Hemion

Übungsblatt 2 - Analysis 2, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 2 - Analysis 2, Prof. G. Hemion Um die hier gestellten Aufgaben zu lösen brauchen wir ein wenig Kentnisse über das Infimum bzw. Supremum einer Menge.

Mehr

Grundbegriffe der Topologie. Günther Hörmann Fakultät für Mathematik Universität Wien

Grundbegriffe der Topologie. Günther Hörmann Fakultät für Mathematik Universität Wien Grundbegriffe der Topologie Günther Hörmann Fakultät für Mathematik Universität Wien guenther.hoermann@univie.ac.at Sommersemester 2013 Inhaltsverzeichnis 0 Wiederholung: Metrische Räume 1 1 Topologische

Mehr

Mengenlehre. Aufgaben mit Lösungen

Mengenlehre. Aufgaben mit Lösungen Mengenlehre Aufgaben mit Lösungen Inhaltsverzeichnis 1 Hilfsmittel 1 1. Zahlenmengen........................................ 1 2. Symbole........................................... 1 3. Intervalle: Schreibweise...................................

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Topologische Begriffe

Topologische Begriffe Kapitel 3 Topologische Begriffe 3.1 Inneres, Rand und Abschluss von Mengen Definition (innerer Punkt und Inneres). Sei (V, ) ein normierter Raum über K, und sei M V eine Menge. Ein Vektor v M heißt innerer

Mehr

5 Teilmengen von R und von R n

5 Teilmengen von R und von R n 5 Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,...,x n ) : x i R} = R }... {{ R }. n mal Für x R ist x der Abstand zum Nullpunkt. Die entsprechende Verallgemeinerung

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

8.1 Grundbegriffe der Mengen-Topologie

8.1 Grundbegriffe der Mengen-Topologie Die Menge der möglichen Handlungsalternativen eines Entscheidungsproblems wird Entscheidungsraum genannt. Die Entscheidungsräume vieler ökonomischer Entscheidungsprobleme sind Teilmengen des R n. In diesem

Mehr

i=1 i=1,...,n x K f(x).

i=1 i=1,...,n x K f(x). 2. Normierte Räume und Banachräume Ein normierter Raum ist ein Vektorraum, auf dem wir Längen messen können. Genauer definieren wir: Definition 2.1. Sei X ein Vektorraum über C. Eine Abbildung : X [0,

Mehr

Überlagerung I. Überlagerung für z z 2 : komplexe Quadratwurzel. Christoph Schweigert, Garben p.1/19

Überlagerung I. Überlagerung für z z 2 : komplexe Quadratwurzel. Christoph Schweigert, Garben p.1/19 Überlagerung I Überlagerung für z z 2 : komplexe Quadratwurzel Christoph Schweigert, Garben p.1/19 Überlagerung II Überlagerung für z z 3 : komplexe dritte Wurzel Christoph Schweigert, Garben p.2/19 Überlagerung

Mehr

Algebraische Kurven - Vorlesung 29. Projektion weg von einem Punkt

Algebraische Kurven - Vorlesung 29. Projektion weg von einem Punkt Algebraische Kurven - Vorlesung 29 Definition 1. Die Abbildung P n K Projektion weg von einem Punkt {(1, 0,..., 0)} Pn 1 K, (x 0, x 1...,x n ) (x 1,..., x n ), heißt die Projektion weg vom Punkt (1, 0,...,

Mehr

Unendliche Gruppen als geometrische Objekte

Unendliche Gruppen als geometrische Objekte Unendliche Gruppen als geometrische Objekte Ralf Meyer Georg-August-Universität Göttingen 12. November 2004 1 Endlich erzeugte Gruppen und die Wortmetrik Wir definieren endlich erzeugte Gruppen und führen

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Vorlesungsmanuskript zu. Topologie. Werner Balser Institut für Angewandte Analysis. Wintersemester 2008/09

Vorlesungsmanuskript zu. Topologie. Werner Balser Institut für Angewandte Analysis. Wintersemester 2008/09 Vorlesungsmanuskript zu Topologie Werner Balser Institut für Angewandte Analysis Wintersemester 2008/09 Inhaltsverzeichnis 1 Topologische Räume 5 1.1 Normierte und metrische Räume................................

Mehr

$Id: metrik.tex,v /05/29 15:07:05 hk Exp $ $Id: folgen.tex,v /05/29 13:21:44 hk Exp $

$Id: metrik.tex,v /05/29 15:07:05 hk Exp $ $Id: folgen.tex,v /05/29 13:21:44 hk Exp $ $Id: metrik.tex,v 1.11 2012/05/29 15:07:05 hk Exp $ $Id: folgen.tex,v 1.10 2012/05/29 13:21:44 hk Exp $ 5 Metrische Räume Am Ende der letzten Sitzung hatten wir eine Teilmenge U eines metrischen Raums

Mehr

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Christian Nawroth, Erstellt mit L A TEX 23. Mai 2002 Inhaltsverzeichnis 1 Vollständige Induktion 2 1.1 Das Prinzip der Vollstandigen Induktion................

Mehr

4 Messbare Funktionen

4 Messbare Funktionen 4 Messbare Funktionen 4.1 Definitionen und Eigenschaften Definition 4.1. Seien X eine beliebige nichtleere Menge, M P(X) eine σ-algebra in X und µ ein Maß auf M. Das Paar (X, M) heißt messbarer Raum und

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Wir beginnen mit der Definition eines metrischen Raumes, der in diesem Kapitel von zentraler Bedeutung ist. x, y, z X (Dreiecksungleichung).

Wir beginnen mit der Definition eines metrischen Raumes, der in diesem Kapitel von zentraler Bedeutung ist. x, y, z X (Dreiecksungleichung). Kapitel 4 Metrische Räume und Stetigkeit 4.1 Metrische und normierte Räume 4.2 Folgen in metrischen Räumen 4.3 Offene und abgeschlossene Mengen 4.4 Stetige Funktionen 4.5 Grenzwerte von Funktionen 4.6

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

Grundlagen der Mengenlehre

Grundlagen der Mengenlehre mathe plus Grundlagen der Mengenlehre Seite 1 1 Grundbegriffe Grundlagen der Mengenlehre Def 1 Mengenbegriff nach Georg Cantor (1845-1918) Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener

Mehr

ANALYSIS I FÜR TPH WS 2016/17 1. Übung Übersicht

ANALYSIS I FÜR TPH WS 2016/17 1. Übung Übersicht . Übung Übersicht Aufgaben zu Kapitel und 2 Aufgabe : Drei klassische Ungleichungen Aufgabe 2: ) Beweis einer Summenformel Induktion) Aufgabe : ) Teleskopsummen Aufgabe 4: Noch etwas Formelmanipulation

Mehr

Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen.

Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen. Vorlesung 27 Der projektive Raum Definition 1. Sei K ein Körper. Der projektive n-dimensionale Raum P n K besteht aus allen Geraden des A n+1 K durch den Nullpunkt, wobei diese Geraden als Punkte aufgefasst

Mehr

Seminar Einführung in die Kunst mathematischer Ungleichungen

Seminar Einführung in die Kunst mathematischer Ungleichungen Seminar Einführung in die Kunst mathematischer Ungleichungen Geometrie und die Summe von Quadraten Clara Brünn 25. April 2016 Inhaltsverzeichnis 1 Einleitung 2 1.1 Geometrie allgemein.................................

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Kapitel 16 SATZ VON FUBINI UND DIE TRANSFORMATIONSFORMEL

Kapitel 16 SATZ VON FUBINI UND DIE TRANSFORMATIONSFORMEL Kapitel 16 SAT VON FUBINI UND DIE TRANSFORMATIONSFORMEL Im folgenden sind X und Y metrische Räume, oder allgemeiner topologische Hausdor räume, und sind Radon-Integrale auf X bzw. Y. Fassung vom 24. Januar

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

1 Elemente der Wahrscheinlichkeitstheorie

1 Elemente der Wahrscheinlichkeitstheorie H.-J. Starkloff Unendlichdimensionale Stochastik Kap. 01 11. Oktober 2010 1 1 Elemente der Wahrscheinlichkeitstheorie 1.1 Messbare Räume Gegeben seien eine nichtleere Menge Ω und eine Menge A von Teilmengen

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

Die Sprache der Mathematik

Die Sprache der Mathematik Die Sprache der Mathematik Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Diese Lehrveranstaltung...... ist Pflicht für alle Studenten der Informatik und

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20 Gleichmäßige Konvergenz für Folgen und Reihen von Funktionen 20.1 Folgen und Reihen von Funktionen 20.3 Die Supremumsnorm 20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20.7 Das Cauchy-Kriterium

Mehr

1 Loesungen zu Analysis 1/ 1.Uebung

1 Loesungen zu Analysis 1/ 1.Uebung Loesungen ausgewaehlter Beispiele zu Analysis I, G. Bergauer, Seite 1 1 Loesungen zu Analysis 1/ 1.Uebung 1.1 Einleitung Gegeben Mengen X, A mit A X. Sei die Menge durch A = {a X : a erfuellt B} gegeben,

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : Ê Ê systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

Lineare Algebra 6. Übungsblatt

Lineare Algebra 6. Übungsblatt Lineare Algebra 6. Übungsblatt Fachbereich Mathematik M. Schneider 16.05.01 Konstantin Pertschik, Daniel Körnlein Gruppenübung Aufgabe G19 Berechnen Sie das inverse Element bzgl. Multiplikation in der

Mehr

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe:

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe: Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II Mathematik Symbol, Definition N N 0 Z Q Z + + Q 0 A = {a 1,, a n } Deutsch Erklärung Mengenbegriffe: natürlichen Zahlen natürlichen Zahlen

Mehr

Anhang B: Quadratische Irrationalzahlen 1 Reel-quadratische Zahlkörper

Anhang B: Quadratische Irrationalzahlen 1 Reel-quadratische Zahlkörper Anhang B: Quadratische Irrationalzahlen 1 Reel-quadratische Zahlkörper Eine reelle Zahl x Q heißt quadratische Irrationalzahl, wenn sie Lösung einer quadratischen Gleichung (1) ax bx c 0, a 0 mit rationalen

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Vorlesung 2. Tilman Bauer. 6. September 2007

Vorlesung 2. Tilman Bauer. 6. September 2007 Vorlesung 2 Universität Münster 6. September 2007 Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus) für alle

Mehr

Konvergenz, Filter und der Satz von Tychonoff

Konvergenz, Filter und der Satz von Tychonoff Abschnitt 4 Konvergenz, Filter und der Satz von Tychonoff In metrischen Räumen kann man topologische Begriffe wie Stetigkeit, Abschluss, Kompaktheit auch mit Hilfe von Konvergenz von Folgen charakterisieren.

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Skript zur Vorlesung Topologie I

Skript zur Vorlesung Topologie I Skript zur Vorlesung Topologie I Carsten Lange, Heike Siebert Richard-Sebastian Kroll Faszikel 1 Fehler und Kommentare bitte an clange@math.fu-berlin.de Stand: 15. Juni 2010 Fachbereich Mathematik und

Mehr

Kapitel 2 MENGENLEHRE

Kapitel 2 MENGENLEHRE Kapitel 2 MENGENLEHRE In diesem Kapitel geben wir eine kurze Einführung in die Mengenlehre, mit der man die ganze Mathematik begründen kann. Wir werden sehen, daßjedes mathematische Objekt eine Menge ist.

Mehr

Fraktale Geometrie. 9: Metrische äußere Maße II. Universität Regensburg Sommersemester Daniel Heiß:

Fraktale Geometrie. 9: Metrische äußere Maße II. Universität Regensburg Sommersemester Daniel Heiß: Universität Regensburg Sommersemester 013 Daniel Heiß: 9: Metrische äußere Maße II I Das mehrdimensionale Lebesguemaß 1.1 Definition (i) Für reelle Zahlen a b, c d ist ein Rechteck im R die Menge R = a,

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016 Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)

Mehr

Wiederholung: lineare Abbildungen

Wiederholung: lineare Abbildungen Wiederholung: lineare Abbildungen Def Es seien (V,+, ) und (U, +, ) zwei Vektorräume Eine Abbildung f : V U heißt linear, falls für alle Vektoren v 1, v 2 V und für jedes λ R gilt: (a) f (v 1 + v 2 ) =

Mehr

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009 4. Vortrag - Garben Datum: 26. April 2009 1 Graduierte Ringe Definition 4.1.1. Eine k-algebra R heißt graduiert, wenn sie dargestellt werden kann als eine direkte Summe R = R n, wobei die R n als k-unterräume

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

i 3 =. 2 [ ] 2 (k + 1) { + (k + 1) 3 k 2 + 4(k + 1) } (k + 2) 2 = x n = 1 + n 1 n?

i 3 =. 2 [ ] 2 (k + 1) { + (k + 1) 3 k 2 + 4(k + 1) } (k + 2) 2 = x n = 1 + n 1 n? Musterlösungen zur Klausur Analysis I Vollständige Indution Man beweise durch vollständige Indution: Für alle n N ist [ ] nn + ) i 3 i Beweis: Wir führen den Beweis mit vollständiger Indution Die Aussage

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

Mathematik I. Zusammenhängende Räume

Mathematik I. Zusammenhängende Räume Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 21 Die beiden nächsten Vorlesungen kann man unter dem Aspekt sehen, welche topologischen Eigenenschaften die reellen Zahlen gegenüber

Mehr

6.5 Die Taylor-Reihe. Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel

6.5 Die Taylor-Reihe. Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel 6.5 Die Taylor-Reihe Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel N q n = qn+ q für q C \ {}. Für q < ist die unendliche geometrische

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

4.5 Schranken an die Dichte von Kugelpackungen

4.5 Schranken an die Dichte von Kugelpackungen Gitter und Codes c Rudolf Scharlau 19. Juli 2009 341 4.5 Schranken an die Dichte von Kugelpackungen Schon in Abschnitt 1.4 hatten wir die Dichte einer Kugelpackung, speziell eines Gitters bzw. einer quadratischen

Mehr

2. Vorlesung. Die Theorie der schwarz-weissen Ketten.

2. Vorlesung. Die Theorie der schwarz-weissen Ketten. 2. Vorlesung. Die Theorie der schwarz-weissen Ketten. Die Theorie der schwarzen Steinchen haben wir jetzt halbwegs vertanden. Statt mit schwarzen Steinen wie die Griechen, wollen wir jetzt mit schwarzen

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

Unterricht 13: Wiederholung.

Unterricht 13: Wiederholung. , 1 I Unterricht 13: Wiederholung. Erinnerungen: Die kleinen Übungen nden diese Woche statt. Zur Prüfung müssen Sie Lichtbildausweis (Personalausweis oder Reisepass) Studierendenausweis mitbringen. I.1

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen Kapitel V Folgen und Konvergenz V.1 Konvergenz von Zahlenfolgen Wir erinnern an den Begriff der Folge, den wir schon im Kapitel III verwenden. Eine Folge (a n ) n=1 AN in A ist eine Abbildung a ( ) : N

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 2013/14 Höhere Mathemati I für die Fachrichtung Informati Lösungsvorschläge zum 2. Übungsblatt Aufgabe

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 05.11.2013 Alexander Lytchak 1 / 14 Linearkombinationen Definition Es sei V ein reeller Vektorraum. Es sei (v i ) i

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente Universität Basel Wirtschaftswissenschaftliches Zentrum Kombinatorik Dr. Thomas Zehrt Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente 2 Teil 1 Endliche Mengen Eine endliche Menge M ist eine Menge,

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr