Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16

Größe: px
Ab Seite anzeigen:

Download "Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16"

Transkript

1 Lineare Algebra I - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß

2 1. Mengen und Abbildungen: Mengen gehören zu den Grundlegendsten Objekten in der Mathematik Kurze Einführung in die (naive) Mengelehre

3 1.1. Mengen Eine Menge ist eine Zusammenfassung von unterscheidbaren Objekten zu einem neuen Objekt. Man kann sie z.b. durch Aufzählung definieren: M = {1, 5, 7}, M = {1, 2, 3,...,10}, M = {1, 7, {2, 3}}. { } { } { { }} Eine Menge kann auch aus unendlich vielen Objekten bestehen. Wichtige unendliche Mengen sind z.b. die Menge der natürlichen Zahlen die Menge der natürlichen Zahlen mit 0 oder die Menge der ganzen Zahlen N = {1, 2, 3,...}, N 0 = {0, 1, 2, 3,...}, Z = {0, 1, 1, 2, 2, 3, 3,...}. { } Die Anzahl der Elemente einer Menge M wird Ordnung genannt und als M geschrieben.

4 Gehört ein Objekt x zu einer Menge M, so sagen wir auch x ist in M enthalten, oder auch x ist Element von M, und schreiben x 2 M. Anderenfalls schreiben wir x/2 M. So gilt z.b. 1 2 Z, aber 1 /2 N Zwei Mengen sind gleich, M = N genau dann wenn die Aussagen x 2 M und x 2 N äquivalent sind (x 2 M, x 2 N), anderenfalls sind sie ungleich, M 6= N. 2, 2 6 ; {} 2; Die leere Menge ; = {} ist die Menge zu der kein Objekt gehört, d.h. x /2;für alle Objekte x. Es ist auch möglich, Mengen durch Charakterisierung ihrer Elemente zu definieren. So kann man häufig die Menge all derjeniger Objekte bilden, die eine Eigenschaft E besitzen: M = {x x hat die Eigenschaft E}, d.h. x ist genau dann Element von M, wenn x die Eigenschaft E besitzt. Zum Beispiel M = {x x ist eine gerade natürliche Zahl} = {2, 4, 6,...}. Achtung...

5 Achtung - das geht nicht immer: betrachte z.b. M = {x x ist eine Menge und x/2 x}. Würde M existieren, so würde dies zu einem Widerspruch führen, denn für eine Menge x würde nach der Definition von M gelten Angewendet auf x = M würde das bedeuten x 2 M, x/2 x. M 2 M, M/2 M,. Das nennt man die Russelsche Antinomie. Aufpassen bei unendlichen Mengen, die Mengen enthalten! (Solche Probleme werden in dieser Vorlesung nicht vorkommen....)

6 Definition 1.1. (1) Eine Menge M ist Teilmenge (oder auch Untermenge) einer Menge N, falls für alle x 2 M auch gilt x 2 N. Dann schreiben wir M N oder N M. N nennt man dann auch Obermenge von M. (2) Ist darüberhinaus außerdem M 6= N, so nennt man M echte Teilmenge von N und schreibt M N, bzw. N M. Bemerkung 1.2. (1) Aus A B und B C folgt A C. (2) Aus A B und B A folgt A = B.

7 Mengenoperationen: Definition 1.3. Für zwei Mengen M und N definieren wir die folgenden Mengen: (1) den Durchschnitt M \ N := {x x 2 M ^ x 2 N}, (2) die Vereinigung M [ N := {x x 2 M _ x 2 N} und (3) die Di erenz M \ N := {x x 2 M ^ x/2 N}. Wird auch Komplement genannt! Definition 1.4. Zwei Mengen M und N nennt man disjunkt, falls ihr Durchschnitt leer ist, M \ N = ;.

8 Regeln: \ ; Bemerkung 1.5. Für Mengen M und N gilt: (1) M \ N M M [ N und genauso M \ N N M [ N (2) M \ N M (3) (M \ N) \ N = ; (4) M \ N = ;, M N (5) M [ N = ;, (M = ;^N = ;) 2 \ 2 ^ 2

9 Regeln: Bemerkung 1.6. Für Mengen M,N und O gilt: (1) M \ N = N \ M und M [ N = N [ M (2) (M \ N) \ O = M \ (N \ O) und(m [ N) [ O = M [ (N [ O) (3) (M [ N) \ O =(M \ O) [ (N \ O) und(m \ N) [ O =(M [ O) \ (N [ O) (4) (M \ N) \ O =(M \ O) \ N =(M \ O) \ (N \ O) (5) O \ (M \ N) =(O \ M) [ (O \ N) undo \ (M [ N) =(O \ M) \ (O \ N) 2 \ \

10 Mengenprodukt: Definition 1.7. Das Produkt zweier Mengen M und N ist definiert als die Menge M N = {(x, y) x 2 M ^ y 2 N} der geordneten Paare (x, y), x 2 M, y 2 N. { 2 R apple apple } R Bemerkung 1.9. Seien M,N and O Mengen. Dann gilt (1) (M \ N) O =(M O) \ (N O) (2) (M [ N) O =(M O) [ (N O) (3) (M \ 2 N) \ O =(M 2 O) \ (N O) 2 \ 2 \ Definition Das Produkt von Mengen M 1,...,M n ist definiert als die Menge M 1... M n = {(x 1,...,x n ) x 1 2 M 1,...,x n 2 M n } der geordneten n-tupel (x 1,...,x n ), x 1 2 M 1,...,x n 2 M n. Im Fall M i = M für alle 1 apple i apple n schreiben wir M n = M... M {z } n Faktoren.

11 {z } 1.2. Abbildungen Definition EineAbbildung f von einer Menge M in eine Menge N ist eine Vorschrift, die jedem Element m 2 M ein eindeutiges Element n = f(m) 2 N zuordnet. Man schreibt 1 f : M! N, m7! f(m). Die Menge M nennt man den Definitionsbereich, die Menge N den Wertebereich der Abbildung.! 7! Definition Zwei Abbildungen f : M! N und g : M! N sind gleich, geschrieben als f = g, falls f(m) =g(m) für alle m 2 M. DieMenge aller Abbildungen f : M! N wird mit Abb(M,N) bezeichnet. 1.2 Abbildungen

3 Werkzeuge der Mathematik

3 Werkzeuge der Mathematik 3.1 Mengen (18.11.2011) Definition 3.1 Die Menge heißt leere Menge. :=»x M x x Definition 3.2 Es seien N und M Mengen. Wir definieren: und analog M N : (x M x N). N M : (x N x M). Wir sagen M ist Teilmenge

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin:

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin: Lineare Algebra I - 9.Vorlesung - rof. Dr. Daniel Roggenkamp & Falko Gauß Korrektur: 2. Klausurtermin: 09.02.2017 Linearkombination von Vektoren lineare Hülle Erzeugendensystem S lineare Unabhängigkeit

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 5. September 2011 Definition (Menge) Wir verstehen unter einer Menge eine Zusammenfassung von unterscheidbaren Objekten zu einem

Mehr

Mathematik 1, Teil B

Mathematik 1, Teil B FH Oldenburg/Ostfriesland/Wilhelmshaven Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre

Mehr

Mengenlehre. Begriff der Mengenzugehörigkeit x M, x Ê M >x : x { a 1. e e x = a n. } 2 x = a 1. >x : x { y P(y) } 2 P(x) Begriff der leeren Menge

Mengenlehre. Begriff der Mengenzugehörigkeit x M, x Ê M >x : x { a 1. e e x = a n. } 2 x = a 1. >x : x { y P(y) } 2 P(x) Begriff der leeren Menge Mengenlehre Grundbegriff ist die Menge Definition (Naive Mengenlehre). Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung

Mehr

Vorlesung 3: Logik und Mengenlehre

Vorlesung 3: Logik und Mengenlehre 28102013 Erinnerung: Zeilen-Stufen-Form (ZSF) eines LGS 0 0 1 c 1 0 0 0 1 0 0 1 c r 0 0 0 c r+1 0 0 0 0 0 0 0 0 0 c m Erinnerung: Information der Zeilen-Stufen-Form Aus der ZSF liest man ab: Folgerung

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 15. Oktober 2015 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage veröffentlicht

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7 Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum

Mehr

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen Kapitel 1 Mengen und Abbildungen 1.1 Mengen Die Objekte der modernen Mathematik sind die Mengen. Obwohl die Logik einen axiomatischen Zugang zur Mengenlehre bietet, wollen wir uns in dieser Vorlesung auf

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Lineare Algebra I - 26. Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Donnerstag 8.12.: 8:30 Uhr - Vorlesung 10:15 Uhr - große Übung / Fragestunde Klausur: Mittwoch, 14.12. 14:15 Uhr, A3 001 Cauchy-Schwarz

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 22.10.2013 Alexander Lytchak 1 / 16 Wiederholung des Beispiels 3x 6 + x 7 = 2 2x 2 + 4x 4 + 6x 5 + 5x 7 = 3 2x 2 + x

Mehr

Einführung in die Semantik, 2./3. Sitzung Mengen / Relatione

Einführung in die Semantik, 2./3. Sitzung Mengen / Relatione Eigenschaften von Einführung in die Semantik, 2./3. Sitzung Mengen / / Göttingen 2. November 2006 Eigenschaften von Mengenlehre Eigenschaften von Eigenschaften von Das Konzept Menge Eine Menge ist eine

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 48 / 155 Überblick

Mehr

Vorlesung 2. Tilman Bauer. 6. September 2007

Vorlesung 2. Tilman Bauer. 6. September 2007 Vorlesung 2 Universität Münster 6. September 2007 Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus) für alle

Mehr

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch 1.2 Mengenlehre Grundlagen der Mathematik 1 1.2 Mengenlehre Definition: Menge, Element, Variablenraum Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert

Mehr

B Grundbegriffe zu Mengen und Abbildungen

B Grundbegriffe zu Mengen und Abbildungen B Grundbegriffe zu Mengen und Abbildungen Die Sprache der Mengen und Abbildungen hat sich als Basissprache in der modernen Mathematik durchgesetzt. Da sie sehr praktisch ist, wird sie auch in diesem Buch

Mehr

2 Mengenlehre. Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen.

2 Mengenlehre. Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen. Mengenlehre 2 Mengenlehre Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen. Üblicherweise werden Mengen mit Großbuchstaben

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011.

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011. Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen 21. März 2011 Tanja Geib Inhaltsverzeichnis 1 Aussagen 1 2 Mengenlehre 3 2.1 Grundlegende Definitionen

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 Mengen und Abbildungen 3.2 Induktion und Rekursion 3.3 Ausdrücke 3 Mathematische Grundlagen Einf. Progr. (WS 08/09) 102 Überblick 3.

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Teil 1: Mengenlehre 1 Mengen Einleitung Beschreibung und Beispiele Operationen Verhältnisse Kartesisches Produkt 2 Relationen

Mehr

Für unseren Gebrauch ist eine Menge bestimmt durch die in ihr enthaltenen Elemente. Ist M eine Menge, so ist ein beliebiges Objekt m wieder so ein

Für unseren Gebrauch ist eine Menge bestimmt durch die in ihr enthaltenen Elemente. Ist M eine Menge, so ist ein beliebiges Objekt m wieder so ein Mengen 1.2 9 1.2 Mengen 7 Der Begriff der Menge wurde am Ende des 19. Jahrhunderts von Georg Cantor wie folgt eingeführt. Definition (Cantor 1895) Eine Menge ist eine Zusammenfassung M von bestimmten,

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker 1 2 Mengen, Relationen, Funktionen 2.1 Mengen Definition 2.1 [Georg Cantor 1895] Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Dinge unserer

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker Grundlagen der Mathematik für Informatiker Mengen, Relationen, Funktionen. Mengen Definition. [Georg Cantor 895] Eine Menge ist eine Zusammenfassung bestimmter,

Mehr

Grundlagen. Kapitel Mengen

Grundlagen. Kapitel Mengen Kapitel 1 Grundlagen 1.1 Mengen Grundobjekte mathematischer Theorien sind Mengen. Zwar stellt man sich darunter Gesamtheiten von gewissen Dingen (den Elementen der Menge) vor, doch führt die uneingeschränkte

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Gliederung. Mengen und operationen. Relationen. Funktionen. Kardinalität von Mengen. Formale Grundlagen der Informatik Knorr/Fuchs SS 2000

Gliederung. Mengen und operationen. Relationen. Funktionen. Kardinalität von Mengen. Formale Grundlagen der Informatik Knorr/Fuchs SS 2000 Gliederung Mengen und operationen Relationen Funktionen Kardinalität von Mengen Mengen, Relationen, Funktionen 1 Mengen Definition (Naive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 19. Oktober 2017 1/27 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 22 In dieser und der nächsten Vorlesung beweisen wir zwei Versionen zur eindeutigen Primfaktorzerlegung in Zahlbereichen, die beide Abschwächungen

Mehr

Brückenkurs Mathematik 2015

Brückenkurs Mathematik 2015 Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass

Mehr

17 Lineare Abbildungen

17 Lineare Abbildungen Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:

Mehr

1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage.

1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage. 1.3 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben, wahr oder falsch

Mehr

Mengenlehre und vollständige Induktion

Mengenlehre und vollständige Induktion Fachschaft MathPhys Heidelberg Mengenlehre und vollständige Induktion Vladislav Olkhovskiy Vorkurs 018 Inhaltsverzeichnis 1 Motivation 1 Mengen.1 Grundbegriffe.................................. Kostruktionen

Mehr

Brückenkurs Mathematik 2018

Brückenkurs Mathematik 2018 Mathematik 2018 1. Vorlesung Logik, Mengen und Funktionen Prof. Dr. 24. September 2018 Ich behaupte aber, dass in jeder besonderen Naturlehre nur so viel eigentliche Wissenschaft angetroffen werden könne,

Mehr

Analysis I - Notizen 1. Daniel Lenz Jena - Wintersemester 2016

Analysis I - Notizen 1. Daniel Lenz Jena - Wintersemester 2016 Analysis I - Notizen 1 Daniel Lenz Jena - Wintersemester 2016 1 Es handelt sich nicht um ein Skriptum zur Vorlesung. Besten Dank an alle, die zu Verbesserungen früherer Notizen zur Analysis I beigetragen

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

0 Mengen und Abbildungen, Gruppen und Körper

0 Mengen und Abbildungen, Gruppen und Körper 0 Mengen und Abbildungen, Gruppen und Körper In diesem Paragrafen behandeln wir einige für die Lineare Algebra und für die Analysis wichtige Grundbegriffe. Wir beginnen mit dem Begriff der Menge. Auf Cantor

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Kapitel 2 Mathematische Grundlagen Skript zur Vorlesung Einführung in die Programmierung im Wintersemester 2012/13 Ludwig-Maximilians-Universität

Mehr

1.4 Mengen. Wirtschaftswissenschaften häufig nicht so klar formulierbar.

1.4 Mengen. Wirtschaftswissenschaften häufig nicht so klar formulierbar. Wirtschaftswissenschaften häufig nicht so klar formulierbar. Viel häufiger tritt das Phänomen auf, dass man Aussagen widerlegt! Kehren wir zurück zu unserem Beispiel 1.13 über den Zusammenhang zwischen

Mehr

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen 09.10.2014 Herzlich Willkommen zum 2. Teil des Vorschaukurses für Mathematik! Organisatorisches Der Vorkurs besteht aus sechs Blöcken

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre. Referenzen zum Nacharbeiten:

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre. Referenzen zum Nacharbeiten: DM2 Slide 1 Diskrete Mathematik Sebastian Iwanowski FH Wedel Kapitel 2: Mengenlehre Referenzen zum Nacharbeiten: Lang 3 Meinel 2, 4, 5, 10.2-10.4 (zur Vertiefung: Meinel 10.5-10.8 und Beutelspacher 10)

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Grundbegriffe aus Logik und Mengenlehre

Grundbegriffe aus Logik und Mengenlehre Prof. Dr. B. Niethammer Dr. C. Seis, R. Schubert Institut fr Angewandte Mathematik Universitt Bonn Grundbegriffe aus Logik und Mengenlehre Wir wollen im Folgenden eine kurze Einführung in die Grundbegriffe

Mehr

FILTER, ULTRAFILTER UND EINFÜHRUNG VON R

FILTER, ULTRAFILTER UND EINFÜHRUNG VON R FILTER, ULTRAFILTER UND EINFÜHRUNG VON R Im Sinne von G.W.Leibniz ist: Eine Kurve besteht aus unendlich vielen unendlich kurzen Stücken. So darf man denken, wenn man Gegenstände der Mathematik oder Physik

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kapitel 2: Mengenlehre Lang 3 Meinel 2, 4, 5, 10.2-10.4 (zur Vertiefung: Meinel 10.5-10.8 und Beutelspacher 10) Dean 2, 5-7

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 08.11.2018 Dr. Markus Lange Analysis 1 Aufgabenzettel 4 Abgabe bis 14. November 2018, 19:00 Uhr Erinnerung: Die Anmeldung für den Übungsschein

Mehr

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Einführung in die Logik - 6 mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Modelltheoretische / Denotationelle Semantik der Prdikatenlogik Ein Modell ist ein künstlich geschaffenes

Mehr

Mengen und Relationen

Mengen und Relationen KAPITEL 1 Mengen und Relationen 1.1. Mengenlehre Georg Cantor (3.3.1845 6.1.1918: Cantor ist der Vater der modernen Mengenlehre, er definierte 1895: DEFINITION 1.1.1. Unter einer Menge verstehen wir jede

Mehr

Vorkurs Mathematik. Prof. Udo Hebisch WS 2017/18

Vorkurs Mathematik. Prof. Udo Hebisch WS 2017/18 Vorkurs Mathematik Prof. Udo Hebisch WS 2017/18 1 1 Logik 2 1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig

Mehr

1 Mengenlehre. 1.1 Grundbegriffe

1 Mengenlehre. 1.1 Grundbegriffe Dieses Kapitel behandelt Grundlagen der Mengenlehre, die in gewisser Weise am nfang der Mathematik steht und eine Sprache bereitstellt, die zur weiteren Formulierung der Mathematik sehr hilfreich ist.

Mehr

N = f0; 1; 2; : : : g: [n] = f1; : : : ; ng: M = f x j x hat die Eigenschaft E g:

N = f0; 1; 2; : : : g: [n] = f1; : : : ; ng: M = f x j x hat die Eigenschaft E g: 1 Mengen Gregor Cantor denierte 1895 eine Menge als eine Zusammenfassung wohldenierter, unterscheidbarer Objekte. Eine Menge wird als neues Objekt angesehen, die Menge ihrer Objekte. Ein Objekt x aus der

Mehr

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird. Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,

Mehr

Der Kalkül der Mengen. Die Sprache der Mathematik 1 / 68

Der Kalkül der Mengen. Die Sprache der Mathematik 1 / 68 Der Kalkül der Mengen Die Sprache der Mathematik 1 / 68 Präzise beschreiben und argumentieren: Aber wie? In welcher Sprache sollten wir versuchen, komplexe Sachverhalte vollständig und eindeutig zu beschreiben?

Mehr

Mengenlehre. Ist M eine Menge und x ein Element von M, so schreiben wir x M. Ist x kein Element von M, so schreiben wir x M.

Mengenlehre. Ist M eine Menge und x ein Element von M, so schreiben wir x M. Ist x kein Element von M, so schreiben wir x M. Mengenlehre Eine Menge ist eine Zusammenfassung bestimmter und unterschiedlicher Objekte. Für jedes Objekt lässt sich eindeutig sagen, ob es zu der Menge gehört. Die Objekte heißen Elemente der Menge.

Mehr

13 Auswahlaxiom und Zornsches Lemma

13 Auswahlaxiom und Zornsches Lemma 13 Auswahlaxiom und Zornsches Lemma Handout zur Funktionalanalysis I von H. Glöckner, 25.11.2008 Wichtige Teile der modernen Mathematik beruhen auf dem sogenannten Auswahlaxiom der Mengenlehre. Dieses

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )

Mehr

Kapitel 1: Grundbegriffe

Kapitel 1: Grundbegriffe Kapitel 1: Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) 1 / 20 Gliederung 1 Logik Ein ganz kurzer Ausflug in die Kombinatorik Stefan Ruzika (KO) 2

Mehr

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen 1. Grundlagen Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen Peter Buchholz 2016 MafI 2 Grundlagen 7 1.1 Was ist Analysis? Analysis ist

Mehr

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen . Grundlagen Gliederung. Was ist Analysis?.2 Aussagen und Mengen.3 Natürliche Zahlen.4 Ganze Zahlen, rationale Zahlen. Was ist Analysis? Analysis ist neben der linearen Algebra ein Grundpfeiler der Mathematik!

Mehr

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen.

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Kapitel 1 - Mathematische Grundlagen Seite 1 1 - Mengen Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Definition 1.1 (G. Cantor.

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Susanna Pohl Vorkurs Mathematik TU Dortmund 10.03.2015 Mengen und Relationen Mengen Motivation Beschreibung von Mengen Mengenoperationen

Mehr

3 Mengen und Abbildungen

3 Mengen und Abbildungen $Id: mengen.tex,v 1.2 2008/11/07 08:11:14 hk Exp hk $ 3 Mengen und Abbildungen 3.1 Mengen Eine Menge fasst eine Gesamtheit mathematischer Objekte zu einem neuen Objekt zusammen. Die klassische informelle

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

3.2 Unabhängigkeitsstrukturen

3.2 Unabhängigkeitsstrukturen 80 3.2 Unabhängigkeitsstrukturen Unser Ziel ist der Nachweis, daß in Vektorräumen, also in Moduln über Körpern, Basen existieren und zwei endliche Basen gegebenenfalls von derselben Ordnung sind. (Basen

Mehr

1. Mengentheoretische Grundbegriffe. naiver Mengenbegriff : Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen

1. Mengentheoretische Grundbegriffe. naiver Mengenbegriff : Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen 1. Mengentheoretische Grundbegriffe Cantors (1845 1918) naiver Mengenbegriff : Slide 1 Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen Objekten unserer Anschauung oder unseres

Mehr

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper.

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48 4 Vektorräume 4.1 Definition Sei K ein Körper. Definition: Ein Vektorraum über K, oder kurz ein K-Vektorraum, ist ein Tupel (V,+,, 0 V ) bestehend aus

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Jens Struckmeier Fachbereich Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2010/11 Jens Struckmeier (Mathematik,

Mehr

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr

Anmerkungen zu Mengen und Abbildungen

Anmerkungen zu Mengen und Abbildungen Anmerkungen zu Mengen und Abbildungen Kartesisches Produkt von n Mengen und n-stellige Relationen Sind M 1, M,, M n nichtleere Mengen, so ist ihr kartesisches Produkt erklärt als Menge aller geordneter

Mehr

Aufgaben zur Verbandstheorie

Aufgaben zur Verbandstheorie TU Bergakademie Freiberg WS 2005/06 Institut für Diskrete Mathematik & Algebra Prof. Dr. Udo Hebisch Aufgaben zur Verbandstheorie 1. Für ein beliebiges n IN sei X n die Menge aller Teiler von n. Definiert

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Einführung in die Programmierung Teil 2: Mathematische Grundlagen Prof. Dr. Peer Kröger, Florian Richter, Michael Fromm Wintersemester 2018/2019 Übersicht 1. Mengen 2. Relationen und Abbildungen 3. Boolsche

Mehr

Mengen, Logik. Jörn Loviscach. Versionsstand: 17. Oktober 2009, 17:42

Mengen, Logik. Jörn Loviscach. Versionsstand: 17. Oktober 2009, 17:42 Mengen, Logik Jörn Loviscach Versionsstand: 17. Oktober 2009, 17:42 1 Naive Mengenlehre Mengen sind die Grundlage fast aller mathematischen Objekte. Ob die Zahl 7, ein Kreis in der Ebene, die Relation

Mehr

Große Mengen und Ultrafilter. 1 Große Mengen

Große Mengen und Ultrafilter. 1 Große Mengen Vortrag zum Seminar zur Analysis, 31.10.2012 Marcel Marnitz In diesem Vortrag wird das Konzept mathematischer Filter eingeführt. Sie werden in späteren Vorträgen zur Konstruktion der hyperreellen Zahlen

Mehr

WS 20013/14. Diskrete Strukturen

WS 20013/14. Diskrete Strukturen WS 20013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19 Theoretische Informatik I WS2018/19 Übersichtsblatt Hertrampf/Bahrdt Institut für Formale Methoden der Informatik Theoretische Informatik Universität Stuttgart 1 Mathematische Aussagen Um mathematische

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 4. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 4. Vorlesung 1 / 21 Themen

Mehr

Grundbegriffe der Informatik Kapitel 3: Mengen, Alphabete, Abbildungen

Grundbegriffe der Informatik Kapitel 3: Mengen, Alphabete, Abbildungen Grundbegriffe der Informatik Kapitel 3: Mengen, Alphabete, Abbildungen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für

Mehr

Analysis I Marburg, Wintersemester 1999/2000

Analysis I Marburg, Wintersemester 1999/2000 Skript zur Vorlesung Analysis I Marburg, Wintersemester 1999/2000 Friedrich W. Knöller Literaturverzeichnis [1] Barner, Martin und Flohr, Friedrich: Analysis I. de Gruyter. 19XX [2] Forster, Otto: Analysis

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 1: Wiederholung 1 Mengen 2 Abbildungen 3 Exkurs Beweistechniken 4 Relationen Definition Operationen Eigenschaften Äquivalenzrelationen

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Kapitel 1: Aussagen, Mengen

Mehr

Mengenlehre Zahlbereiche. II Mengenlehre. Propädeutikum Holger Wuschke. 18. September 2018

Mengenlehre Zahlbereiche. II Mengenlehre. Propädeutikum Holger Wuschke. 18. September 2018 Propädeutikum 2018 18. September 2018 in der Mengenlehre Denition einer Menge (Georg Cantor, 1869) Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objecten m unsrer

Mehr

Lösung des 2. Übungsblattes (Lösung erstellt von Adam.)

Lösung des 2. Übungsblattes (Lösung erstellt von Adam.) Lösung des 2. Übungsblattes (Lösung erstellt von Adam.) Aufgabe 1: Für die gesamte Aufgabe nehmen wir an, dass stärker bindet als und, damit wir uns im Folgenden ein paar Klammern sparen können. (i) Für

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Mengen (siehe Teschl/Teschl 1.2)

Mengen (siehe Teschl/Teschl 1.2) Mengen (siehe Teschl/Teschl 1.2) Denition nach Georg Cantor (1895): Eine Menge ist eine Zusammenfassung von bestimmten und wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens zu einem

Mehr

Vorlesung Diskrete Strukturen Abbildungen

Vorlesung Diskrete Strukturen Abbildungen Vorlesung Diskrete Strukturen Abbildungen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung in die

Mehr